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Abstract— Orthogonal projections are widely used to de-
termine optimal controllers, filters and approximations. This
paper shows that despite their simple theoretical foundation
and their regular use in practical applications, the complexity
for computing orthogonal projections might be very high. The
paper proves that the causal projection on L2 maps com-
putable continuous functions onto not computable functions.
Moreover, it is shown that the orthogonal projection associated
with the polynomial approximation in L2 shows complexity
blowup in the sense that it maps polynomial-time computable
continuous functions onto polynomials that are not polynomial-
time computable. Finally, it is shown that the coefficients of
the Wiener prediction filter for stationary stochastic processes
might not be computable in polynomial time, even for smooth
and polynomial-time computable spectral densities.

I. INTRODUCTION

Orthogonal projections play a central role in many engi-
neering problems such as the design of optimal controllers
and filters [1], [2], signal recovery [3], estimation [4], [5],
or for general signal processing methods [6]–[8]. Let H
be an arbitrary Hilbert space and let U ⊂ H be a closed
convex subset of H. Then many engineering problems can
be formulated as the following minimization problem: Given
f ∈ H, find the best approximation of f by an element from
U , i.e. find fU ∈ U such that

∥f − fU∥H = infg∈U ∥f − g∥H = d(f,U) ,

where d(f,U) is the minimum distance of f from U . It is
well known that this problem has a unique minimizer fU ∈ U
and the linear mapping PU : f 7→ fU is said to be the
orthogonal projection from H onto U (cf. Fig. 1). It is clear
from the definition that P2

U = PU . If U is even a closed
subspace of H, then IH−PU is the orthogonal projection onto
the orthogonal complement U⊥ of U in H, where IH denotes
the identity operator on H. Since f = PUf +(IH−PU )f =
fU + fU⊥ for every f ∈ H, one has a decomposition of H
into two orthogonal subspaces: H = U ⊕ U⊥.

This paper investigates the computability and the compu-
tational complexity of fU and d(f,U). Since computations
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Fig. 1. Orthogonal projection of f ∈ H onto the subspace U .

are usually done by digital computers, all objects f , fU ,
and d(f,U) can not be computed exactly (apart from trivial
cases) but they have to be approximated by objects that can
be processed by digital computers (e.g. rational numbers, ra-
tional polynomials, etc.). If such an approximation is possible
by effectively controlling the approximation error, the object
is said to be computable. Assume f ∈ H is computable, then
it is an interesting and important question whether also fU
and d(f,U) are computable. If f is computable then there
exists the four possible combinations shown in Table I.

TABLE I
POSSIBLE COMBINATIONS FOR COMPUTABILITY/NON-COMPUTABILITY.

f fU d(f,U)

computable computable computable
computable computable non-computable
computable non-computable computable
computable non-computable non-computable

Our first question in this paper is whether all of these
possible combinations can actually occur. For example, is
it possible that fU is not-computable but that d(f,U) is
computable, or vice versa? To date there seems to exist
no publications addressing this fundamental question, even
though orthogonal projections play such an important role in
control, signal processing, and many other fields.

We will show that there exist simply and very common
applications that illustrate the behavior of Rows 1, 3, and 4.
In particular, Section III will show that a behavior according
to Row 1 occurs for H = ℓ2(Z) and for U = ℓ2(N),
the closed subspace of all causal discrete signals. Then
Section IV shows that for H = L2(T), the space of square
integrable functions on the unit circle T ⊂ C, and U =
L2
+(T), the closed subspace of all functions f ∈ L2(T) for

which all Fourier coefficients cn(f) with n < 0 vanish, one
gets a behavior as in Row 3. Finally, Section V provides
an example for Row 4. This example is closely related to a
central question in prediction theory for stationary stochastic
processes. Here H is a weighted L2-space with a smooth
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weight function and U corresponds to the subspace of FIR
prediction filters.

As a second class of problems, we consider situations
where H and U are such that a computable f always implies
that fU or d(f,U) or both are computable (Rows 1 − 3 of
Table I). Then we ask for the complexity of computing fU or
d(f,U). This question is of particular interest if U is a finite
dimensional subspace of H, because then fU and d(f,U) are
always computable and one may ask for the complexity of
computing fU and d(f,U). Here we consider this question
for the computation of fU in the application of optimal
prediction of stochastic processes (Section V). Finally, Sec-
tion VI investigates this question for the computation of
fU for the projection related to polynomial approximations
of continuous functions. In both examples, the orthogonal
projection shows complexity blowup, i.e. there exists an
f ∈ H that is polynomial-time computable but for which
PUf is not polynomial-time computable. So even if fU or
d(f,U) are computable, the actual computation might still
be very complex in the sense of complexity theory.

II. NOTATION AND PRELIMINARIES

For 1 ≤ p < ∞, Lp(T) denotes the usual spaces of inte-
grable functions on the unit circle T = {z ∈ C : |z| = 1}.
In particular, L2(T) is a Hilbert space with inner product
⟨f, g⟩2 = 1

2π

∫ π

−π
f(eiθ)g(eiθ) dθ. The Banach space of con-

tinuous functions on T with norm ∥f∥∞ = maxζ∈T |f(ζ)|
is denoted by C(T), and PN ⊂ C(T) stands for the set of
trigonometric polynomials of degree not larger than N ∈ N,
i.e. of functions p of the form

p(eiθ) = a0(p)
2 +

∑N
n=1 an(p) cos(nθ) + bn(p) sin(nθ)

with the Fourier coefficients

an(p) =
1
2π

∫ π

−π
p(eiθ) cos(nt) dt and

bn(p) =
1
2π

∫ π

−π
p(eiθ) sin(nt) dt .

(1)

We write H(D) for the set of functions that are holomorphic
(i.e. analytic) in the unit disk D = {z ∈ C : |z| < 1} and
H∞(D) is the Banach space of all f ∈ H(D) with norm
∥f∥∞ = supz∈D |f(z)| < ∞.

This paper paper investigates causal projections on several
Hilbert spaces (ℓ2(Z), L2(T), L2(φ)). To simplify notation,
all these different projections will be denoted by P+. So the
operator P+ has always be viewed in the actual context.

We heavily rely on concepts and notation from compu-
tational analysis and complexity theory. Because of space
constraints, we refer to standard literature (e.g., [9]–[12]) for
corresponding introductions. As far as notation is concerned,
we will basically follow [13]. In particular, Rc and Cc

stand for the set of computable real and complex numbers,
respectively, and Cc(T) denotes the set of all computable
continuous functions on T. Some of our results are based
on the assumption that the complexity class FP1 is strictly
smaller than the complexity class #P1. Even thought there
exists no formal proof of this conjecture, it is widely assumed
that it is true. Moreover, this assumption is true if the better
known conjecture P ̸= NP is true.

III. CAUSAL PROJECTION ON ℓ2

This section presents an example for the most favorable
behavior of Table I, namely for Row 1. This example will
also be used in Section IV to provide an example for Row 3.
We consider one of the most simple Hilbert spaces, namely
the space H = ℓ2(Z) of all sequences a = {an}n∈Z ⊂
C with finite ℓ2-norm ∥a∥22 =

(∑
n∈Z |an|

2 )1/2. Then we
investigate the causal and anti-causal projection

(P+a)(n) =

{
an : n ≥ 0
0 : n < 0

and (P−a)(n) =

{
0 : n ≥ 0

an : n < 0

respectively. These projections play a fundamental role in
control, signal processing and communications.
Remark III.1: Note that both operators have a simple
closed form representation as (P+a)(n) = s(n) an and
(P+a)(n) = [1 − s(n)] an with the step response given by
s(n) = 1 for n ≥ 1 and s(n) = 0 for n < 0. Based on this
representation, the computability of P+ and P− according
to Table I could immediately be verified.

We require that the input sequences of these projections
are computable sequences of computable numbers, i.e. every
element of the sequences can effectively be approximated
by a rational number. Since our sequences are in ℓ2(Z), it is
natural to require that also the norm is a computable number.
Definition III.1 (Computable ℓ2-sequences): A comput-
able sequence of computable numbers a ∈ ℓ2(Z) is said to
be an ℓ2-computable sequence if there exists a (recursive)
function ϕ : N → N such that for all M ∈ N

N1 ≥ N0 = ϕ(M) implies
∑

N0≤|n|≤N1
|an|2 < 2−M . (2)

We write ℓ2c(Z) for the set of all ℓ2-computable sequences.
Remark III.2: Condition (2) holds if and only if ∥a∥2 ∈ Rc.

Now we ask whether for any a ∈ ℓ2c(Z) also the projec-
tions P+a and P−a are again ℓ2-computable sequences.
Theorem III.1: For every a ∈ ℓ2c(Z), we have P+a ∈ ℓ2c(Z)
and P−a ∈ ℓ2c(Z).
In view of Table I, Theorem III.1 shows that the projections
P+ and P− on H = ℓ2(Z) show the behavior of Row 1.

Proof: It is clear that P+a and P−a are computable
sequences of computable numbers. So we only have to verify
that ∥P+a∥2 and ∥P−a∥2 are computable numbers. We only
show the proof for P+a. First, we define by

αN =
(∑N

n=0 |an|
2 )1/2

, N ∈ N ,

a monotonically increasing computable sequence {αN}N∈N
of computable numbers with limN→∞ αN = ∥P+a∥2. On
the other hand, since ∥P+a∥22 ≤ ∥a∥22 −

∑−1
n=−N |an|2 for

all N ∈ N, we define by

βN =
(
∥a∥22 −

∑−1
n=−N |an|2

)1/2
, N ∈ N ,

a monotonically decreasing computable sequence {βN}N∈N
of computable numbers with limN→∞ βN = ∥P+a∥2. Thus,
∥P+a∥2 is the limit of a computable sequence that converges
from below and a computable sequence that converges from
above to ∥P+a∥2. Therefore ∥P+a∥2 ∈ Rc.
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IV. CAUSAL PROJECTION ON L2(T)

With every sequence a ∈ ℓ2(Z), we may associate its
Fourier series. This gives rise to the following description of
the projection operator P+ on H = L2(T).

Since Cc(T) ⊂ L2(T), every f ∈ Cc(T) can be written as
a Fourier series

f(eiθ) =
∑

n∈Z cn(f) e
inθ , θ ∈ [−π, π) ,

with the Fourier coefficients cn(f) = 1
2π

∫ π

−π
f(eiθ) e−inθdθ,

n ∈ Z, and where the sum converges in L2(T). Then the
causal orthogonal projection is a mapping from L2(T) onto
L2
+(T) =

{
f ∈ L2(T) : cn(f) = 0 for n < 0

}
, defined by

P+ :
∑

n∈Z cn(f) e
inθ 7→

∑∞
n=0 cn(f) e

inθ

or equivalently as the solution of the minimization problem

inf
p∈P+

∥f − p∥2L2(T) = ∥f − P+f∥2L2(T) = d(f, L2
+(T)) (3)

where P+ is the set of all trigonometry polynomials of
the form p(eiθ) =

∑N
n=0 an e

inθ for some degree N ∈
N. Similarly, we may consider the anti-causal projection,
defined by P− :

∑
n∈Z cn(f) e

inθ 7→
∑−1

n=−∞ cn(f) e
inθ.

First, we use the ℓ2-results from Section III to show
that d(f, L2

+(T)) is a computable real number for every
computable continuous function f ∈ Cc(T).
Theorem IV.1: For all f ∈ Cc(T), d(f, L2

+(T)) is in Rc.

Proof: Since f ∈ Cc(T) there exists an algorithm [9]
with inputs f and n ∈ Z that computes the Fourier coefficient
cn(f). Therefore c = {cn(f)}n∈Z ∈ ℓ2(Z) is a computable
sequence of computable numbers. The mapping x 7→ x2 is a
computable continuous function on R. Consequently, also{
|cn(f)|2

}
n∈Z is a computable sequence of computable

numbers, and since f ∈ Cc(T) also |f |2 ∈ Cc(T) and
so ∥f∥2L2(T) = 1

2π

∫ π

−π

∣∣f(eiθ)∣∣2 dθ is a computable real
number. For N ∈ N, let dN (f) =

∑N
n=−N |cn(f)|2,

then {dN}N∈N is a monotonically increasing computable
sequence of computable numbers. Therefore dN effectively
converges [9] to

∑
n∈Z |cn(f)|

2
= ∥f∥2L2(T) ∈ Rc as N →

∞, showing that c ∈ ℓ2c . Using Parseval’s theorem, (3) yields

d(f, L2
+(T)) =

∑−1
n=−∞ |cn(f)|2 = ∥P−c∥2ℓ2(Z) .

So Theorem III.1 implies d(f, L2
+(T)) ∈ Rc.

Next, we ask whether for any f ∈ Cc(T) the projections
P+f and P−f are again computable continuous functions.
The following theorem shows that this is not the case, even
if f is additional smooth.

Theorem IV.2: There exists a computable continuous func-
tion f1 ∈ Cc(T) with the properties

1) f1 is absolute continuous
2) f ′

1 is a computable L1(T) function
3) P+f1 is a continuous function

but such that (P+f1) (1) /∈ Cc, i.e. such that P+f1 is not a
computable continuous function on T.

Remark IV.1: Since f(1) = (P+f) (1) + (P−f) (1), it fol-
lows that (P−f) (1) /∈ Cc, i.e. also P−f is not a computable
continuous function on T.
Remark IV.2: There exist infinitely many projections with
the same property. For example, for any K ∈ N, we may
define (P+,Kf) (eiθ) =

∑∞
n=−K cn(f) e

inθ. Then Theo-
rem IV.2 also holds for P+,K with the same function f1.
Remark IV.3: The operator P+ on L2(T) can only be repre-
sented by a singular integral via the Hilbert transform and so
there exists no closed form representation to determine the
continuous function P+f1 for f1 ∈ Cc(T). If such a simple
formula for the determination of P+f would exist (e.g. as
for P+ on ℓ2(Z) as in Remark III.1) then P+f would be a
computable function for every f ∈ Cc(T).

Sketch of Proof: The proof is based on a proof in [14,
Theorem III.1]. There a computable continuous function
f1 ∈ Cc(T) was constructed that is absolute continuous and
that has an absolute continuous conjugate function f̃1 ∈
Cc(T) with f̃1(1) /∈ Rc. Using the properties of conjugate
functions, the causal projection can be written as

(P+f1) (ζ) =
1
2

[
c0(f1) + f1(ζ) + if̃1(ζ)

]
, ζ ∈ T .

Recalling that c0(f1) is a computable number (cf. proof
of Theorem IV.1), it immediately follows that P+f1 is a
continuous function on T and that (P+f1) (1) /∈ Cc. That
f1 satisfies also Property 2) follows from the construction in
[14] but is not shown here, because of space constraints.

Theorems IV.1 and IV.2 show that the orthogonal pro-
jection P+ : L2(T) → L2

+(T) shows a behavior as in
Row 3 of Table I, i.e. a computable f is mapped onto a non-
computable fU whereas the distance d(f,U) is computable
for every computable f . We also observe that even thought
the projections discussed in Sections III and IV are closely
related, their computability behavior is different.

In view of Theorem IV.2, it is an interesting question for
future research to derive sufficient conditions on f ∈ Cc(T)
such that P+f is again a computable continuous function.

V. PREDICTION THEORY OF STOCHASTIC PROCESSES

This section provides an example for the behavior in
Row 4 of Table I. It is shown that the projection operator
from Wiener’s prediction theory of stationary stochastic pro-
cesses (see, e.g., [15]–[19]) shows exactly such a behavior.

A. Preliminaries: Prediction of stochastic processes

For a probability space (Ω,F , ν) let R = R(Ω,F , ν)
be the Hilbert space of all (complex) random variables
(rvs) x with zero mean and finite second moment and with
inner product ⟨x, y⟩R = E[xy] =

∫
Ω
x(ω) y(ω) dν(ω). Let

x = {xn}n∈Z ⊂ R be a wide-sense stationary (wss) with
auto-covariance function γx(n) = ⟨xn, x0⟩R, n ∈ Z and
assume that x is completely non-deterministic. Then γx has
the spectral representation γx(n) =

1
2π

∫ π

−π
φx(e

iθ) e−inθdθ,
n ∈ Z, with the spectral density φx ∈ L1(T) that satisfies
the Szegö’s condition∫ π

−π
logφx(e

iθ) dθ > −∞ . (4)
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Consider the problem of finding the best (in the norm
of R) linear predictor x̂0 of x0 from past observations
{xn : n = −1,−2,−3, ...} of the sequence x. This predictor
has the form of a linear filter H

x̂0 = H(x) =
∑∞

n=1 h[n]x−n

where h = {h[n]}n∈N is the impulse response of H, and

h(z) =
∑∞

n=1 h[n] z
n , z ∈ D , (5)

its transfer function1. Thus, we search for the transfer func-
tion h of a filter H that minimizes the mean square error

σ2
h = ∥x0 −

∑∞
n=1 h[n]x−n∥

2

R .

It is well known that the optimal h is given as the solution
of the minimization problem

inf
h∈L2

+(φx)
∥x0 −

∑∞
n=1 h[n]x−n∥

2

R

= inf
h∈L2

+(φx)

1
2π

∫ π

−π

∣∣1− h(eiθ)
∣∣2 φx(e

iθ) dθ

= inf
h∈L2

+(φx)
∥1− h∥2L2(φx)

= d(1, L2
+(φx)) , (6)

wherein L2(φx) is the space of functions on T with inner
product ⟨f, g⟩L2(φx)

= 1
2π

∫ π

−π
f(eiθ)g(eiθ)φx(e

iθ) dθ, and
where L2

+(φx) = span
{
ein(·) : n = 1, 2, 3, . . .

}
. So (6)

shows that the optimal transfer function is given by

hopt = P+(1) ,

with the orthogonal projection P+ from H = L2(φx) onto
U = L2

+(φx), and that hopt satisfies

d(1, L2
+(φx)) = ∥1− hopt∥2L2(φx)

.

Here d(1, L2
+(φx)) is the minimum mean square (prediction)

error (MMSE). Subsequently, the filter coefficients of the op-
timal prediction filter are always be denoted by {hopt[n]}∞n=1
and so the transfer function of the optimal filter is given by

hopt(z) =
∑∞

n=1 hopt[n] z
n , z ∈ D . (7)

Remark V.1: Note that P+ : L2(φx) → L2
+(φx) depends on

the spectral density φx, i.e. different spectral densities define
different projection operators.

We need the closed form expression for hopt, which can
be obtained by means of the spectral factorization of the φx.
Proposition V.1: Let x be a purely non-deterministic wss
stochastic process with spectral density φ ∈ L1(T). The
transfer function of the optimal prediction filter is given by

hopt(z) = 1− φ+(0)/φ+(z) . (8)

with the spectral factor φ+ of φ, given by

φ+(z) = exp

(
1

4π

∫ π

−π

logφ(eiθ)
eiθ + z

eiθ − z
dθ

)
, z ∈ D. (9)

1Usually only the boundary function h(e−iθ), θ ∈ [−π, π) is called the
transfer function of H. However, since the prediction filter is causal, the
sum (5) converges for all z ∈ D if the boundary function exists.

Remark V.2: Recall that the spectral factor has the following
properties: φ+ ∈ H(D) with φ+(z) ̸= 0 for all z ∈ D and

φ(ζ) = |φ+(ζ)|2 for almost all ζ ∈ T . (10)

B. Non-computable and computable projections

We show that there exist spectral densities φx such that
P+ shows a behavior as in Row 4 of Table I. This follows
from results in [20] which are restated as a single statement.
Proposition V.2: There exists a wss stochastic process x
with spectral density φx ∈ Cc(T) that is continuously
differentiable with φ′

x ∈ Cc(T) and that satisfies Szegö’s
condition (4) such that hopt = P+(1) is not a computable
function and d(1, L2

+(φx)) is not a computable number.

So even with additional smoothness assumptions on φx

(continuously differentiable with φ′
x ∈ Cc(T)), the MMSE

d(1, L2
+(φx)) might not be computable and the projection

operator P+ may map the constant function 1 onto an hopt

that is not computable. Nevertheless, choosing other spectral
densities, also a positive result [13] can be derived.
Proposition V.3: Let x be a wss stochastic process with
spectral density φx that satisfies

1) φx is continuously differentiable
2) φx and φ′

x are both computable continuous functions
3) minζ∈T φx(ζ) = c0(φx) > 0

then hopt = P+(1) ∈ Cc(T) and d(1, L2
+(φx)) ∈ Rc.

Proposition V.3 provides sufficient conditions on the spectral
density φx such that the transfer function of the optimal
prediction filter is guaranteed to be a computable continu-
ous function and such that the MMSE d(1, L2

+(φx)) is a
computable number.

C. Complexity blowup for computing hopt

Even if hopt = P+(1) is computable, its computation
might be very complex. Therefore we ask for the complex-
ity of computing hopt, or equivalently for the complexity
of computing the filter coefficients hopt[n], n ∈ N of
the impulse response {hopt[n]}n∈N. Assume φx satisfies
the conditions of Proposition V.3 and φx is additionally
polynomial-time computable. Is it then true that every filter
coefficients hopt[n], n ∈ N is a polynomial-time computable
number? The following theorem gives a negative answer for
the first filter coefficient.
Theorem V.4: Assume FP1 ̸= #P1 and let K ≥ 2 be
arbitrary. There exists a spectral density φ∗ with

1) φ∗ is K-times continuously differentiable
2) φ∗ and all of its derivatives up to order K are

polynomial-time computable continuous functions
3) minζ∈T φ∗(ζ) = c0(φ∗) > 0

but such that the first filter coefficient hopt[1] of the optimal
prediction filter (7) is not polynomial-time computable.

Sketch of Proof: Let φ be an arbitrary spectral density
satisfying Szegö’s condition (4). Then the optimal causal
prediction filter hopt(z), given by (8), is analytic for z ∈ D
and satisfies hopt(0) = 0. So hopt can be written as in
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(7). Defining g(z) = 1
4π

∫ π

−π
logφ(eiθ) e

iθ+z
eiθ−z

dθ, the spectral
factor (9) of φ can be written as φ+(z) = exp[g(z)].
Therewith, (8) becomes

hopt(z) = 1− exp [g(0)− g(z)] = 1− exp [g1(z)]

= −
∑∞

m=1
1
m! [g1(z)]

m
, z ∈ D , (11)

with g1(z) = g(0) − g(z), and where we used the power
series expansion of the exponential function to get the last
equality. Since g1(0) = 0, the power series expansion of g1
has the form g1(z) =

∑∞
n=1 g1[n] z

n for z ∈ D. Now, we
insert this power series of g1 into (11) and compare the coef-
ficients with the power series (7). This shows that hopt[1] =
−g1[1]. Moreover, the first coefficient of the power series
expansion of g1 is given by g1[1] =

1
2π

∫ π

−π
g1(e

iθ) e−iθ dθ.
Inserting the definition of g1, using that g = logφ, and
applying (10) yields

hopt[1] = −g1[1] =
1
4π

∫ π

−π
logφ(eiθ) e−iθ dθ . (12)

We choose φ to be an even function, i.e. φ(e−iθ) = φ(eiθ)
for all θ ∈ [−π, π]. Then also logφ is even and (12) becomes

hopt[1] =
1
4π

∫ π

−π
logφ(eiθ) cos(θ) dθ . (13)

Next, we construct an even, strictly positive function q1
that has Properties 1) and 2) of the theorem, such that
q1(e

iθ) = 0 for all θ ∈ [−π,−π/2] ∪ [π/2, π], and so that
1
4π

∫ π

−π
q1(e

iθ) dθ (14)

is not polynomial-time computable. The construction of this
q1 is very similar to the construction in [21, Proof of
Theorem VI.1]. Based q1, we define a second function by

q2(e
iθ) =

{
q1(e

iθ)
cos(θ) for θ ∈ [−π/2, π/2]

0 for θ ∈ [−π,−π/2) ∪ (π/2, π]
.

Since 1/ cos(θ), θ ∈ [−π/2, π/2] is polynomial-time com-
putable and because the product of two polynomial-time
computable functions is again polynomial-time computable,
it follows that q2 is polynomial-time computable. Because
of (14), it follows that

1
4π

∫ π

−π
q2(e

iθ) cos(θ) dθ (15)

is not polynomial-time computable. Now we distinguish
two cases to define an even function q that is polynomial-
time computable but such that its zeroth and first Fourier
coefficient is not polynomial-time computable.

a) Assume 1
4π

∫ π

−π
q2(e

iθ) dθ is polynomial-time com-
putable. Then we define q(ζ) = q1(ζ)+q2(ζ), ζ ∈ T. By this
assumption and since (14) and (15) are not polynomial-time
computable, it follows that both

1
4π

∫ π

−π
q(eiθ) dθ and 1

4π

∫ π

−π
q(eiθ) cos(θ) dθ (16)

are not polynomial-time computable.
b) Assume 1

4π

∫ π

−π
q2(e

iθ) dθ is not polynomial-time com-
putable. Then q2 already has the desired properties and we
simply set q(ζ) = q2(ζ), ζ ∈ T.

So we constructed a polynomial-time computable contin-
uous function q such that the zeroth and the first Fourier

coefficients of q are not polynomial-time computable. There-
with, we finally define φ∗(ζ) = exp [q(ζ)], ζ ∈ T. Since q
has Properties 1) and 2) of the theorem and because q is non-
negative, it easily follows that φ∗ has Properties 1)–3) of the
theorem. Moreover, (13) shows that hopt[1] is equal to the
first Fourier coefficient of q, which is not polynomial-time
computable by our construction.

D. Application: FIR approximation

Let (7) be the transfer function of an optimal prediction
filter associated with a wss stochastic process x with spectral
density φx. Assume a sequence {hN}N∈Z of FIR approxi-
mation filters is given, where hN has the form

hN (z) =
∑N

n=1 hN [n] zN , z ∈ D ,

with limN→∞ hN [n] = hopt[n] for any fixed n ∈ N, i.e.
the coefficients of the FIR approximation converge to the
coefficients of hopt. Assume further that for N ∈ N, all
coefficients hN [n], n = 1, . . . , N are polynomial-time com-
putable numbers. Then hN is a polynomial-time computable
continuous function on T.

Now we ask for a sequence {N(M)}M∈N ⊂ N of FIR
filter lengths such that∣∣hopt[1]− hN(M)[1]

∣∣ < 2−M , for all M ∈ N . (17)

Thus, for an arbitrary precision M ∈ N, we want to
determine the filter degree N = N(M) that guarantees that
the approximation hN(M)[1] of hopt[1] is sufficently close
in the sense of (17). Since hopt[1] is a computable number,
the sequence {N(M)}M∈N is a computable sequence and
we ask whether it is polynomial-time computable.
Corollary V.5: Let {hN}N∈Z be an arbitrary sequence of
FIR approximation filters of hopt. Then every sequence
{N(M)}M∈N ⊂ N of FIR filter lengths that satisfies (17)
is not a polynomial-time computable sequence.

Proof: If {N(M)}M∈N would be polynomial-time
computable, then

{
hN(M)[1]

}
M∈N would be a polynomial-

time computable sequence of polynomial-time computable
numbers. Consequently its limit hopt[1] would be a
polynomial-time computable number, which contradicts the
statement of Theorem V.4.

So even if (for a given N ∈ N) the individual FIR filter
coefficients hN [n] are polynomial-time computable, there are
cases where it is impossible to find in polynomial time the
degree N ∈ N that guarantees the error bound (17).

VI. COMPLEXITY OF POLYNOMIAL APPROXIMATION

The non-computability behavior of the orthogonal projec-
tion P+ from Section IV can not occur if the range U of
the projection operator is a finite dimensional subspace (of
trigonometric polynomials). Because then P+f will always
be computable as long as f is a computable function. In this
case, one may suppose that if f is very easy to compute then
also P+f will be easy to compute. However, this section will
show that this is not necessarily true.

We consider the problem of approximating continuous
functions on T by trigonometric polynomials. Let f ∈ Cc(T)
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be a computable continuous function on T. Then f can be
written as a trigonometric Fourier series in L2(T)

f(eiθ) = a0(f)
2 +

∑∞
n=1 an(f) cos(nθ) + bn(f) sin(nθ)

with Fourier coefficients (1). For an arbitrary N ∈ N, we
consider the mapping PN : Cc(T) → PN given by

(PNf) = a0(f)
2 +

∑N
n=1 an(f) cos(nt) + bn(f) sin(nt) .

It is well known that PNf is the best (with respect to L2(T)
norm) approximation of f by an element from PN , i.e.

infp∈PN
∥f − p∥2L2(T) = ∥f − PNf∥2L2(T) = d(f,PN )

and where the distance d(f,PN ) is again the MMSE of
approximating f by a trigonometric polynomial of degree
N . So PN is an orthogonal projection from L2(T) onto PN .

It is clear that f ∈ Cc(T) always implies PNf ∈ Cc(T),
because all Fourier coefficients of f ∈ Cc(T) are computable
numbers and cos(n·) and sin(n·) are computable continuous
functions. So since PNf is already computable, we may ask
now for the complexity of computing PNf . In particular,
we ask whether PNf is polynomial-time computable for
every polynomial-time computable function f ∈ Cc(T). The
answer is given by the following theorem.

Theorem VI.1: If FP1 ̸= #P1 then there exists a
polynomial-time computable functions f2 ∈ Cc(T) such that
for every N ∈ N, PNf2 is not a polynomial-time computable
continuous function.

As an immediate consequence of the following proof, we
obtain that for every N ∈ N, the set of 2N equidistant
sampling values of f2 are not polynomial-time computable.

Corollary VI.2: If FP1 ̸= #P1 then there exists a
polynomial-time computable function f2 ∈ Cc(T) such that
for every N ∈ N, it is not possible to compute the set{

(PNf2)
(
k 2π
2N+1

)
: k = 1, 2, . . . , 2N

}
. (18)

in polynomial time.

Proof: It is known (cf., [11], [22], [23]) that there exists
a polynomial-time computable function f ∈ Cc(T) such that
its integral a0(f2) = 1

2π

∫ π

−π
f2(t) dt is not polynomial-time

computable, and we refer to [21, Thm. VI.1] for a more
explicit construction of such an f2. Contrary to the statement
of the theorem, assume that there exists an N ∈ N such that
PNf2 is a polynomial-time computable continuous function.
This implies in particular that all values in the set (18)
are polynomial-time computable. Then the zeroth Fourier
coefficient of f∗ can be expressed [24] as

a0(f2) =
1

2N+1

∑2N
k=0 (PNf2)

(
k 2π
2N+1

)
.

Consequently a0(f2) is a polynomial-time computable. How-
ever, f2 was constructed such that a0(f2) is not polynomial-
time computable. So we obtained at a contradiction proving
that PNf2 is not polynomial-time computable.

VII. SUMMARY

We have investigated the complexity of computing orthog-
onal projections and presented examples of Hilbert spaces H,
U such that a computable f ∈ H does not imply that the or-
thogonal projection PUf and/or the distance d(f,U) is com-
putable. It was also shown that even if PUf is computable,
the computation of PUf may show complexity blowup, i.e.
PU may map an f of low computational complexity onto
an PUf that has high computational complexity. The given
examples came from very common applications like causal
projection, polynomial approximation, and Wiener filtering.
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1991.
[12] S. Arora and B. Barak, Computational Complexity: A Modern Ap-

proach. Cambridge: University Press, 2009.
[13] H. Boche, V. Pohl, and H. V. Poor, “Characterization of the complexity

of computing the minimum mean square error of causal prediction,”
IEEE Trans. Inf. Theory, vol. 70, no. 9, pp. 6627–6638, Sep. 2024.

[14] H. Boche and V. Pohl, “On the algorithmic solvability of spectral
factorization and applications,” IEEE Trans. Inf. Theory, vol. 66, no. 7,
pp. 4574–4592, Jul. 2020.

[15] J. L. Doob, Stochastic Processes. New York: John Wiley, 1953.
[16] Y. A. Rozanov, Stationary Random Processes. San Francisco: Holden-

Day, 1967.
[17] A. N. Shiryaev, Probability, 2nd ed. New York: Springer, 1996.
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