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Abstract—The deployment of battery energy storage systems (BESS) is
necessary to integrate terawatts of renewable generation while supporting
grid resilience and reliability efforts. Optimizing battery dispatch requires
predictive battery models that accurately characterize the battery state
of charge (SOC) to ensure that the battery operates within the energy
and power limits and avoids unexpected saturation effects. Furthermore,
most BESS are unable to simultaneously charge and discharge, which
begets an additional, non-convex complementary constraint. This paper
presents and compares recently developed predictive battery models
that side-step the non-convexity while providing supporting analysis
on modeling error and optimal parameter selection. Specifically, insights
for four different predictive BESS formulations are presented, including
non-linear, mixed-integer, linear convex relaxation, and linear robust
formulations. Additionally, two two-stage approaches are also considered.
Analysis is conducted on optimal parameter selection for two of the
methods, as well, as providing a new and improved SOC error bound
on the relaxed formulation and the role of sustainability constraints
on the robust formulation. Through the lens of relevant BESS use-cases,
the paper discusses optimality and feasibility guarantees between the
different models and provides extensive simulation-based analysis.

Index Terms—Battery, energy storage, modeling, optimization, convex,
power systems

I. INTRODUCTION

Increased distributed energy penetration in the power grid will lead
to lower system inertia, larger sensitivity to power imbalances and re-
duced system reliability [1]. The deployment of battery energy storage
systems (BESS) promises to increase grid reliability and resilience
especially with increased intermittent generation from renewable
sources [2]. Proper modeling is needed for the optimal coordination
and dispatch of BESS. The BESS models would need to characterize
the charging power consumed, discharging power supplied, state of
charge (SOC) and ensure that the BESS remains within its power and
energy limits. Furthermore, BESS’s, for the most part, are not capable
of charging and discharging simultaneously. Therefore, an exact
BESS model would require a non-convex complementary constraint
to ensure a physically realizable solution [3]. Different exact and
non-exact BESS models are presented in the literature and have been
used in a variety of applications. Exact BESS models enforce the non-
convex complementary constraint; therefore, any solution is physically
realizable and model SOC is accurate representation of BESS SOC.
The complementary constraint can be modeled as a non-linear equality
constraint as shown in [2, 4]. However, due to the non-convexity there
is no guarantee of a globally optimal solution. Relaxing the comple-
mentary constraint and using the resulting solution as a warm start
in the non-linear BESS model may help improve performance. The
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complementary constraint can also be satisfied by introducing a binary
integer variable turning the problem into a Mixed Integer Program
(MIP) [4, 5]. MIP models can make use of more advanced MIP solvers
that usually come at a high computational cost. Non-exact BESS mod-
els, on the other hand, side-step the complementary constraint and any
simultaneous charging and discharging is implemented by considering
the net power sequence (difference between charging and discharging
sequence). The complementary constraint is relaxed in return for
convex and less computationally taxing model [2, 4]. One main issue
with non-exact BESS models is that the model SOC and realized
BESS SOC, obtained by implementing the net power schedule, will
not match due to the simultaneous charging and discharging. This may
cause the BESS to reach its energy limits sooner than predicted by the
non-exact model [6]. Therefore, some power schedules obtained from
non-exact models may not be physically realizable. In the context of
this paper, a physically realizable power schedule indicates that the
net power schedule can be applied to a BESS without any power or
energy limit violations.A cutting plane constraint is commonly added
in relaxed formulations to limit the error accrued due simultaneous
charging and discharging [1, 4, 7]. In [4], further constraints are placed
on the a relaxed model of SOC resulting in a more conservative
(sub-optimal) formulation and without guarantees on feasibility for
problems across multiple time steps. Authors in [7, 8] give conditions
under which the complementary constraint can be relaxed and
simultaneous charging and discharging would be sub-optimal. In
[6], a robust convex linear model is presented which ensures realized
BESS SOC remains within energy limits by constraining upper and
lower bounds on realized SOC. A two stage approach presented in
[1], relaxes the complementary constraint and uses resulting solution
trajectory to force either charging or discharging at each time step.
BESS models have been used in a variety of applications. In [9],
a linear BESS model is used in a model predictive control (MPC)
scheme to find the optimal dispatch schedule of a BESS based on day
ahead forecasts and real time updates. The complementary constraint
is relaxed; however, an upper and lower bound on SOC (problem
specific bounds) are constrained to be within the energy limits of the
BESS and, thus, ensuring actual SOC remains within energy limits.
In [10], optimal BESS dispatch is found allowing for simultaneous
participation in day ahead, frequency regulation and energy reserve
markets. The complementary constraint is relaxed in [11] and robust
optimization framework is provided to deal with uncertainties in the
energy, reserve and regulation markets. BESS models are also used
in photovoltaic (PV) smoothing applications where the goal is to
reduce the fluctuations in intermittent PV power generation [12, 13].
Imperfect PV data predictions are used in [14], along with an MPC
scheme to optimize a multi-objective problem which aims to minimize
fluctuations in PV generation, minimize excessive charge/discharge
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cycles (battery degradation) and maximize revenue through energy
arbitrage. Operational cost of PV electric vehicle (EV) charging
stations was optimized using an non-exact BESS model along with
a multi-stage optimization framework and day ahead solar and energy
price forecasts [15]. Four BESS models are presented in this paper, a
non-linear (NLP), a mixed integer (MIP), a convex relaxation (relaxed)
and robust model formulation. Also, two two-stage models, non-linear
with warm start (NLP-WS) and two-stage linear models are presented.
The main contributions of this paper is as follows:

• Insights into (sub)optimality, feasibility, realizability, and scalability
of six different predictive battery formulations are presented.

• Derivation of a new, less conservative bound on worst-case SOC
modeling error for the commonly used relaxed BESS optimization
formulation.

• Analysis of optimal parameter selection in the robust and two-stage
linear methods.

• Extensive simulation-based analysis of optimality and feasibility
of the solutions of the different predictive BESS formulations for
three relevant practical use-cases.

The rest of the paper is organized as follows: Section II presents
and discusses the different BESS models. Section III discusses the
analysis done on the error in the relaxed and robust models (non-exact
models). Section IV discusses the simulations that were done and
the use cases used to exemplify the differences in the BESS models.
Section V presents the simulation results along with discussion and
Section VI concludes the paper.

II. BATTERY OPTIMIZATION METHODS

In this section, different BESS formulations are presented and
discussed. Fig. 1 shows a block diagram describing the basic structure
of a BESS, where Pc(t), Pd(t) ∈ [0, P̄ ] are the battery inverter’s
charging and discharging powers at time t, respectively. Parameters
ηc, ηd ∈ (0,1] are the inverter’s charging and discharging efficiencies,
respectively. The initial battery SOC is denoted E0 ∈ [E, Ē]. From
the diagram, it is clear that for the BESS model to supply a power
of Pd(t) to the power grid, it would need to discharge Pd(t)

ηd
≥ Pd(t)

to account for the power losses. Similarly, if the BESS draws Pc(t)
from the grid, the battery only receives ηcPc(t) ≤ Pc(t). Thus, there
exists an inherent asymmetry between charging and discharging when
ηc, ηd < 1. As seen in Fig. 1, on the inverter/AC side, the asymmetry
is no longer present, therefore, simultaneous charging and discharging
and the net power schedule are equivalent. However, on the battery side
simultaneous charging and discharging, due to the asymmetry, is not
equivalent to applying the net power schedule. At the end of the day,
the battery will either charge or discharge (but not both). Therefore,
a constraint, Pc(t)Pd(t) = 0, is needed to ensure that resulting power
schedule solutions do not contain simultaneous charging and discharg-
ing. The battery’s continuous-time SOC trajectory then evolves along
the manifold given by Pc(t)Pd(t) = 0 and is defined as follows:

E(t) = E0 +

∫ t

0

ηcPc(τ)−
1

ηd
Pd(τ)dτ. (1)

The continuous-time model in (1) is discretized with
sampling time ∆t. Zero-order hold sampling is used, i.e.

Figure 1. BESS block diagram with charging and discharging modes.

Pc,d(t) =: Pc,d[k] ∀t ∈ [k∆t, (k + 1)∆t) is constant within a
single timestep, to yield the difference equation

E[k] = E0 +∆t
k−1∑
n=0

ηcPc[k]−
1

ηd
Pd[k]. (2)

constrained on nonlinear Pc[k]Pd[k] = 0. We now want to optimize
the power schedules over prediction horizon k = 0, . . . ,K, and find
P∗

c ,P
∗
d ∈ RK .

Specifically, we analyze herein the optimality, feasibility, and
computational aspects of six different (commonly used) battery
optimization approaches from the literature: four optimization
formulations and two bi-level optimization schemes. The formulations
include the exact, non-convex non-linear (NLP) and equivalent mixed
integer (MILP) formulations, as well as a commonly employed convex
relaxation and a new robust linear model. In addition to stand-alone
formulations, we consider a warm-start relaxed-NLP (NLP-WS)
implementation and a two-stage linear scheme that employs
thresholding to sidestep complementarity conditions. The relaxed and
robust models do not explicitly include the complementary constraint
and, therefore, may result in solutions with simultaneous charging
and discharging (i.e., P∗

c [k]P
∗
d [k] > 0). As illustrated in Fig. 2, a

BESS can only implement a single input in practice, i.e., a BESS must
post-process the net-charge command, P∗

c [k]− P∗
d [k], according to

P̃c[k] = max{Pc[k]− Pd[k],0} (3a)

P̃d[k] = max{Pd[k]− Pc[k],0}. (3b)

This means that the effects of asymmetry in charging and simultane-
ous discharging, P∗

c [k]P
∗
d [k] > 0, result in an error between the pre-

dicted SOC trajectory, E∗ ∈ RK+1, and the realized SOC trajectory,
Eact ∈ RK+1. That is, with simultaneous charging/discharging, the
predicted net-charging control schedule may not be realizable due to
unexpected saturation in the SOC trajectory. This can lead to a realized
performance in the plant, f0(Pact

c ,Pact
d ) that is worse than the pre-

dicted performance, f0(P∗
c ,P

∗
d), which can negatively impact long-

term battery revenue, battery state of health, or grid reliability [16].
Note that the BESS plant enforces energy limits by truncating

the commanded power schedule by setting P act
c (t) = 0, when

Eact(t) = Ē. Similarly, if Eact(t) = E then P̃d(t) = 0. The
resulting power schedule after truncation is denoted by Pact

c and Pact
d

with the associated objective function value f0(Pact
c ,Pact

d ). Note that
if the predictive model satisfies the complementary constraint, then
P∗

c = Pact
c , P∗

d = Pact
d and f0(P

∗
c ,P

∗
d) = f0(P

act
c ,Pact

d ).

Definition II.1. Implementable solution/power schedule refers to
a physically realizable power schedule (Pc,Pd) whose net power
schedule (Pnet = Pc − Pd) can be applied to a BESS without
violation of energy or power limits.
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Figure 2. Predictive BESS model and physical implementation

The six different methods for battery optimization are presented
next. The objective functions are omitted from discussion for now,
but are convex and provided in Section IV.

A. Non-linear formulation

The NLP model formulation is given by

E[k+ 1] = E[k] +∆tηcPc[k]−∆t
1

ηd
Pd[k] (4a)

E[0] = E0 (4b)

0 ≤ Pc[k] ≤ P (4c)

0 ≤ Pd[k] ≤ P (4d)

0 ≤ E[k+ 1] ≤ E (4e)
Pc[k]Pd[k] = 0 (4f)

for k = 0, . . . ,K. The complementary condition is satisfied with
the explicit non-convex constraint (4f), which makes the NLP
non-convex. Since the formulation is non-convex, global optimality
is not guaranteed and the resulting NLP formulation is NP-hard,
which increases computational complexity. However, the benefit of
adding (4f) is that any feasible solution to (4) is realizable.

B. Mixed-integer linear formulation

The complementary constraint in (4f) can be equivalently
represented with binary variables to enforce either charging or
discharging input to be zero. Thus, the resulting MIP model introduces
a binary variable for each timestep and the formulation is given by

(4a), (4b) and (4e) (5a)

0 ≤ Pc[k] ≤ z[k]P (5b)

0 ≤ Pd[k] ≤ (1− z[k])P (5c)
z[k] ∈ {0,1}, (5d)

for k = 0, . . . ,K and where the binary variable is such that
z[k] = 1 ⇒ Pd[k] = 0, Pc[k] ∈ [0, P̄ ].

The MIP formulation can leverage recent advances in MIP solvers
to find “good” feasible solutions quickly, even though the MIP
formulation is non-convex and NP-hard, in general. In addition, MIP
formulations, whose integer-relaxed problem is convex, provide a
valuable optimality gap from which we can gauge integer-feasible
solution quality. However, finding the globally optimal solution
comes at a high computational cost for large-scale problems (e.g.,
when K ≫ 1 timesteps or N ≫ 1 BESS units).

Figure 3. Two-stage BESS formulations

C. Convex Relaxation Linear BESS Model

A relaxed model is obtained directly from the NLP formulation
in (4) by omitting (4f) altogether. The relaxed formulation employed
herein is borrowed from [1], which adds a cutting plane to the
formulation to reduce the effect of simultaneous charging and
discharging and is given by

(4a) − (4e) (6a)

Pc[k] + Pd[k] ≤ P (6b)

for k = 0, . . . ,K. Clearly, the relaxed model allows simultaneous
charging and discharging, so constraint (6b) is added and the post-
processing given in (3) must be considered when implementing the
optimal power schedule produced by (6) on a BESS plant. From [1],
it is proven that the SOC obtained from the relaxed model is a lower
bound on the realized SOC (i.e., obtained after post processing and
truncation). Thus, the relaxed model’s power schedule may cause un-
expected saturation in the SOC, which can lead to sudden curtailment
of the charging schedule. That is, the relaxed formulation sacrifices
prediction accuracy for convexity, from which computational gains can
be achieved. For a set of general conditions under which simultaneous
charging and discharging will be sub-optimal is given in [1, 7, 8].

D. Two-stage method I: NLP with relaxed warm start

To improve the NLP’s (locally optimal) performance, one can
provide it with a good (warm) starting point. This warm start can
be provided from the relaxed formulation in (6) as illustrated in Fig.3
where the second stage BESS model optimization uses the NLP
formulation discussed earlier.

This results in a two-stage method and relies on the relaxed
formulation to find a solution that is “close enough” to the global
optimum. However, due to the non-convexity of the NLP, there is no
guarantee that: (a) the two-stage method will solve quickly nor (b) that
it will recover the globally optimal solution. However, the two-stage
method will at least provide an optimality gap and feasibility of the
relaxed solution can be checked before executing the NLP, which
can reduce computational efforts under certain circumstances.

E. Two-stage method II: Linear with relaxed thresholding

Instead of sending the relaxed solution (Pr
c,P

r
d) to a non-convex

NLP, we could process the relaxed solution based on its optimized
net-charging values (i.e., P r

net[k] := P r
c [k] − P r

d[k]) and use that
net value and a chosen threshold α ≥ 0 to lock variables for
either charging (if P r

net[k] < −α ⇒ Pc[k] = 0) or discharging (if
Pnet[k] > α ⇒ Pd[k] = 0) to zero. Then, based on the thresholding
outcome, we re-run the relaxed problem, but with most/all comple-
mentarity conditions explicitly enforced for small enough α, which
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also reduces the dimension of the second-stage problem. This method
is based on [1] and outlined in Algorithm 1 and illustrated in Fig. 3.

Clearly, the choice of α affects the number of timesteps that will
be forced to either charging or discharging modes, which is discussed
in Section III-D. In addition, the thresholding effectively reduces the
feasible set of the augmented second-stage formulation, which speeds
up the second-stage solve time, but can result in sub-optimal outcomes.
Of course, sub-optimality comes with the benefit that as more
complementarity conditions become enforced through thresholding,
the second-stage optimal solution will become realizable.

Algorithm 1 Two-Stage method II: Linear BESS Model

1: Initialize: α ∈ [0, P ]
2: Solve (6) and obtain Pr

c ,Pr
d ∈ RK+1.

3: for all k = 0, . . . ,K do
4: if P r

c [k]− P r
d [k] ≥ α then

5: Add equality constraint Pd[k] = 0 to 2nd Stage Problem
6: end if
7: if P r

c [k]− P r
d [k] < −α then

8: Add equality constraint Pc[k] = 0 to 2nd Stage Problem
9: end if

10: end for
11: Solve 2nd Stage Problem w/ added equality constraints in (6).

F. Robust Linear Formulation

The relaxed model in (6) has the benefit of low computational
burden and convexity; however, side stepping the complementary
constraint can lead to implementation issues. The two-stage method in
Algorithm 1 offered a different convex approach, but requires almost
double the computation time and solution may not guarantee realiz-
ability (depending on choice of α). Thus, we are interested in a single
convex formulation with realizability guarantees. In [6], a convex enve-
lope is constructed that provably contains the actual SOC trajectory at
all times and the convex envelope is then constrained to lie within the
SOC limits. This leads to a robust formulation with conservative (sub-
optimal) solution. We borrow this robust method, which is given by

EUB[k+ 1] = EUB[k] +∆tη(Pc[k]− Pd[k]) (7a)

ELB[k+ 1] = ELB[k] +∆tηcPc[k]−∆t
1

ηd
Pd[k] (7b)

ELB[0] = E0 (7c)
EUB[0] = E0 (7d)
(4c) and (4d) (7e)

EUB[k+ 1] ≤ E (7f)
ELB[k+ 1] ≥ 0 (7g)

for k = 0, . . . ,K, where the upper/lower SOC “proxy” trajectories
are given by EUB/LB and parameter η ∈ [ηc,1/ηd]) is chosen a-priori.
In Section III-B, we analytically derive the optimal choice for η. Note
that (7) does not explicitly predict the actual SOC, but instead finds
the optimal net power commands for which the envelope satisfies the
SOC limits, which guarantees that the actual SOC under the same net
power command does too.

Figure 4. Qualitative comparison of different BESS formulations

Remark (Sustainability constraints). Note that the robust model
only characterizes the SOC envelope that contains the actual
SOC trajectory and not a prediction of the actual SOC. Therefore,
implementing a terminal “sustainability” constraints on the SOC
(e.g., E[K] = E0) is not straightforward. Including the terminal
constraint ELB[K] = E0 would ensure Eact[K] ≥ E0, while
EUB[K] = E0 would guarantee Eact[K] ≤ E0. Separately, these
may be acceptable terminal conditions for certain applications.
Enforcing both conditions, however, can lead to infeasibility or
suboptimal outcomes as presented in Section III-C.

There is a tradeoff between the BESS model formulations as
illustrated in Fig. 4 . Accurate formulations, such as the NLP or MIP,
come at the cost of poor quality of solution (NLP since non-convex)
and/or large computational burden. Relaxed has low computational
burden but yield solutions that may not be physically realizable
especially for net-charging sequence which may cause the BESS
to reach the upper SOC limit sooner than predicted by the relaxed
model. The robust models also has a lower computational burden
but yields solutions that may be conservative/sub-optimal due to a
limited feasible set. The choice of η affects how the feasible set is
limited, hence the need for an optimal choice of η that yields the least
sub-optimal solution. NLP-WS comes with a larger computational
burden than NLP and with no guarantee of improved solution (since
still non-convex). The two-stage linear model, for an appropriate
choice of α is an accurate model that improves on the relaxed model
but comes with the need of solving two sub-problems instead of one.

III. ANALYTICAL RESULTS FOR BESS OPTIMIZATION

The previous section discussed four models (NLP, MIP, relaxed and
robust models), as well as a couple two-stage models (NLP-WS and
the Two-stage linear model). The relaxed model’s predicted SOC is a
lower bound on the realized SOC which may lead to implementation
issues for net-charging sequences (E[K] ≥ E0). A bound on the
error between relaxed model and realized BESS SOC is presented
for charging sequence. The bound is then shown to be tighter than
existing bounds such as the one presented in [6]. Furthermore, the
previous section introduced the robust and two-stage linear models,
each of which have model parameters η and α respectively. This
section discusses the effect of these parameters on model performance
and provides the optimal choice for η in the robust model.

A. Improved error bound for the relaxed formulation

The predicted SOC from the relaxed model is a lower bound
on the realized SOC, Er[k] ≤ E[k], which can lead to unexpected
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saturation at the upper limit, Ē. Thus, we are interested in how well
the relaxed model predicts the SOC for net-charging input sequences.
That is, consider a net-charging sequence at time k, i.e. Er[k] ≥ E0.
Then, the following recursive relation holds:

ηc

k−1∑
n=0

Pc[n] ≥
1

ηd

k−1∑
n=0

Pd[n]. (8)

Denote the error between relaxed and realized SOCs as
∆E[k] := E[k]−Er[k], which can be expanded to give

∆E[k] = ∆t(
1

ηd
− ηc)

k−1∑
n=0

min{Pc[n], Pd[n]} ≤ ∆t(
1

ηd
− ηc)

k−1∑
n=0

Pd[n],

(9)

where Pd[n] ≥ min{Pc[n], Pd[n]}. Combining (6b),(8) and (9), we
get

∆E[k] ≤ ∆tk
ηc(1− ηcηd)

1 + ηcηd
P̄ , (10)

which represents an error bound on largest error between relaxed
and realized SOC for a net-charging sequence.

Proposition 1. The SOC error bound from (10) is tighter than the
error bound given in [6, (11)]: ∆Ê[k] := ∆tk( 1

ηd
− ηc)

P̄
2 .

Proof. The difference between the two bounds is given by

∆Êc[k]−∆E[k] = ∆tk
P̄

2

(
(1− ηcηd)

2

ηd(1 + ηcηd)

)
≥ 0. (11)

Since the difference is non-negative this completes the proof.

Thus, the SOC error bound in (10) is tighter that the bound from [6],
which applies to any application with the relaxed formulation.

B. Optimal parameter selection for robust formulation

The conservativeness in the robust model’s upper SOC trajectory
EUB is a function of the choice of η. Thus, we are interested in
finding the η that minimizes the difference between EUB and the
(lower) realized SOC trajectory, ∆EUB[k] := EUB[k] − E[k], to
reduce conservativeness. Specifically, we want to find the η such
that when EUB[k] = E, ∆EUB[k] is minimized.

Proposition 2. The optimal η in the robust formulation (7) is ηc.

Proof. Consider an EUB trajectory arriving at its upper limit at time
l, i.e., EUB[l] = E. Then, it must have been subject a net-charging
input sequence, i.e.,

∑l
k=0(Pc[k] − Pd[k]) ≥ 0. Then, the SOC

error, ∆EUB[l], is given by the following:

∆EUB[l] = ∆t
l−1∑
k=0

(η− ηc)max{Pc[k]− Pd[k],0}

+(
1

ηd
− η)max{Pd[k]− Pc[k],0}

(12)

⇒∂∆EUB[l]

∂η
= ∆t

l−1∑
k=0

(Pc[k]− Pd[k]) ≥ 0. (13)

Thus, in (13), if ∂∆EUB[l]
∂η > 0, then by decreasing η, one would

decrease ∆EUB[l]. This means that the optimal choice of η is at its

lower bound, which is ηc. For ∂∆EUB[l]
∂η = 0, the choice of η does

not have an effect on ∆EUB[l]. This completes the proof.

From this result, we can guarantee a least conservative robust
formulation with η = ηc, which is used in Section V.

C. Analysis of terminal SOC constraints in robust formulation

To expand on the remark on sustainability constraints in
Section II-F, consider a terminal constraint on SOC of the form
EUB[K] = Ef = ELB[K] with Ef ≥ 0. Then, the following holds.

Proposition 3. For any η ∈ [ηc,1/ηd] with ηc < 1/ηd, adding
terminal constraint EUB[K] = Ef = ELB[K] to (7) will either result
in infeasibility, a trivial solution P∗

c [k] = 0 = P∗
d [k] ∀k or satisfy

complementarity conditions by halving the feasible set.

Proof. From (7a) and (7b) and the terminal constraint at time K,
we can recursively relate the upper and lower bound trajectories via
the inputs Pc, Pd as

K∑
k=1

(η− ηc)Pc[k] +

(
1

ηd
− η

)
Pd[k] = 0. (14)

Thus, the following cases arise:
• With ηc < 1/ηd and η ∈ (ηc,1/ηd) then (η−ηc), (1/ηd−η) > 0,

which reduces the feasible set to Pc[k] = 0 = Pd[k] ∀k, if
Ef = E0, and the robust formulation is infeasible, if Ef ≠ E0.

• With ηc < 1/ηd and η = ηc (or η = 1/ηd), then Pc[k] ≥ 0 and
Pd[k] = 0 (or Pc[k] = 0 and Pd[k] ≥ 0) for all k, which satisfies
complementarity conditions but cuts the feasible set in half. Thus,
the robust formulation is only feasible if Ef ≥ E0 (or Ef ≤ E0)
since SOC trajectories are restricted to be monotonically increasing
(or decreasing) and will be sub-optimal.

The trivial case of ηc = 1 = ηd was excluded above since it begets
η = 1, which means that any solution P∗

c [k], P
∗
d [k] will be trivially

implementable and satisfy the terminal SOC constraint. Thus, the
interactions between terminal SOC constraint, Ef, η, and ηc, ηd are
subtle, yet have a large impact on feasibility of the robust model.

D. Analysis of thresholding parameter in 2-stage linear scheme

The performance of the two-stage linear in Algorithm 1 is
f0(P

∗
c ,P

∗
d) and employs a thresholding parameter α ≥ 0 to lock

many decision variables Pc[k], Pd[k] to zero in the second stage to
mitigate the effect of relaxing the complementarity constraint (4f).
The smaller α, the more variables are locked in the second stage,
which restricts the feasible set of the second stage. Thus, the method’s
predicted performance, f0(P∗

c ,P
∗
d), is a non-increasing function of α.

For example, ifα ≥ maxk{|P r
c [k]−P r

d[k]|}, then none of the second-
stage decision variables are locked and the second stage problem
returns the solution from the first relaxed stage. Ifα ≤ mink |P r

c [k]−
P r

d [k]|, then all decision variables are locked in the second stage,
which satisfies complementarity constraint (4f). Let f0(Pr,act

c ,Pr,act
d )

denote the BESS plant performance from the relaxed model.

Proposition 4. If α ≤ mink{|P r
c [k] − P r

d [k]|} ∀k then
f0(P

act
c ,Pact

d ) ≤ f0(P
r,act
c ,Pr,act

d )
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Proof. The relaxed model solution is implemented on the plant
as Pr,act

c and Pr,act
d after post-processing and truncation, which

eliminates simultaneous charging/discharging and truncates power
commands (if necessary) to ensure that SOC limits are satisfied.
Hence, Pr,act

c , Pr,act
d represents a feasible solution in stage two of

the problem, so f0(P
∗
c,P

∗
d) ≤ f0(P

r,act
c ,Pr,act

d ). However, with
α small enough, all timesteps satisfy complementarity condition
and, thus, the second-stage optimal solution is implementable, i.e.,
f0(P

∗
c ,P

∗
d) = f0(P

act
c ,Pact

d ), which completes the proof.

Proposition 4 guarantees that, for α = 0, the realized performance
of the two-stage linear model is no worse than the realized perfor-
mance of the relaxed model. Thus, we use α = 0 in the next section.

IV. POWER SYSTEM BATTERY USE-CASES

Three use cases are considered with the different BESS
optimization methods to characterize optimality (quality of solution),
computational burden and implementability of the solution. The use
cases are: 1) Power Reference Tracking, 2) PV Smoothing and 3)
Revenue Maximization and are discussed next.

A. Power Reference Tracking

This use case involves finding the optimal charging/discharging
dispatch schedule of a BESS to minimize mean-squared tracking error
(MSE) with respect to a reference power signal (Pref). In many power
system applications, a BESS will need to track a given reference
signal. The reference power signal can be based on day-ahead market
forecasts and/or real time corrections. The objective function used
is shown below:

min
K∑
k=0

((Pc[k]− Pd[k])− Pref)
2. (15)

In this use case, we consider the MSE along with the solve times as
metrics to evaluate optimality of the solutions and the computational
burden of the different models. Note, that in the case of the relaxed
model, the optimal power commands may not always be realizable.
Therefore, the relaxed formulation can over-estimate its level of perfor-
mance and under-deliver due to (unexpected) saturation issues. Hence,
the predicted and realized MSE for each model are obtained and used
along with the solver times to evaluate the performance of the models.
The reference signal is obtained from PJM’s Reg-D historical data[17].

B. PV Smoothing

In this use case a BESS is co-located with solar PV and dispatched
to smooth out expected fluctuations PV power generation. Given
a forecast of PV power generation (PPV), the goal is to find the
optimal dispatch schedule to minimize the ramps in the net PV power
(PPV − Pc + Pd). The solar data was obtained form [18] and the
objective function used is

min
K∑
k=0

[(PPV[k+ 1]− Pc[k+ 1] + Pd[k+ 1]) (16)

−(PPV[k]− Pc[k] + Pd[k])]
2
.

Note that the objective function takes the difference of the net PV
power between two consecutive timesteps, i.e., the ramp in the net PV
power. The objective function minimizes the sum of ramps squared.

The MSE between the net PV power and the mean PV power is
used as a metric to evaluate optimality and feasibility of the different
solutions as well as the computational burden of the different models.
Furthermore, another metric known as the R99 metric is used to
evaluate the performance [19]. R99 metric is the 99th percentile of
the ramps in net PV output. The R99 metric gives a sense of the
maximum ramps in the smoothed PV output and the MSE metric
gives an sense of the overall PV smoothing over all timesteps.

C. Revenue Maximization

Given an energy price signal, such as the day ahead market
price forecasts [15] or NY-ISO 3-hour ahead forecasts, the battery
dispatch should be such to maximize revenue gained from supplying
(discharging) energy to the grid and minimize the cost consuming
(charging) energy from the grid. The objective function is

min
K∑
k=0

LMP[k](Pc[k] + Pdemand[k]− PPV[k]− Pd[k]), (17)

which captures total revenue of supplying a load Pdemand with
co-located solar PV source PPV. The solve time and the predicted and
achieved revenues are used as metrics to asses the computation burden
of the models and the optimality and feasibility of the solutions from
each of the models. The LMP price data is obtained from [20]. A
three hour window is considered to emulate the NY-ISO 3 hour ahead
forecasts.

V. SIMULATION RESULTS AND DISCUSSION

The use cases discussed in the previous section are implemented
using the BESS specifications obtained from [21]. The BESS
specifications are summarized in Table. I.

Figure 5. Power Reference Tracking Power Profiles
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Table I
BESS PARAMETERS

Parameters Value Unit

Charge/discharge efficiencies, ηc/ηd 0.95 -
Maximum charge/discharge power, Pmax 5.00 kW
Maximum energy capacity, Ē 13.0 kWh

A. Power Reference Tracking
The power reference tracking use-case was implemented and the

predicted and actual MSE for each of the models is summarized in
Table. II.

Table II
POWER REFERENCE TRACKING MSE AND SOLVER TIME

Model Solver Predicted Actual
Time (s) MSE (kW2) MSE (kW2)

NLP 6.5750 1.5390 1.5390
NLP WS 1.962 0.0487 0.0487
MIP 60.000 0.0487 0.0487
Relaxed 0.016 0.0056 0.2265
Robust 0.016 0.0527 0.0527
Two-Stage LP 0.020 0.0488 0.0488

As expected the NLP model the worst in terms of optimality (high-
est MSE) and has a relatively large computational burden. The MIP
performs the best in terms of optimality (lowest MSE) yet the worst
in terms of computational burden (highest solver time). The relaxed
model predicts the best solution but when the solution is implemented
the actual SOC saturates earlier than predicted at around t= 12 hrs (as
can be seen in Fig. 5), indicating the power schedule obtained was not
feasible/physically realizable. This causes the actual MSE to be signif-
icantly larger. The robust model yielded a more conservative solution
but with the guarantee of no implementation issues. Both of the two-
stage models (NLP-WS and two-stage linear) yield MSE similar to
that of the MIP model and require a fraction of the computational cost.

B. PV Smoothing
The PV smoothing use-case was implemented with the goal of

minimizing the ramps in the net PV power output. The performance
metrics for each of the models is summarized in Table. III. Similar (but
not same) trends are seen as in the previous use case. The NLP model
still delivers the the worst solution in terms of MSE, R99 and has
the largest computational burden as seen by the solver time.The MIP
model yields the best results overall in terms of MSE and R99 but
comes with a larger solver time compared to the relaxed, robust and
two-stage linear models. Similar to the previous use case, the relaxed
model predicts the best results but falls short due to SOC saturation
when the solution is implemented, as seen Fig. 6 by the sudden spikes
in smoothed PV output at t=17hrs.The robust model gives a more
conservative result as can be seen from the larger MSE. The non-linear
model with the warm start actually yeilds a worse solution than NLP,
showing that there is still no guarantee of optimality due to the non-
convex nature of the problem.The two-stage linear delivers good per-
formance (low MSE and R99) outperformed only by the MIP model
but the two-stage linear requires a fraction of the computational time

Table III
PV SMOOTHING PERFORMANCE METRICS

Model Solver Predicted Actual Predicted Actual
Time R99 R99 MSE MSE

(s) (kW/min) (kW/min) (kW2) (kW2)
NLP 6.934 4.59 4.59 18.42 18.42
NLP WS 5.480 6.33 6.33 27.30 27.30
MIP 0.798 1.10 1.0 4.69 4.69
Relaxed 0.025 1.10 1.15 4.46 4.79
Robust 0.028 1.10 1.10 5.20 5.20
Two-Stage LP 0.037 1.10 1.10 4.72 4.72

Figure 6. PV Smoothing Net PV Output Profiles

C. Revenue Maximization

The revenue maximization use-case was implemented with a
3 hour price signal obtained from [20], the price signal has 5-min
resolution. The predicted and actual revenue generated using each
model is summarized in Table. IV. Similar to the other use-cases,
the NLP model runs into local minima resulting in the worst solution
(lowest revenue). Using the NLP-WS model improves the solution
but still, better solutions (higher revenues) were achieved by the MIP
and two-stage linear models. The MIP and two-stage linear models
generate the highest revenue with the Twp-stage LP model requiring
a fraction of the solver time. The relaxed model model predicts a
larger revenue than what is actually achievable and the robust model
gives a conservative yet implementable result.

VI. CONCLUSION

This work gives key insight into the optimality, feasibility and
computational burden of six commonly used BESS formulations
which were then backed up by simulation results.The NLP model, due
to its non-convex nature, was seen to frequently run into local minima,
resulting in sub-optimal solutions. Using a warm start (NLP-WS) was
seen to improve solutions but not in all use-cases, showing that the
solution improvement is not guaranteed. The relaxed formulation is
convex and is the least computationally taxing; however, may produce
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Table IV
REVENUE MAXIMIZATION PERFORMANCE METRICS

Model Solver Predicted Actual
Time (s) Revenue ($) Revenue ($)

NLP 0.683 0.256 0.256
NLP WS 0.881 0.289 0.289
MIP 0.075 0.291 0.291
Relaxed 0.0016 0.291 0.284
Robust 0.0023 0.271 0.271
Two-Stage LP 0.0030 0.291 0.291

Figure 7. Revenue Maximization BESS Dispatch

a charge/discharge trajectory that is not physically realizable since pre-
dicted SOC is a lower bound on realized SOC. For a power schedule
that leads to an increase in SOC and potentially implementation issues,
a bound on the error in predicted SOC is found. The bound is then
shown to be tighter than ones presented in literature. The effect of the
choice of parameter α in the two-stage linear formulation is discussed.
It was shown, for an appropriate choice of α, the realized performance
of the two-stage linear formulation is no worse than that of the relaxed
formulation. The two-stage linear was seen to improve performance of
the relaxed model and eliminate any implementation issues. However,
it requires solving two sets of problems which may be taxing for
larger problems. The performance of the robust model is a function
of the parameter η. It was shown that η = ηc is the optimal choice
for η. Lastly, the robust model, although tends to give conservative
results, comes with a guarantee of being physically realizable and
lower computational overhead compared to the two-stage linear.

Future work will consider additional optimization methods
and applications and the impact of i) the grid conditions and
ii) a heterogeneous fleet BESS units to understand the effect of
optimization methods on the aggregate response in the context of
separate batteries charging and discharging simultaneously.
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