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Abstract— Decentralized multi-agent reinforcement learning
(MARL) is an inherently difficult problem because agents
can have individual, unique objectives and no direct incentive
to cooperate. Conflicts often arise over bottlenecks in the
environment, such as a shared key or an intersection, where
multiple agents need to access a single resource. To resolve these
conflicts, we propose the use of a shared scheduling protocol.
A scheduling protocol coordinates agent behavior such that
one agent is allowed to greedily use the resource while the
others are required to wait. In particular, we are interested
in decentralized scheduling protocols that can be implemented
independently by each agent without a centralized controller.
We present three protocols and prove that they resolve conflicts
when obeyed by all agents. In training, agents learn to obey
the protocol as violations incur a penalty. Experimental results
show that scheduling protocols increase the performance of
multi-agent training fivefold compared to baseline decentralized
MARL.

I. INTRODUCTION

Without intervention, agents in decentralized multi-agent
reinforcement learning (MARL) lack the information and
incentives to cooperate. Many real-world environments are
crowded with many agents, such as warehouse robots, self-
driving cars, and autonomous delivery drones. These ap-
plications require agents to coordinate access to shared re-
sources that are necessary to achieve high reward. However,
decentralized MARL agents learn individual policies that
greedily accomplish their own tasks. Additionally, optimal
policies depend on environment dynamics, which depend
on other agents’ behavior. Without privileged knowledge
of other agents’ policies or communication, coordination is
impossible.

Centralized MARL simplifies coordination over resources
but fails for several reasons. Centralized control considers a
multi-agent system to be a single agent, making coordination
and cooperation trivial. However, centralized control scales
poorly with the number of agents due to the curse of
dimensionality [1]. Additionally, centralized control might
be impossible when some of the agents cannot be centrally
controlled or when agents refuse to allow a centralized
controller to dictate their actions. For these reasons, learning
coordination through decentralized approaches is necessary.
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We propose the use of shared scheduling protocols to
resolve conflicts over resources in decentralized MARL. We
provide a formal definition for bottlenecks, which are a
shared resource that many agents need to use but only a
subset can use at a time. Scheduling protocols allocate the
bottleneck resource to a subset of agents while requiring all
other agents to wait. We train agents to follow a protocol
by appending an additional signal to their state space and
penalizing agents for breaking the rules. We prove that
scheduling protocols resolve conflicts, allowing all agents
to use the resource during an episode. As a result, all agents
are able to achieve high rewards simultaneously.

In particular, we are interested in decentralized scheduling
protocols as they can be implemented independently by each
agent. Decentralized scheduling protocols allocate resource
access to agents without explicit agent coordination. This
means that no centralized controller is necessary to resolve
conflicts. Decentralized protocols only require the history of
an individual agent to determine if that agent should access
a bottleneck or wait, as shown in Fig. 1.

We apply three pre-existing protocols from the networking
and cooperating system communities to the decentralized
MARL setting and prove they resolved conflicts. Carrier
sense multiple access with collision detection (CSMA/CD)
[2] is a decentralized media access control protocol for shar-
ing an Ethernet wire, while round robin (RR) and shortest
remaining time first (SRTF)[3] are job scheduling protocols
for processors. We prove that RR, CSMA/CD, and SRTF
satisfy the definition of a resource scheduling protocol and
therefore are able to resolve conflicts in a MARL setting.
CSMA/CD and SRTF are both decentralized protocols while
RR is centralized.

We find scheduling protocols results in a five-fold increase
in the number of agents converging to successful policies
during decentralized training. To evaluate the scheduling pro-
tocols, we run experiments on crowded gridworld environ-
ments with 15 agents learning simultaneously. Experimental
results show that decentralized independent learners fail to
converge as agents compete over the bottleneck resources
and mutually prevent task completion. In contrast, agents
learning with a scheduling protocol simultaneously converge
to task completion.

II. RELATED WORKS

Many MARL algorithms that can learn cooperative be-
havior utilize inter-agent communication [4, 5, 6, 7]. In
some circumstances, it is possible to provide convergence
guarantees given that each agent can access the full state
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Fig. 1: Comparison of information flow in centralized (a) and decentralized (b) scheduling protocols for decentralized MARL.
A centralized protocol takes in the observation history for all agents and generates the local state and protocol output for
each agent. A decentralized protocol only requires the history of agent i to generate the local state and protocol output for
agent i. Note that H.1 denotes the observation history for agent 1, H.2 denotes the observation history for agent 2, etc.

[6, 8]. However, requiring the full state to be globally
visible might be intractable in multi-agent systems with many
agents. In addition, communication algorithms assume all
agents are optimizing the average network reward, rather
than optimizing for their respective, individual rewards. [6,
8] In this work, we seek to achieve high total reward
while only optimizing for individual rewards with local state
information.

Another approach to learning cooperative behavior is to
condense relevant global information into a smaller context
variable. If the context variable provides enough information
to make the transition function stationary from each agent’s
perspective, then it is possible for each agent to learn poli-
cies independently [9]. While independent learning is ideal,
defining a global context variable which makes transitions
stationary may be infeasible. In contrast, we use scheduling
protocols to provide context variables that provably include
enough information to share a resource without requiring
stationary dynamics.

Shielding is a method of ensuring cooperation which for-
mally verifies that selected actions satisfy some specification.
Shields can be either centralized or factorized and require
some knowledge of transition dynamics [10]. Ensuring co-
operation over a long horizon for many agents may be
computationally expensive and depends on knowledge about
system dynamics. Scheduling protocols make no assumptions
about the availability of transition dynamics.

III. PRELIMINARIES

Throughout this paper, R refers to the reals, N refers to the
naturals, P(·) is the probability operator, and ∆(Y ) denotes
the set of all probability distributions over a set Y.

A. Reinforcement Learning (RL)

In the typical reinforcement learning setup, an agent
interacts with an environment over an infinite time horizon.
The environment is modeled as a Markov decision process
(MDP) defined as a tuple ⟨S,A, T,R, γ⟩, where S is a state
space, A is an action space, T : S × A 7→ ∆(S) is the

transition function, R : S×A×S 7→ R is the reward function,
and γ ∈ [0, 1) is a discount factor. Through interactions with
the environment, an agent learns a policy π : S 7→ ∆(A)
and attempts to find an optimal policy π∗ that maximizes
the expected discounted future reward.

There are many prior works which describe how to find
the optimal policy [11, 12, 13, 14, 15]. Each algorithm has
different convergence guarantees, scalability, and potential
to learn from offline data. Thus, the choice of algorithm
depends on the setting. We use RL algorithms as subroutines
which could be interchanged depending on the setting.

B. Multi-Agent Reinforcement Learning (MARL)

We model a multi-agent environment as a decentralized
MDP with a finite number of agents [16].

Definition 1: A decentralized MDP (dec-MDP) for N
agents is the tuple M = ⟨S,A, T,R,Ω, O,Γ⟩, where

- S is a finite set of states,
- A = A1 ×A2 × . . .×AN is a finite set of joint actions

such that Ai is the set of local actions for agent i,
- T : S ×A 7→ ∆(S) is the joint transition function,
- R : S × A × S → R is a reward function such that
R(s, a, s′) is the joint reward agents receive for taking
action a in joint state s and transitioning to s′,

- Ω = Ω1 × ... × ΩN is a set of joint observations with
Ωi being the set of local observations for agent i,

- O : S × A × S 7→ ∆(Ω) is the observation function,
such that O(s, a, s′) is a probability distribution over
observations and describes the probability of each agent
i seeing observation oi ∈ Ωi after the taking joint action
a in state s and transitioning to state s′, and

- Γ ∈ [0, 1)N is a vector such that Γi, the ith entry of Γ,
is the discount factor for agent i.

Dec-MDPs are jointly fully observable, meaning that for all
joint observations o ∈ Ω, there exists a joint state s such that
P(s|o) = 1.

A dec-MDP M is factored if the joint state space S =
S1 × S2 × ... × SN , where each Si is agent i’s local state
space. A factored dec-MDP is locally fully observable if for
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all local observations oi, there exists a state si ∈ Si such
that P(si|oi) = 1. If a factored dec-MDP is locally fully
observable, each agent has complete information about their
local state.

A factored dec-MDP is reward-independent if there exists
R1, ..., RN , Ri : Si ×Ai × Si 7→ R such that

R(s, a, s′) =

N∑
i=0

Ri(si, ai, si
′
).

For an agent i with local state, action sit, a
i
t, and next local

state sit+1, the local reward ri = Ri
t(s

i, ait, s
i
t+1).

For a factored dec-MDP M , a trajectory of states ξ =
s0s1...sN is a finite string of states st ∈ S such that for all t,
there exists joint action at such that P(st+1|T (st, at)) > 0.
For an individual agent i, a sequence of local states ξi =
si0s

i
1...s

i
n is called a local trajectory if there exists trajectory

ξ = s0s1...sN such that for each joint state st, sit is the local
state for agent i.

A local policy πi : Si 7→ ∆(Ai) defines the probability
of taking local action ai in local state si. Local policies are
fully decentralized and only use local state information to
produce actions. An optimal local policy πi∗ is a policy
that optimizes the total expected discounted local reward
E[
∑∞

t=0 γ
trit], where γ = Γi.

We consider environments where an agent may be isolated
in certain states, meaning that the actions of other agents do
not affect the transition for the isolated agent. We denote
the action space for all agents except agent i as A−i.
With a slight abuse of notation, a transition function can
be written as T (s, ai, a−i). Formally, at joint state s, an
agent i is isolated if for all ai ∈ Ai and a, a′ ∈ A−i,
T (s, ai, a) = T (s, ai, a′). An isolated optimal local policy
πi∗ is a local policy that maximizes the total expected
discounted local reward given that agent i is isolated at every
timestep. Isolation implies that the transition dynamics for an
agent only depend on that agent’s actions. This returns the
environment to the single-agent setting. Therefore, isolated
optimal local policies are decentralized and may be found
via an RL subroutine.

We assume that isolated optimal policies act as a desired
target for what an agent trained in a concurrent multi-agent
setting should achieve. However, even with this assumption,
isolated optimal policies tend to fail when executed in a
concurrent multi-agent setting. Isolated policies are implic-
itly conditioned on the lack of inter-agent interactions, an
assumption that is violated at execution time.

Instead, we focus on concurrent training, where agents
interact with each other while learning their local policies.
In this setting, the transition dynamics are dependent on other
agents’ policies making the environment non-stationary.
Therefore, learning an optimal local policy πi∗ is a moving
target and does not typically have convergence guarantees
[17]. Still, concurrent training is desirable because of its
scalability and robustness to inter-agent interactions. The
methods described below aim at improving the performance
of concurrent, decentralized MARL in an environment with

i

j

Fig. 2: The hallway environment, where agents must move
from one room to the other. Two rooms are connected by
a hallway with room. Green squares represent the target
locations. Blue highlighted region makes up the bottleneck.

a bottleneck.

IV. METHODS

In this section, we formally define a bottleneck, a shared
resource over which conflicts are likely to occur. We use this
definition to motivate the required properties for a scheduling
protocol. Next, we present three protocols and prove they
resolve conflicts between agents. Finally, we describe how
scheduling protocols can be used to improve concurrent,
decentralized MARL.

We first introduce an illustrative example, shown in Fig. 2,
which we call the hallway environment [7]. This environment
is made up of two rooms connected by a hallway. Agents
randomly spawn in a room and are tasked with navigating
through the hallway to the other room. The hallway is only
wide enough for one agent to pass through at a time.

A. Critical Resources and Bottleneck Identification

We now define a critical resource for a factorized, locally
fully observable, and reward-independent dec-MDP M .

Definition 2 (Critical Resource): For an agent i at state
si ∈ Si, critical resources Ci(si) ⊂ Si is the set of states
such that s ∈ Ci(si) if under any isolated optimal policy, a
rolled-out local trajectory from state si that achieves optimal
reward will include state s.

Intuitively, the critical resources of agent i are states
that are mandatory for an agent to receive optimal reward.
Critical resources can be found by training each agent in the
environment alone to learn multiple isolated optimal policies.

In the hallway environment, the critical resources for agent
i include the target location in the opposite room and the
hallway states they must pass through, highlighted in Fig.
2. Observe that an agent’s critical resources depend on its
current state. For example, once an agent enters the opposite
room in the hallway environment, rolled out trajectories that
reach the target no longer include the hallway.

Given a definition for critical resources, we define what it
means that an agent can block another agent from using a
critical resource. Agent i at state si is blocking agent j at sj

if for as long as agent i is at state si, there exists a critical
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resource c ∈ Cj(sj) such that there does not exist a local
trajectory ξj starting in sj and ending in c. An agent i at
state si can block agent j at sj via state s′ ∈ Si if there
exists a local trajectory ξi from si to s′ such that agent i at
state s′ is blocking agent j.

Next, we define a dec-MDP bottleneck, which consists of
states where conflicts between agents are likely to arise.

Definition 3 (Bottleneck): For dec-MDP M with each
agent k at local state sk and critical resources Ck(sk), a
bottleneck is the set of states B(s1, . . . , sN ), where state
b ∈ B(s1, . . . , sN ) if and only if:

1) there exists agents i, j, i ̸= j, such that b ∈ Ci(si) ∩
Cj(sj), and

2) there exists agents i, j, j ̸= i such that agent j can
block agent i at state sj via b.

A bottleneck is the set of critical resources which at least
two agents have in common and at least one agent can be
prevented from using due to the state of another agent. In
the hallway environment, agents i and j can block each
other from accessing the opposite room by standing in the
hallway. Therefore, the hallway states form a bottleneck, as
highlighted in Fig. 2. Observe that a bottleneck depends on
the states of the agents. If less than two agents need a state, or
no agent can be prevented from reaching that state by another
agent, then that state is no longer part of a bottleneck.

Bottleneck states can be grouped into individual bottleneck
sets consisting of bottleneck states that are fully connected
via dec-MDP transitions. Bottleneck states B(si, ..., sj) are
fully connected if for all b, b′ ∈ B(si, ..., sj), there exists
for each agent k a local trajectory ξk = bsk1s

k
2 . . . s

k
nb

′ with
sk1 , ...s

k
n ∈ B(si, ..., sj). Fully connected bottlenecks can

be considered a single resource and will be managed by a
single instantiation of a protocol. If there are multiple fully
connected bottlenecks, each one will be managed separately.
For the remainder of this work, we assume there is a single
fully connected bottleneck in the environment.

As an episode progresses, an agent may no longer need
any resources in the bottleneck. An agent k at local state skt
passes through a fully connected bottleneck B(s1t , ..., s

N
t ) at

time t if skt /∈ B(s1t , ..., s
N
t ) and for all b ∈ B(s10, ..., s

N
0 ),

b /∈ Ck(skt ). Agents have passed through the bottleneck if
the bottleneck no longer includes states that are necessary
for the agent to achieve an optimal reward.

We assume that for any fully connected bottleneck, there
exists a finite necessary time that describes the minimum
number of timesteps needed for an agent to pass through
the bottleneck. Specifically, if βi ∈ N is the necessary time
for agent i at state sit, then there exists a local trajectory
ξi = sits

i
t+1... with length less than βi +1 such that agent i

passes through the bottleneck at time t+ β. We assume that
as long as agent i is not being blocked by another agent,
the necessary time βi only depends on state si, not on other
agents. We refer to the maximum βi over all agents and over
all states as β.

For a fully connected bottleneck B(s1t , ..., s
N
t ), we say

agent i has a conflict at time t if agent i has not passed
through the bottleneck. A conflict implies more than one

agent needs to use the bottleneck resource but they cannot
use it at the same time. Concurrent decentralized MARL will
often fail to resolve conflicts. In the next section, we formally
define scheduling protocols to coordinate agent behavior.

Although it is possible to identify bottlenecks by following
the definitions above, it is also likely that bottlenecks may be
identified by understanding the environment and predicting
where agents are likely to interact. Alternatively, multiple
agents can be concurrently trained in the environment which
may demonstrate conflicts.

B. Scheduling Protocol Requirements

A scheduling protocol is an algorithm that coordinates
access to a bottleneck.

Definition 4 (Scheduling Protocol): For bottleneck
B(s1, ..., sN ) and necessary time β, protocol
P = P 1 × ...×PN at time t with P i : (Ωi)t 7→ {go, wait}.
Here (Ωi)t are sequences of local dec-MDP observations
of length t. For all agents i, there exists a interval of time
[ti, ti + β] such that for all t′ ∈ [ti, ti + β],

P j(oj0...o
j
t′) =

{
go if j = i
wait if j ̸= i and j ∈ Xi(sit′),

where Xi(si) is the set of agents that can block agent i.
Interval of time [ti, ti + β] is called agent i’s turn under
scheduling protocol P. If j ̸= i and j /∈ Xi(sit′), then it is
up to the implementation if P j(oj0...o

j
t′) = go or wait.

Scheduling protocols coordinate access to a common state
using an agent’s local observations. In a locally fully observ-
able dec-MDP, oi fully determines the local state of agent
i. However, oi can contain additional information, such as
whether or not a bottleneck is occupied.

When P i(o0...ot′) = go, agent i should greedily access
the bottleneck, however when P i(o0...ot′) = wait, agent i
should not access the bottleneck. Thus, protocols give each
agent access to a bottleneck for the necessary time while
other agents stay away.

A protocol is only required to tell agents to wait that are
capable of blocking the agent whose turn it is. If an agent j
can no longer block agent i during agent i’s turn, a protocol
can tell both agents to act. This occurs when two agents
can use a resource simultaneously as long as one agent has
a head start, such as when two agents are moving through
the hallway in the same direction. In the event Xi(si) is
unknown, P satisfies the definition of a protocol if during
agent i’s turn, P j(o0...ot′) = wait for all agents j ̸= i.

Proposition 1: Assume that for any agent i, i passes
through the bottleneck at time t+ β if for all t′ ∈ [t, t+ β],
P i(o0...ot′) = go and P k(o0...ot′) = wait for all k ∈
Xi(sit′). Then, protocol P resolves conflicts for every agent.

Proof: By the definition of a protocol P , there exists
an interval [ti, ti + β] such that for all t′ ∈ [ti, ti + β],
P i(o0...ot′) = go and P k(o0...ot′) = wait for any k such
that k can block i. Then, by assumption agent i passes
through the bottleneck. Therefore, scheduling protocol P
resolves conflicts for agent i. Since P ensures each agents
receives a turn, P resolves conflicts for all agents.
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In their most general form, scheduling protocols are cen-
tralized. Centralized protocols require either the environment
to coordinate protocol states, or a data processing step before
agents make decisions. Protocols can also be decentralized,
where each agent can implement the protocol independently
without coordination. We present examples of both central-
ized and decentralized protocols in the next section. See Fig.
1 for a visualization.

C. Protocol Verification

We present three different protocols pulled from the net-
working and operating system communities and prove that
they satisfy the definition of a scheduling protocol. For each
protocol, P = P 1 × ... × PN . At time t, P i : (Ωi)t 7→
{go, wait} for all agents i with local observation space Ωi

of a locally fully observable dec-MDP. 0
a) Round Robin (RR): RR is a turn-based protocol

where a subset of agents are instructed to act greedily for a
period of time. All other agents are told to wait. The subset
of agents must be able to use the resource simultaneously
without preventing each other from using the resource [3].

Formally, for dec-MDP M with bottleneck B(s1, ..., sN ),
there exists an ordering 1, 2, ..., N such that if k is in the kth

position, then for all

t′ ∈ [(k − 1)(β + 1), (k − 1)(β + 1) + β],

P l(ol0...o
l
t′) =


go if l = k
go if l ̸= k and l /∈ Xk(skt′)
wait if l ̸= k and l ∈ Xk(skt′).

Proposition 2: Round robin is a scheduling protocol for
bottleneck B(s1, ..., sN ) with necessary time β.

Proof: Follows directly from the definition of a schedul-
ing protocol, since each agent has a unique place n in the
agent ordering and a turn during the time interval [(n−1)(β+
1), (n− 1)(β + 1) + β] of length β.

In round robin, local observations okt must contain at a
minimum the local state skt and indication if it is agent k’s
turn in the ordering. Knowing that agent k cannot block
agent i during agent i’s turn may increase the time agent
k has access to a bottleneck, but when this information is
unavailable, P k(ok0 ...o

k
t′) = wait. Though an agent k can

pass through the bottleneck during the turn of agent i if
agent k cannot block agent i, agent k is still explicitly given
their own turn.

While RR is easy to implement and understand, it re-
quires a centralized authority to keep track of the ordering.
Additionally, RR can be inefficient during training because
each agent has relatively few timesteps to use the bottle-
neck resource each training episode, hindering exploration.
However, equal access to the bottleneck at predictable time
intervals may be favorable trade off.

b) Carrier Sense Multiple Access with Collision De-
tection (CSMA/CD): CSMA/CD is a first-come, first-serve
protocol. When an agent begins using the critical resource,
CSMA/CD dictates all other agents should wait. A collision
occurs when two agents begin using the critical resource

simultaneously. When a collision occurs, both agents should
stop using the critical resource for a random amount of
time. This randomness prevents collisions from repeatedly
occurring, as one of the agents will eventually be allowed to
access the bottleneck while the other must keep waiting [2].

Formally, for each agent i, there exists a counter function
f i
t : (Ωi)t 7→ N that counts the number of collisions agent i

was involved in throughout the observation history oi0...o
i
t ∈

(Ωi)t. After agent i participates in a collision, it is required
to wait for a random number of timesteps between 1 and
2f

i
t (o

i
0...o

i
t). This is known as exponential backoff. Let W i

t

be the amount of time an agent still needs to wait at time t
before it is allowed to use the resource. CSMA/CD is then
defined as:

P i(o0...ot) =


wait if W i

t > 0
wait if W i

t = 0, sit /∈ B(s1, ..., sN ),

and ∃j : sjt ∈ B(s1, ..., sN )
go else.

Proposition 3: Assume that for any agent i in the bottle-
neck, agent i at time t does not leave the bottleneck unless
P i(oi0..o

i
t) = wait. Assume also that agent i passes through

the bottleneck after β consecutive timesteps in the bottleneck.
Then CSMA/CD is a scheduling protocol for bottleneck
B(s1, ..., sN ) with necessary time β.

Proof: Observe that since agents comply to CSMA/CD,
an agent outside the bottleneck will not enter if another
agent is already there. Therefore, we consider the following
two cases. The first case is if at time t, agent i enters
the bottleneck and no other agents are in the bottleneck at
timestep t. Then, P j(o0...ot) = wait for all other agents and
P i(oi0...o

i
t) = go. Then, since agent i stays in the bottleneck

for β timesteps, for all t′ ∈ [t, t + β], P j(oj0...o
j
t′) = wait

for all agents j ̸= i and P i(o0...ot′) = go.
For the second case, suppose instead that two or more

agents enter the bottleneck at time t. Then for each agent
i in the bottleneck, W i

t will be assigned a value between
1 and 2f

i
t (o0...ot). Thus, these agents will receive wait for

some random number of timesteps. If for two agents i and
j, W i = W j , they will both enter the bottleneck after
their timers reach 0. However, as the number of collisions
increase, the probability of two agents receiving the same
random backoff time approaches 0. Thus, at least one agent
will receive go while the others receive wait. This agent will
enter the bottleneck alone, leading to the previous case.

At a minimum, the local observation at time t include an
agent’s local state, as well a signal indicating that another
agent is in the bottleneck. Under the small assumption
that each agent can detect when the bottleneck is in use,
CSMA/CD is a fully decentralized protocol as each agent
does not need any information about the protocol state of
other agents. The local observation can include additional
information to signal an agent if it is able to block the agent
currently in the bottleneck. If an agent cannot block the agent
currently in the bottleneck, it may use the bottleneck at the
same time.
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s0

πgo

a0

s1

πgo

a1

s2

πgo

a2

s3

πwait

a3

s4

πwait

a4

s5

Transitions (s0,a0,s1), (s1,a1,s2), (s2,a2,s3) are
used to train πgo, where s3 is not considered a
terminal state.

Transitions (s3,a3,s4), (s4,a4,s5) are
used to train πwait, where s3 is an
initial state.

Agent enters the
bottleneck at s1.

A different agent
enters the bottleneck at
s3, causing a collision.

Fig. 3: An example trajectory from the perspective of an agent following the CSMA/CD protocol. Actions are a function of
the state, shown as as an arrow with a corresponding policy label, and the next state is a function of the previous state and
action, shown by two arrows. Blue states correspond to states where the protocol signals go and green states correspond to
states where the protocol signals wait. The agent uses either πgo or πwait to choose an action based on the current protocol
state. For an action generated by either πgo or πwait, the transition (si,ai,si+1) is only used to train the respective policy.
A change in protocol state is not considered a terminal transition.

In contrast to RR, CSMA/CD does not hinder learning as
any agent may use the bottleneck when it is unused, pro-
viding ample opportunity to explore the bottleneck resource.
However, even after training, collisions will occur forcing
the agents involved to wait. In some environments, repeated
backoffs may create exceedingly long waiting periods.

c) Shortest Remaining Time First (SRTF): SRTF is
similar to CSMA/CD but prioritizes maximizing resource
usage. If an agent enters the bottleneck, all other agents must
wait. Should two agents enter the bottleneck simultaneously,
the agent with the shortest remaining time necessary to pass
through the bottleneck is instructed to act greedily while
the other must exit the bottleneck. This procedure increases
resource usage efficiency at the cost of reducing fairness. An
agent that requires longer to use the bottleneck than other
agents may repeatedly get turned away [3].

Formally, for an agent i at state sit ∈ B(s1, ..., sN ), let
βi(t) be the time remaining for agent i to pass through the
bottleneck.

P i(oi0...o
i
t) =



wait if sit /∈ B(s1, ..., sN )

and ∃j : sjt ∈ B(s1, ..., sN )
wait if sit ∈ B(s1, ..., sN )

and ∃j : sjt ∈ B(s1, ..., sN )
with βi(t) > βj(t)

go else,

where in the event of a tie between two or more agents
for the minimum remaining time in the bottleneck, agent i is
randomly generated and communicated between agents such
that P i(oi0...o

i
t) = go and P k(ok0 ...o

k
t ) = wait for all other

agents k.
Proposition 4: Assume that for any agent i in the bottle-

neck, agent i at time t does not leave the bottleneck unless
P i(oi0..o

i
t) = wait. Assume also that agent i passes through

the bottleneck after β consecutive timesteps in the bottle-
neck. Then SRTF is a scheduling protocol for bottleneck
B(s1, ..., sN ) with necessary time β.

Proof: As SRTF is a first come first serve protocol,
we only consider the case when multiple agents arrive at
the bottleneck at t. Let i be the agent with the shortest
remaining time βi to pass through the bottleneck. At time
t, P i(oi0...o

i
t) = go and P k(ok0 ...o

k
t ) = wait for all k ̸= i.

Then, since agent i does not leave the bottleneck until it
passes through, for all t′ ∈ [t, t+ βi], P i(oi0...o

i
t′) = go and

P k(ok0 ...o
k
t′) = wait for all k ̸= i. If agent i has the shortest

remaining time, agent i will receive a turn of length β. Since
there are finite number of agents, the number of times an
agent can be forced to leave the bottleneck is finite. Thus, at
some t, agent i will arrive and have either the shortest time
remaining or win the tie and receive a turn of length β.

For SRTF, local observations oi at a minimum must
include an agent’s local state, the time remaining for the
other agents in a bottleneck, and a signal for if the bottleneck
is already occupied by another agent. This assumes that
the agent can estimate the time remaining for other agents
when they are in the bottleneck. Under the assumption that
agents can communicate the outcome of a tie with other
agents in a bottleneck, SRTF is a fully decentralized protocol.
Alternatively, implementing exponential backoff in the event
of ties allows for a fully decentralized protocol. Otherwise,
a centralized authority is required to handle ties in SRTF.

SRTF has many of the same benefits as CSMA/CD, but it
can be more efficient than CSMA/CD when collisions occur.
One agent is allowed to continue using the resource rather
than backing off. However, the ability to predict the shortest
remaining time may not be a viable assumption in some
environments.
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Fig. 4: Experimental Results for the hallway environment with 15 agents. Shaded areas indicate 25% and 75% quantiles over
5 seeds. Fig. 4a shows a comparison of agent task completion rates during decentralized, concurrent training. Fig. 4b shows
an ablation where protocols affect the state space of each agent, but no reward penalty is applied for protocol violations.

D. MARL with Protocols

We present a decentralized, concurrent MARL training
scheme for dec-MDPs with bottleneck resources. The ap-
proach uses a resource scheduling protocol for each bottle-
neck in the environment. The protocol’s output for each agent
is appended to that agent’s local state. Agents learn a separate
policy for each output of the protocol according to their local
reward function. When the protocol signals an agent to wait,
this agent is additionally punished via a reward penalty if it
occupies a bottleneck state, violating the protocol.

We assume that a change in the protocol state between
timesteps is caused by external factors, such as other agents
entering the bottleneck resource, so we do not propagate
value between protocol states for a given agent. As a result,
each agent learns a separate policy for each state of the
protocol as if that protocol state continues indefinitely. This
ensures that an agent does not learn to avoid bottlenecks
due to deadlocks that occur when another agent violates the
protocol. See Fig. 3 for a diagram showing how πgo and
πwait are trained using a given trajectory.

Given the protocol state and the local state, an agent can
learn a policy for each protocol state using any RL sub-
routine. While learning how to maximize their local reward
function, agents also learn to comply with the protocol due to
the reward penalty. Since complying with a protocol provably
allows every agent to achieve high reward, the agents can
collectively learn to achieve high total reward while only
optimizing for local rewards.

V. EXPERIMENTS

In this section we evaluate the performance of vari-
ous scheduling protocols in a simulated multi-agent en-
vironment. We are primarily interested in the percentage
of agents who complete their task during training. We
also perform an ablation to evaluate the importance of

penalizing protocol violations. The code can be found on
GitHub: https://github.com/tyler-ingebrand/
SchedulingProtocolMARL.

A. Simulation

We developed a multi-agent simulation environment to
evaluate the scheduling protocols. The environment consists
of a 10x10 grid with two rooms and a single hallway
connecting them, as shown in Fig. 2. We randomly spawn
15 agents throughout both rooms, and each agent is tasked
with traversing to a destination square in the other room. To
increase the likelihood of a deadlock, we intentionally set
the number of agents high relative to the available space.
The state of each agent includes its own position and the
state of the protocol, if applicable. The action space for each
agent consists of four possible actions: move up, down, left,
or right.

Agents are decentralized and trained concurrently to ac-
complish their task while following a shared scheduling
protocol. Any RL subroutine could be used to learn a policy.
For simplicity, we use a tabular Q-learning approach.

B. Baselines

We compare the performance under the three scheduling
protocols to two vanilla MARL baselines described below,
No Protocol and No Protocol++.

a) No Protocol: This baseline is a naïve decentralized
approach. Each agent is only given its local state. Because
agents are not aware of the presence of other agents in the en-
vironment, they cannot detect when a deadlock has occurred
and are not penalized for participating in a deadlock.

b) No Protocol++: This baseline is similar to No
Protocol, but adds a signal to the state space indicating when
a deadlock has occurred. The agents’ policy may leverage
this information to resolve the deadlock. However, no penalty
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is applied for participating in a deadlock, so the only reward
incentives come from task completion.

C. Results

We evaluate the performance of the scheduling protocols
based on the number of agents who complete their task at
convergence. We find that the use of any scheduling protocol
improves performance. See Fig. 4a. The scheduling protocols
converge to a high success rate. In contrast, the MARL
baselines show initial improvements but ultimately converge
to poor performance due to unresolved deadlocks.

In an ablation, we evaluate the same protocols but without
a penalty for violating the protocol. The goal of this ablation
is to determine if the extra information provided by the
protocol is sufficient to encourage cooperation, or if the
reward penalty is needed. We refer the reader to Fig. 4b. RR
and CSMA/CD converge towards poor performance without
a reward penalty. SRTF is the only protocol which shows
a stable agent completion rate, though it is significantly
worse than the performance with a reward penalty. SRTF
may therefore be a useful scheduling protocol where it is
impractical or undesirable to apply a reward penalty.

VI. CONCLUSION

In this work we introduced the use of scheduling proto-
cols to resolve conflicts in MARL. The use of scheduling
protocols provably allows all agents to use shared resources
without blocking one another. We have shown how decen-
tralized MARL agents can be trained to follow a protocol
by modifying their state space and applying a penalty for
protocol violations. Experimental results demonstrate the
effectiveness of three scheduling protocols in a crowded grid-
world environment, with all three protocols outperforming
MARL baselines.
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