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Abstract— This paper studies the problem of coordinating a
group of nth-order integrator systems. As in the well-studied
conventional consensus problem, we consider linear and dis-
tributed control with only local and relative measurements. We
propose a closed-loop dynamic that we call serial consensus and
prove it achieves nth-order consensus regardless of model order
and underlying network graph. This alleviates an important
scalability limitation in conventional consensus dynamics of
order n ≥ 2, whereby they may lose stability if the underlying
network grows. The distributed control law which achieves the
desired closed loop dynamics is shown to be localized and obey
the limitation to relative state measurements. Furthermore,
through use of the small-gain theorem, the serial consensus
system is shown to be robust to both model and feedback
uncertainties. We illustrate the theoretical results through
examples.

I. INTRODUCTION

Properties of dynamical systems over networks have been
a subject of significant research over the last two decades.
A problem of interest is the coordination of agents in a
network through localized feedback, leading to the prototyp-
ical distributed consensus dynamics studied early on by [1]–
[3]. Over the years, it has become clear that the structural
constraints imposed by the network topology in consensus
problems often lead to fundamentally poor dynamic behav-
iors in large networks. This concerns controllability [4],
performance [5], [6] and disturbance propagation [7], [8],
but, as recently highlighted in [9], also stability. The poor
stability properties characterized in earlier work [9] (which
motivate the present work) apply to higher-order consensus.
Here the local dynamics of each agent is modeled as an
nth-order integrator, with n ≥ 2, and the control is a
weighted average of neighbors’ relative states. This is a
theoretical generalization of first-order consensus [10], but is
also relevant in practice. For example, a model where n = 3
and thus has consensus in position, velocity and acceleration,
can capture flocking behaviors [11].

More specifically, [9] shows that conventional high-order
consensus (n ≥ 3) is not scalably stable for many growing
graph structures. When the network grows beyond a certain
size, stability is lost. The same holds for second-order con-
sensus (n = 2) in, for example, directed ring graphs, as also
observed in [12]. To address this lack of scalable stability
we propose an alternative generalization of the first-order
consensus dynamics, which achieves consensus regardless of
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underlying network graph and model order n, thereby also
ensuring scalable stability.

To illustrate our proposed controller, consider first the con-
ventional second-order consensus system. Here the controller
u(t) = −L1ẋ(t)−L0x(t)+uref(t), with L0,1 being weighted
graph Laplacians, is used to achieve the closed loop

ẍ(t) = −L1ẋ(t)− L0x+ uref(t). (1)

While for first-order consensus (ẋ = Lx+ uref ), a sufficient
condition for convergence to consensus is that the graph
underlying the graph Laplacian L contains a connected span-
ning tree [13]. However, this no longer suffices when n ≥
2 as in (1). Therefore, we instead propose the following
controller u(t) = −(L2 + L1)ẋ(t) − L2L1x(t) + uref(t).
The reason for this choice of controller is best illustrated by
considering the resulting closed loop in the Laplace domain:

(sI + L2)(sI + L1)X(s) = Uref . (2)

For this system, like for the first-order case, it is sufficient
that the graphs underlying L1 and L2 each contain a con-
nected spanning tree for the system to eventually coordinate
in both x and its derivative ẋ (regardless of network size!).
This closed loop system, which we will call serial consensus,
thus mimics one core property of the standard consensus
protocol, and can also be generalized to any order n.

The main results of this paper elucidate key properties
of the proposed nth-order serial consensus. The controller is
proven to remain localized (within an n-hop neighborhood)
and implementable through relative measurements. We also
prove that the closed loop will achieve consensus in all n
states. Furthermore, we study the robustness of the proposed
closed loop and show that the system will still coordinate
when subject to unstructured uncertainty, whose permissible
size is independent of the network size. The beneficial
properties of the form (2) (generalized to any order n) are
thus not contingent on an idealized implementation.

The remainder of this paper is organized as follows. We
begin by introducing the nth-order consensus model and
defining our choice of control structure. Subsequently, we
define and motivate the serial consensus system. In Sec. III
and IV, we provide proofs for the stability and robustness of
the serial consensus system, respectively. The main results
are then illustrated through examples in Sec. V. Finally,
Sec. VI offers our conclusions.

II. PROBLEM SETUP

We start by introducing some notation and graph theory
before introducing the general nth-order consensus problem
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for which we propose the new serial consensus setup. We
discuss its properties and end with some useful definitions.

A. Network Model and Definitions

Let G = {V, E} denote a graph of size N = |V|.
The set E ⊂ V × V denotes the set of edges. The graph
can be equivalently represented by the adjacency matrix
W ∈ RN×N where wi,j > 0 ⇐⇒ (j, i) ∈ E . The graph
is called undirected if W = WT . The graph contains a
connected spanning tree if for some i ∈ V there is a path
from i to any other vertex j ∈ V .

Associated with a weighted graph we have the weighted
graph Laplacian L(G), defined as

[L(G)]i,j =
{

−wi,j , if i ̸= j∑
k ̸=i wi,k, if i = j

.

The graph dependence is omitted when clear from context.
Under the condition that that the graph generating the graph
Laplacian contains a connected spanning tree, L will have
a simple and unique eigenvalue at 0 and the remaining
eigenvalues will lie strictly in the right half plane (RHP).

We will also consider networks with a growing number
of nodes. These are then described by a graph family
{GN}N→∞, where N is the size of the growing network.

The space of all proper, real rational, and stable transfer
matrices will be denoted RH∞. We will use ∥ · ∥H∞ for the
H∞ norm, following the notation in [14].

B. nth-Order Consensus

Let the system be modeled as N agents with identical
nth-order integrator dynamics, i.e.

dnxi(t)

dtn
= ui(t), (3)

for all i ∈ V . We will use the convention x
(0)
i (t) = xi(t) and

x
(k)
i (t) = dk

dtk
xi(t) to denote time derivatives. When clear,

we may omit the time argument for brevity.
In this paper, we consider the problem of synchronizing

agents to achieve a state of consensus, formally defined as:
Definition 1 (nth-order consensus): The multi-agent sys-

tem (3) achieves nth-order consensus if limt→∞ |x(k)
i (t) −

x
(k)
j (t)| = 0, for all i, j ∈ V and k ∈ {0, 1 . . . , n− 1}.

C. Control Structure

A linear state feedback controller of (3) can be written as

u(t) = uref(t)−
n−1∑
k=0

Akx
(k)(t), (4)

where uref(t) ∈ RN is a feedforward term and Ak ∈ RN×N

represents the feedback of the kth derivative. We will restrict
this class of controllers in three ways. The controllers

i) can only use relative feedback;
ii) have a limited gain;

iii) depend on the local neighborhood of each agent.
The constraint for relative feedback can be expressed as
Ak1N = 0 for all k. Meanwhile, a limited gain can be rep-
resented by requiring that ∥Ak∥∞ ≤ c. To capture the notion

of locality, consider the adjacency matrix W representing the
communication and measurement structure, which we here
assume to be the same. That is, if Wi,j = 1, then agent i can
directly receive or measure the relative distance to agent j.
Next, consider the non-negative matrix W q . This matrix has
the property that [W q]i,j ̸= 0 if and only if there is a path
of length q from agent j to agent i. Thus, if we want the
controller to only depend on information that is at most q
steps away from each agent the following implication should
hold:

∑q
k=0 W

k
i,j = 0 =⇒ [Ak]i,j = 0. Putting all the

conditions together gives us a family of controllers that we
will consider in this paper:

Definition 2 (q-step implementable relative feedback):
A relative feedback controller of the form (4) is q-step
implementable with respect to the adjacency matrix W and
gain c > 0 if Ak ∈ Aq(W, c) for all k, where

Aq(W, c) =

{
A

∣∣∣∣[∑q
k=0 W

k
]
i,j

= 0 =⇒ Ai,j = 0,

A1N = 0, ∥A∥∞ ≤ c

}
.

The conventional controller for achieving nth-order con-
sensus can be realized as (4) where each Ak is given by a
graph Laplacian, e.g., Ak = Lk ∈ A1(W, c).

D. A Novel Design: Serial Consensus

We propose the following controller of (3), expressed in
the Laplace domain, to achieve nth-order consensus

U(s) = Uref(s) +

(
snI −

n∏
k=1

(sI + Lk)

)
X(s), (5)

where Lk are graph Laplacians and Uref is the transformed
reference signal. In this case, it is more instructive to consider
the closed-loop dynamics, which take the following form:

Definition 3 (nth-order serial consensus system): For all
k ∈ {1, 2 . . . , n}, let Lk be a weighted and directed graph
Laplacian. The nth-order serial consensus system is then(

n∏
k=1

(sI + Lk)

)
X(s) = Uref(s). (6)

We refer to this form as serial consensus because the same
closed-loop dynamics can be realized through interconnect-
ing n first-order consensus systems in series.

The closed-loop dynamics in (6) can also be transformed
to state-space form by introducing the alternative variables
Ξk with the corresponding states ξk. These relate to X
through Ξ1 = X(s), Ξk = (sI + Lk−1)Ξk−1 for k ∈
{2, . . . , n − 1}, and sΞn = −LnΞn + Uref . This leads
to the following continuous-time state-space representation

ξ̇1
ξ̇2
...

ξ̇n−1

ξ̇n

=

−L1 I

−L2
. . .
. . . I

−Ln


︸ ︷︷ ︸

A


ξ1
ξ2
...

ξn−1

ξn

+


0
0
...
0

uref

. (7)

The serial consensus form has several advantages, which will
be the focus of this paper. First, however, we show that it
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satisfies the controller constraints that we impose, as given by
Definition 2. In other words, we will discuss how the closed-
loop structure in (6) can be implemented on a network.

When analyzing the serial consensus controller of (5) we
will utilize the following assumption on the graph structure.

Assumption 1: (Connected spanning tree) All graphs un-
derlying the graph Laplacians Lk contain a connected span-
ning tree.

E. Implementing Serial Consensus

The following proposition ensures that the serial consen-
sus system can be achieved by controlling the nth-order
integrator system (3) with an n-step implementable relative
feedback controller as defined in Definition 2.

Proposition 1: Consider the nth-order serial consensus as
defined in (6). If each Lk ∈ A1(W, c) for some constant c
and adjacency matrix W , then the controller in (5) is an n-
step implementable relative feedback controller with respect
to W and a finite gain c′.
To prove this proposition, we first require the following two
lemmas, whose proofs can be found in [15].

Lemma 1: If A1 ∈ Aq1(W, c1) and A2 ∈ Aq2 (W, c2)
then the sum satisfies (A1+A2) ∈ Amax(q1,q2) (W, c1+c2).

Lemma 2: Let A1 ∈ Aq1(W, c1) and A2 ∈ Aq2(W, c2)
then the product satisfies (A1A2) ∈ Aq1+q2(W, c1c2).

Now we can prove Proposition 1.
Proof: The serial consensus controller can be expanded

to the matrix polynomial

U(s) = Uref(s) +

(
snI −

n∏
k=1

(sI + Lk)

)
X(s)

= Uref(s) +

(
(sn − sn)I −

n−1∑
k=0

skAk

)
X(s),

for some matrices Ak. To show the proposition, we need to
show that Ak ∈ Aq(W, c′) for all k = 0, . . . , n − 1, with
q ≤ n and c′ < ∞. Let

Ik =
{
α
∣∣ |α| = n− k, α ⊂ {1, 2, . . . , n},

i < j =⇒ α(i) < α(j)}

denote all the ordered subsets of the range [1, n] with size
n− k. Then

Ak =
∑
α∈Ik

∏
j∈α

Lj , for all k ∈ [0, n− 1].

Since all α ∈ Ik has n − k elements we can show that∏
j∈α Lj = Bα ∈ An−k (W, cn−k) by applying Lemma 2

recursively. Now we have a sum

Ak =
∑
α∈Ik

Bα.

The number of ordered subsets of the range [1, n] with size
n − k is given by the binomial coefficients and therefore
the size of |Ik| =

(
n

n−k

)
. Applying Lemma 1 recursively

shows that Ak ∈ An−k(W,
(

n
n−k

)
cn−k). Clearly, we have

that n−k ≤ n and
(

n
n−k

)
cn−k ≤

(
n

⌈n/2⌉
)
max(c, cn) < ∞ for

all k. Let c′ =
(

n
⌈n/2⌉

)
max(c, cn) and then Ak ∈ An(W, c′)

holds true for all k.
Example 1: For clarity, let us consider the controller for

the case n = 3. Then the controller is

U(s) = Uref(s) +

(
s3I −

3∏
k=1

(sI + Lk)

)
X(s)

= Uref(s)−
(
s2(L3 + L2 + L1)+

s(L3L2 + L3L1 + L2L1) + L3L2L1)X(s).

Here, A0 = L3L2L1, A1 = L3L2 + L3L1 + L2L1, and
A2 = L3 + L2 + L1. The proposition asserts that if L1, L2,
and L3 share a sparsity pattern and have bounded gains, then
the resulting controller gains A0, A1, and A2 will be sparse
and have bounded gains.

Remark 1: Proposition 1 may be conservative. For in-
stance, if W represents the complete graph, then any relative
feedback controller would trivially be 1-step implementable.

III. STABILITY OF SERIAL CONSENSUS

In this section, we prove the stability of the serial consen-
sus. Using this result, we further demonstrate that the serial
consensus satisfies a notion of scalable stability.

A. Stability

Theorem 1: Consider the nth-order serial consensus sys-
tem as defined in Definition 3 under Assumption 1 and with
Uref ∈ RH∞. The closed-loop dynamics have the following
properties:

(i) The poles of (6) are given by the union of the eigen-
values of −Lk.

(ii) The solution achieves nth-order consensus.

Proof: (i) Any square matrix can be unitarily trans-
formed to upper-triangular form by the Schur traingular-
ization theorem. Let UkLkU

H
k = Tk be upper triangular.

Then the block diagonal matrix U = diag(U1, U2, . . . Un)
is a unitary matrix that upper triangularizes A in (7). For
any triangular matrix the eigenvalues lie on the diagonal and
these will be the eigenvalues of each −Lk.

(ii) First, consider the closed loop dynamics of (6) which
will be

X(s) =

(
1∏

k=n

(sI + Lk)
−1

)
Uref(s).

Since Uref is stable, we know that the limit lims→0 Uref(s) =
Uref(0) exists. To prove that the system achieves nth-order
consensus we want to show that

lim
t→∞

y(t) = lim
s→0

C(s)X(s) = 0

for some transfer matrix C(s), which encodes the con-
sensus states. But since the reference dependence is only
related to Uref(0), we can simplify the problem to only
consider impulse responses. But the impulse response has
the same transfer function as the initial value response
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where ξn(0) = Uref(0) . Therefore, WLOG, assume that
Uref(s) = 0 and an arbitrary initial condition

ξ(0) = [ξT1 (0), ξ
T
2 (0), . . . , ξ

T
n (0)]

T .

The solution of (7) is given by exp(At)ξ(0) =
S exp(J(A)t)S−1ξ(0) where J(A) is the Jordan normal
form of A and S is an invertible matrix. From (i) and the
diagonal dominance of the graph Laplacians we know that all
eigenvalues of A lie in the left half plane. By Assumption 1 it
follows that the zero eigenvalue for each Lk is simple. Now
we prove that these n zero eigenvalues form a Jordan block
of size n. Let ek denote the kth 1-block vector, e.g. e1 =
[1T

N , 0N , . . . , 0N ]T and e2 = [0N , 1T
N , . . . , 0N ]T . Then e1

is an eigenvector, since Ae1 = 0. For k ∈ {2, 3 . . . , n}
we have Aek = ek−1 which implies that Akek = 0.
This shows that there is a Jordan block of size n with
an invariant subspace spanned by the vectors ek. Since all
other eigenvectors make up an asymptotically stable invariant
subspace, it follows that ξ(t) will converge towards a solution
in span(e1, e2 . . . , en) and thus limt→∞ ξk(t) = αk(t)1N .
Now, since x(t) = ξ1(t), it follows that limt→∞ x(t) =
α1(t)1N , and furthermore, since

ξ̇k = −Lkξk + ξk+1 → ξk+1 as t → ∞,

for k ∈ {1, . . . , n − 1}, it follows that limt→∞ x(k)(t) =
αk+1(t)1N , proving convergence to nth-order consensus.

The proposition shows that the stability analysis of the
nth-order serial consensus can be reduced to verifying that
the n first-order consensus systems ẋ = −Lkx achieve
consensus. This is equivalent to determining whether the
graphs underlying each Lk, all contain a connected spanning
tree. Consequently, in conjunction with Proposition 1, this
result demonstrates that nth-order consensus is achievable
using a local relative feedback controller with finite gain.
Notably, this achievement is independent of the number of
agents, thus ensuring scalability, which we will discuss next.

B. Scalable Stability

Coordinating a multi-agent system is inherently a de-
centralized problem where the goal for each agent is to
coordinate with its nearest neighbors. However, when the
controllers only depend on local measurements there is a
possibility that controllers that manage to coordinate N
agents stop doing so as the number of agents increases.
More specifically, consider the growing graph family {GN}
and corresponding graph Laplacians L(GN ). Then we can
consider the following notion of stability.

Definition 4 (Scalable stability [9, Def. 2.1]): A consen-
sus control design is scalably stable if the resulting closed-
loop system achieves consensus over any graph in the
family {GN}.

In [9] it was shown that for the 3rd and higher-order
consensus problem with controller Ak = akL(GN ) in (4),
the closed loop system will become unstable if the algebraic
connectivity λ2(L(GN )) → 0 as N → ∞. The serial consen-
sus alleviates this scalability issue. Theorem 1 shows that the

serial consensus will be stable, regardless of the network size,
as long as the underlying graphs are sufficiently connected.
The result is summarized in the following corollary.

Corollary 1: For any n, the controller (5) is scalably
stable over any graph family {GN} that underlies Lk(GN ),
provided each GN satisfies Assumption 1.

Remark 2: Note that, by Theorem 1, scalable stability is
also achieved when the graph families underlying each Lk

are different. This can even be achieved with ||Lk||∞ being
arbitrarily small.

IV. ROBUSTNESS OF SERIAL CONSENSUS

The controller proposed in (5) is a relative state-feedback
controller, specifically designed to ensure that the closed loop
system achieves nth-order consensus as guaranteed through
Theorem 1. However, the nth-order integrator system may
be an idealization of the system. Implementing the relative
state feedback may require observers to be fully realized, and
there can be unmodeled dynamics. These potential sources of
errors call for a robust controller. We will now present two
theorems, which prove that the serial consensus is robust
towards two different types of uncertainties.

A. Additive Perturbation

The following theorem asserts that the nth-order serial
consensus controller can handle additive perturbations.

Theorem 2: Consider the nth-order serial consensus sys-
tem as defined in Definition 3, under Assumption 1, with
Lk = L for all k, and L = LT . Then the perturbed system

(sI + L)nX = Uref +

(
n∑

k=0

∆ks
kLn−k

)
X,

where Uref ,∆k ∈ RH∞, achieves nth-order consensus if

∥∆0∥H∞ + ∥∆n∥H∞ +

n−1∑
k=1

∥∆k∥H∞

√
kk

nn
(n− k)n−k < 1.

Proof: First, note that the closed-loop system can be
represented by the block diagram in Fig. 1, which in turn
can be simplified to Fig. 2. Since Uref is stable we can apply
the small-gain theorem which asserts that U(s) (as defined
in the figures) will be stable if∥∥∥∥∥

n∑
k=0

∆ks
kLn−k(sI + L)−n

∥∥∥∥∥
H∞

< 1.

Applying the triangle inequality and submultiplicativity on
the left-hand side (LH) yields

LH ≤
n∑

k=0

∥∆k∥H∞

∥∥skLn−k(sI + L)−n
∥∥
H∞

. (8)

Since L is symmetric, it is possible to unitarily diagonalize
it. Let U = UH denote one such unitary matrix. Then L =
UΛUH where Λ is a non-negative real diagonal matrix.

∥skLn−k(sI + L)−n∥H∞ = ∥skΛn−k(sI + Λ)−n∥H∞ .

For a diagonal matrix the singular values are given by the
absolute value of the diagonal. Let, λ > 0 be an arbitrary
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Fig. 1: Block diagram illustrating the perturbation model in proof
of Theorem 2.

Fig. 2: Block diagram illustrating the perturbation model in proof
of Theorem 2.

positive constant. The maximum gain for each diagonal can
then be calculated through

max
ω

∣∣∣∣ ωkλn−k

(jω + λ)n

∣∣∣∣ =
√
max
ω

ω2kλ2n−2k

(ω2 + λ2)n
.

The latter optimization problem is given by a continuous
function and thus the derivative must be 0 at the maximum.
Simple calculus shows that the optimum is found at ω2 =
λ2k/(n−k) for k = 0, 1, . . . n−1 and at ω = ∞ for k = n.
Inserting yields

max
ω

∣∣∣∣ ωkλn−k

(jω + λ)n

∣∣∣∣ =
{√

kk

nn (n− k)n−k if 0 < k < n

1 else
.

In the case where λ = 0. Then we have for k = 0, . . . , n−1

max
ω

∣∣∣∣ ωk0n−k

(jω + 0)n

∣∣∣∣ = 0,

and for k = n

max
ω

∣∣∣∣ ωn

(jω + 0)n

∣∣∣∣ = 1.

This is less restrictive than for λ > 0 and thus we can use
the result for λ > 0. Plugging this into the upper bound of
the LH (8) results in the sought inequality.

Finally, we must ensure that stability of the closed
loop in Fig. 2 implies nth-order consensus. Since the
transfer matrix from u to y in Fig. 1 is stable it fol-
lows that Y (s) will be stable. This means that we have
shown the following limt→∞ Ln−kx(k)(t) = 0. By As-
sumption 1 the 0 eigenvalue of L is unique and there-
fore 0 is a unique eigenvalue of Ln−k too. Subsequently,
limt→∞ x(k)(t) ∈ ker(Ln−k). Since Ln−k1N = 0 it follows
that limt→∞ x(k)(t) ∈ span(1N ) and that the agents will
reach consensus in all the n − 1 first time derivatives and
thus achieve nth-order consensus.

It is worth noting that the norm bound on the uncertainty
blocks ∆k is independent of the number of agents in the sys-
tem. Therefore, the serial consensus implementation can be
considered scalably robust in the sense that it allows equally
sized perturbations, regardless of network size. This is not
the case for localized conventional consensus, following the
results in [9].

B. Multiplicative Perturbation

It is also possible to see the closed-loop serial consensus
system as a series of interconnected first-order systems.
Therefore it is also interesting to consider the robustness
with respect to the each factor. The following theorem gives
a sufficient condition for the closed-loop system to achieve
nth-order consensus.

Theorem 3: Consider the nth-order serial consensus sys-
tem as defined in Definition 3, under Assumption 1, with
Lk = LT

k for all k. Then the perturbed system

(sI+s∆0+(I+∆n)Ln)

n−1∏
k=1

(sI+(I+∆k)Lk)X = Uref ,

where Uref ,∆k ∈ RH∞, achieves nth-order consensus if

∥∆k∥H∞ < 1, for all k

and
∥∆0∥H∞ + ∥∆n∥H∞ < 1.

Proof: First, note that we can construct X(s) = Ξ1(s),
sΞk = −(I + ∆k)LkΞk + Ξk+1 for k = 1, . . . , n − 1,
and s(I + ∆0)Ξn = −(I + ∆n)LnΞn + Uref . For Ξn we
have exactly the first-order case of Theorem 2 and thus
limt→∞ ξn(t) = αn(t)1N if ∥∆0∥H∞ + ∥∆n∥H∞ < 1.
Consider the following induction hypothesis: if Ξk+1(s) =
1NGk+1(s)+Hk+1(s) where Hk+1(s) ∈ RH∞, then Ξk =
1NGk(s) +Hk(s) for some Hk(s) ∈ RH∞. We then have

sΞk = −(I +∆k)LkΞk + Ξk+1

which can be represented by the block diagram Fig. 3. Here,
note that

Lk(sI + Lk)
−1Ξk+1 = (sI + Lk)

−1Lk(Hk+1(s))

and the potentially unstable term of Ξk+1 can be ig-
nored. Reusing a result from the previous proof we have
∥Lk(sI + Lk)

−1∥H∞ = 1 and therefore LkΞk ∈ RH∞ if
∥∆k∥H∞ < 1 . Since the 0 eigenvalue of Lk is unique, it
follows that Ξk(s) = 1NGk(s) +Hk(s) with Hk ∈ RH∞
which proves the induction hypothesis since we have already
shown the base case Ξn(s) = 1NGn(s) + Hn(s). It is
left to prove that the system will reach nth-order consensus.
Note that L1X(s) = L1Ξ1(s) is stable and therefore we get
through the final value theorem

lim
t→∞

L1x(t) = lim
s→0

sL1Ξ1(s) = 0.

Furthermore, we have for all k: lims→0 sLkΞk(s) = 0. This,
combined with s2Ξk(s) = −(I +∆k)sLkΞk(s)+ sΞk+1(s)
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Fig. 3: Block diagram illustrating the perturbation model of a
general first-order consensus block which is used in the proof of
Theorem 3.

shows that

lim
t→∞

Lk+1x
(k)(t) = lim

s→0
s(skLk+1X(s))

= lim
s→0

sLk+1Ξk+1(s) = 0.

Finally, since each Lk has a unique 0 eigenvalue with
the corresponding eigenvector 1N , we see that nth-order
consensus will be achieved
This theorem shows that the nth-order serial consensus is
robust in its construction.

V. EXAMPLES

A. 2nd-Order Consensus on Circular Graph

Consider the directed cycle graph, which can be repre-
sented by the adjacency matrix

[Wcycle]i,j = 1 iff i− j = 1 mod N.

The corresponding graph Laplacian Lcycle is a circulant
matrix and therefore, the eigenvalues are known analytically.
In particular, the eigenvalue with the second smallest real
part is λ2(Lcycle) = 1 − exp(2πi/N) = 1 − cos (2π/N) −
i sin (2π/N). For large N , this eigenvalue can be approxi-
mated with a first-order Taylor approximation, which yields
λ2(Lc) ≈ −i2π/N . This eigenvalue will cause problems
when designing a controller using the conventional consen-
sus. To see this, consider the closed loop dynamics

s2I + 2p1sLcycle + p0Lcycle = Uref .

The system can be diagonalized and, in particular, two of
the poles are given by the equation s2 + 2p1λ2(Lcycle) +
p0λ2(Lcycle) = 0. In the case when p0 and p1 are designed
independently of the network size N , then for sufficiently
large N the roots can be approximated as

sp = −p1λ2 ±
√
p21λ

2
2 − p0λ2 ≈ ±(1 + i)

√
πp0
N

.

Since one of these poles lies in the RHP, it follows that
the closed loop system will become unstable when N is
sufficiently large, for any (fixed) choice of p0 and p1.

For the serial consensus it is sufficient to check that
all eigenvalues but the unique 0 eigenvalue of Lcycle lie
in the RHP, or equivalently, if 0 < Re(λ2(Lcycle)) =
1 − cos(2π/N) which is clearly true for any finite N .
Alternatively, it is also sufficient to check that the underlying
graph contains a connected spanning tree.

(a) Conventional consensus,N=12. (b) Conventional consensus,N=13.

(c) Serial consensus,N=12. (d) Serial consensus,N=13.

Fig. 4: 3rd-order consensus in a chain of vehicles is considered.
The plots show the inter-vehicle relative errors over time when the
lead vehicle moves at constant acceleration. Panels (a) and (b) show
that the addition of one agent destabilizes the closed loop for the
conventional consensus. Panels (c) and (d) illustrate the fact that
the serial consensus will remain stable under such agent additions.

B. 3rd-Order Consensus

It has been shown that the conventional consensus
x(n) = −

∑n−1
k=0 L(GN )x(k) cannot achieve scalable sta-

bility for any graph family {GN} such that the cor-
responding graph Laplacian has an eigenvalue that de-
creases towards zero as the graph is growing, i.e. if
limN→∞ Re(λ2(L(GN ))) = 0. At least, this is not possible
with the conventional consensus control. However, for the
serial consensus this is no longer a problem. The controller

U(s) = Uref +

(
s3I −

3∏
k=1

(sI + L(GN ))

)
X(s)

will achieve consensus as long as each of the underlying
graphs {GN} contains a connected spanning tree. To illus-
trate this, consider the graph defined by the adjacency matrix
Wpath ∈ RN×N , defined as

[Wpath]i,j =

{
1 if |i− j| = 1 and i ̸= 1
0 else .

This corresponds to a bidirectional path graph with a leader
(Agent 1). Let Lpath be the associated graph Laplacian. It is
true that limN→∞ λ2(Lpath) = 0 and thus any conventional
control design with Lpath will eventually lead to an unstable
closed loop. For this example, let the conventional control
law be u(t) = uref(t)− 6Lpathẍ− 4Lpathẋ− 2Lpathx and
the serial consensus controller (5) be defined with the same
graph Laplacians Lk = 2kLpath. The response to a constant
acceleration of the leader is shown in Fig. 4. Here we see
that the addition of a 13th agent to the system destabilizes the
closed loop for the conventional consensus while the serial
consensus only loses some performance.
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C. Robustness of the 2nd-Order Serial Consensus.

Theorems 2 and 3 show that the serial consensus can
be perturbed and still achieve nth-order consensus. Now we
want to illustrate what the block ∆k can be. Consider the
perturbed 2nd-order consensus system in Theorem 2. Writing
out all terms we get

s2(I +∆2)X = Uref − (s(2I +∆1)LX + (I +∆0)L
2X).

In this form, the ∆2 block can represent potential model
errors. While we might control a system modeled as N iden-
tical double-integrator systems, the reality may differ. This
is obviously the case for vehicle platoons, which are often
modeled as chains of identical double integrators. Through
our theorem we can for instance allow ∆2 to be a diagonal
transfer matrix with elements [∆2]i,i =

ki

Tis+1 where |ki| < 1
and Ti > 0 for all i. In this scenario, the closed loop system
would remain stable despite the heterogeneous agents. The
blocks ∆1 and ∆0 are also important. For instance, the
signals L2x(t) and Lẋ(t) may not be directly measured, but
instead estimated through linear filters. This could be thought
of as unmodeled dynamics, which these blocks can capture.

If we focus on Theorem 3, then the perturbed model is

(s(∆0 + I) + (∆2 + I)L2) (sI + (∆1 + I)L1)X = Uref .

The theorem only asserts robustness for symmetrical graph
Laplacians Lk. However, since each ∆k can be a constant
matrix, it is possible to construct new (asymmetric) graph
Laplacians L′

k = (I +∆k)Lk by designing the ∆k blocks.

VI. CONCLUSION

This work has introduced the nth-order serial consensus
system, which serves as a natural generalization of the well-
known consensus protocols. The stability of this system can
be analyzed by considering n regular first-order consensus
protocols. The controller proposed for achieving nth-order
serial consensus has been shown to be implementable using
relative measurements confined to a local neighborhood of
each agent and can therefore be considered a distributed
control scheme. Robustness of the proposed system has also
been analyzed. This has been addressed in terms of two
different types of model perturbations. The analysis showed
that the size, measured in the H∞ norm, of the allowable
uncertainties were independent of the number of agents.

Future and ongoing work will explore the performance
of the serial consensus and its relation to string stability.
It would also be interesting to consider an implementation
where each agent employs an observer to compute their
control action.
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