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Abstract— Highway merging scenarios featuring mixed traf-
fic conditions pose significant modeling and control challenges
for connected and automated vehicles (CAVs) interacting with
incoming on-ramp human-driven vehicles (HDVs). In this
paper, we present an approach to learn an approximate
information state (AIS) model of CAV-HDV interactions. Thus,
the CAV learns the behavior of an incoming HDV using the
AIS model and uses it to generate a control strategy for
merging. First, we validate the efficacy of this framework on
real-world data by using it to predict the behavior of an HDV in
situations with other HDVs extracted from the Next-Generation
Simulation repository. Then, we generate simulation data for
HDV-CAV interactions in a highway merging scenario using
a standard inverse reinforcement learning approach. Without
assuming a prior knowledge of the generating model, we show
that our AIS model learns to predict the future trajectory of
the HDV using only observations. Subsequently, we generate
safe merging control policies for a CAV when merging with
HDVs that demonstrate a spectrum of driving behaviors, from
aggressive to conservative. We establish the effectiveness of the
proposed approach by performing numerical simulations.

I. INTRODUCTION

Connected and automated vehicles (CAVs) have the poten-
tial to significantly improve transportation networks. Numer-
ous research efforts have focused on how to ensure energy
efficiency [1], safety [2], and traveler comfort [3] with 100
% CAV penetration. However, since we expect a the number
of CAVs on the roads to rise gradually, CAVs must also
safely maneuver alongside human-driven vehicles (HDVs).
This poses a challenge in the control of CAVs due to the
unpredictability of HDV behavior and thus, we require new
approaches to predict human-driving behavior online and
dynamically adjust a CAV’s trajectory.

In recent years, significant attention has been directed
toward game-theoretic models for such interactions between
vehicles. Liu et al. [4] proposed a decision-making algorithm
to address game theoretic interactions in merging scenarios.
Chandra and Manocha [5] proposed a robotics-based auction
framework for vehicle navigation. A game-theoretic model
predictive control with weight adaptation strategies for CAVs
in mixed-traffic merging scenarios was proposed in [6].
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Other approaches have used deep learning to predict HDV
behaviors. Altché and Fortelle [7] proposed a a long short-
term memory (LSTM) architecture to predict the trajectory
of a vehicle on a straight road. Park et al. [8] generated the
future trajectories of all vehicles surrounding an HDV using
an LSTM model. Similarly, Deo and Trivedi used LSTMs for
interaction-aware motion prediction of surrounding vehicles
on freeways [9]. While most deep learning methods predict
the future behavior of HDVs, there is a growing interest
in utilizing such predictions to control CAVs. Kherroubi
et al. [10] trained a neural network model to predict the
intentions of human drivers and learn a driving strategy. Guo
et al. [11] applied Q-learning to control the change of lanes
for CAVs when HDVs follow Gipps’ car-following model.
However, there is still a need for a framework of learning-
enabled [12] CAVs that prioritize safety while generalizing
across different models of HDV behavior and decentralized
information structures [13].

To this end, we draw upon ideas in the literature on
partially observed reinforcement learning. Subramanian et al.
[14] presented a principled framework to learn state-space
representations and compute control strategies for systems
with hidden states. Such a model, known as an approximate
information state (AIS) model, has been extended to robust
formulations [15], [16] and also utilized in robotics [17]
and medical applications [18]. Building from the notion of
an AIS, our main contributions are as follows. We provide
a methodology to learn an AIS model for an on-ramp
HDV’s behavior in highway merging and generate a safety
prioritized strategy for a CAV. Here, the CAV’s control prob-
lem includes the objectives of safety and energy efficiency.
Specifically: (1) We construct and train a neural network
architecture to predict the trajectory of an HDV without prior
knowledge of their dynamics. We achieve this by considering
the history of observations to be representative of the HDV’s
driving behavior and compressing it into an AIS. (2) We
develop an iterative model predictive control (MPC) algo-
rithm which uses the learned AIS model to generate a safe
and energy-efficient control strategy for the CAV online. (3)
We validate the efficacy of our proposed learning framework
by successfully predicting vehicle trajectories from the Next
Generation Simulation (NGSIM) repository. (4) We validate
the efficacy of our learning and control approach across
5000 simulations of HDV-CAV interactions, featuring HDV
behaviors ranging from aggressive to conservative.

The remainder of the paper proceeds as follows. In Section
II, we present our problem formulation. In Section III, we
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Fig. 1: Mixed traffic merging scenario.

present preliminaries on AISs and our proposed encoder-
decoder model to learn CAV-HDV interactions. In Section
IV, we use the learned model to solve our control problem
and present numerical simulation results. Finally, in Section
V, we draw concluding remarks.

II. PROBLEM FORMULATION

In this section, we formulate an MPC problem to compute
the control input for a CAV in a mixed-traffic highway
merging scenario. As shown in Fig. 1, a CAV indexed by 1,
and an HDV indexed by 2, travel on a main road and a ramp,
respectively. We define a control zone as highlighted by the
green region in Fig. 1. Within the control zone, the control
inputs to CAV–1 are determined by our proposed method,
whereas, outside the control zone, they can be determined
by a standard car-following model [11]. We consider that
the control zone begins at a distance Lc ∈ R>0 upstream of
the conflict point on each road, i.e., the location where the
paths of CAV–1 and HDV–2 intersect. The conflict point is
where a lateral collision may occur (a red circle in Fig. 1).
Our goal is to control CAV–1 to merge safely and effectively,
given the presence of HDV–2 in this merging scenario.

We measure the longitudinal positions of CAV–1 and
HDV–2 from the beginning of the control zone at any t ∈ N,
and denote them by z1,t ∈ R≥0 and z2,t ∈ R≥0, respectively.
Let v1,t ∈ R≥0 and u1,t ∈ R be the speed and acceleration
of CAV–1, v2,t ∈ R≥0 and u2,t ∈ R be the speed and
acceleration of HDV–2 at time t. We denote the position and
speed of each vehicle i = 1, 2 as its state xi,t = (zi,t , vi,t)
at time t. Then, starting with the initial state x1,0 and x2,0
at t = 0, the state of each vehicle evolves according to
x1,t+1 = f1,t(x1,t, u1,t) and x2,t+1 = f2,t(x2,t, u2,t). In
this paper, we consider that for all t ∈ N the dynamics of
CAV–1 follow a double-integrator model:

z1,t+1 = z1,t +∆Tv1,t +
1

2
∆T 2u1,t,

v1,t+1 = v1,t +∆Tu1,t,
(1)

where ∆T ∈ R>0 is the sampling time between two discrete
timesteps. We consider the following constraints for CAV–1

0 ≤ vmin ≤ v1,t ≤ vmax, and umin ≤ u1,t ≤ umax, (2)

where umin, umax ∈ R are the minimum deceleration and
maximum acceleration, respectively, and vmin, vmax ∈ R>0

are the minimum and maximum speed limits, respectively.
Both the vehicles are restricted to only move in the forward
direction, and hence, their speeds vi,t for i = 1, 2 are always
non-negative. However, we do not impose an upper bound
v2,t because it can be violated by HDV–2. In the next
subsection, we formulate the control problem for CAV–1.

A. Model Predictive Control Formulation

In this subsection, we formulate an MPC problem to
control CAV–1 in the merging scenario. Let H ∈ N be the
time length of the control horizon, t ∈ N be the current time
step, and It = {t, . . . , t + H − 1} be the control horizon
at t. The objective for CAV–1 at any time k is a linear
combination of: (i) the control input, (ii) the deviation from
the maximum allowed speed to reduce the travel time, and
(iii) a logarithmic penalty for collision avoidance [6], i.e.,

l(x1,k+1, u1,k) = ω1u
2
1,k + ω2(v1,k+1 − vmax)

2 − ω3 log(

(z1,k+1 − zc + ρv1,k+1)
2 + (ẑ2,k+1 − zc + ρv̂2,k+1)

2), (3)

where ω1, ω2, and ω3 are positive weights, zc is the po-
sition of the conflict point, and ρ ∈ R>0 accounts for the
reaction delay of HDV–2. An increase in ρ signifies greater
conservatism by considering HDV–2 with longer delays in
reaction. In (3), ẑ2,k+1 and v̂2,k+1 denote the predicted future
positions and speeds of HDV–2 at time step k+1. Then, the
MPC problem for CAV–1 for each t ∈ N is

minimize
{u1,k}k∈It

∑
k∈It

l(x1,k+1, u1,k), (4a)

subject to: (1), (2). (4b)

We seek the control inputs u1,j , ∀j ∈ It to minimize (4)
at each t ∈ N without prior knowledge of the dynamics of
HDV–2. Thus, CAV–1 must learn a model to predict the
future trajectory of HDV–2 using real time data. Thus, we
impose the following assumption.

Assumption 1. A coordinator, as shown in Fig. 1, exists to
collect perfect and transmit observations on the states and
control actions of HDV–2 in real-time.

Remark 1. The future control actions and the trajectory
for HDV–2 are not pre-determined because the dynamics
of HDV–2 are unknown, and the impact of of CAV–1 on
the actions of HDV–2 is also unknown. We model the
joint dynamics of both CAV–1 and HDV–2 as an unknown
partially observable Markov decision process (POMDP), and
learn an AIS model for the same.

III. LEARNING FRAMEWORK

A. Preliminaries

In this subsection, we present the mathematical formula-
tion of POMDPs and the framework of AISs from [14] that
we will use to predict the future trajectory of HDV–2.

POMDP Fundamentals: We define a POMDP as a tuple
(X ,U ,Y, T,O, c, γ), where the set of feasible states is X , the
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set of feasible control actions is U , the set of feasible obser-
vations is Y , the function T : X ×U ×X → [0, 1] yields the
transition probability T (xt, ut−1, xt+1) = p(xt+1|xt, ut−1)
for all xt, xt+1 ∈ X and ut ∈ U , the function O : X ×Y →
[0, 1] yields the observation probability O(xt+1, yt+1) =
p(yt+1|xt+1) for all xt+1 ∈ X and yt+1 ∈ Y , the function
c : X × U → R yields the cost c(xt, ut) for all xt ∈ X and
ut ∈ U , and γ ∈ [0, 1) is the discount factor. The history of
observations and control actions up to a given time t is the
memory mt = (mt−1, yt, ut−1) ∈ Mt.

AIS: An AIS is a compression of the memory which
can be used to compute an approximately optimal control
strategy for a POMDP using a dynamic programming decom-
position. Note that an AIS model can be learned purely from
observation data without complete knowledge of underlying
dynamics. Consider a measurable space (X ,B(X )), where
B(X ) is the sigma algebra on X . We denote an integral
probability metric between any two probability distributions
µ, ν ∈ ∆(X ) by d(·, ·). Examples of such metrics are
Wasserstein metric and maximum mean discrepancy metric.
Then, for a POMDP with a horizon T ∈ N, a time-invariant
AIS model is defined by a tuple (S, p̂, ĉ, σt : t = 0, . . . , T ),
where S is a Banach space of feasible information states,
p̂ : S × U → ∆(S) is a Markovian probability kernel,
ĉ : S × U → R is an approximate cost function, and
σt : Mt → S is a memory compression function. This
constitutes an (ε, δ)-approximate model of the POMDP if
there exist ε, δ ∈ R>0 such that for all realizations of
memory mt ∈ Mt and realizations of control action ut ∈ U ,
the following properties hold:
(AP1) Sufficient to approximate the cost ct = c(xt, ut):

|E[ct(xt, ut) |mt, ut]− ĉ(σt(mt), ut)| ≤ ε. (5)

(AP2a) The AIS evolves in a deterministic manner, i.e., there
exists a measurable function ψ : S × Y × U → S such that

σt(mt) = ψ(σt(mt−1), yt, ut−1). (6)

(AP2b) Sufficient to approximately predict future observa-
tions, i.e., there exists a probability kernel p̂y : S × U →
∆(Y) such that for any Borel subset B of Y , the memory-
based distribution µt(B) = p(yt+1 ∈ B|mt, ut) and the
predicted distribution ϕ(B) = p̂y(yt+1 ∈ B|σt(mt), ut):

d(µt, ϕ) ≤ δ. (7)

An (ε, δ)-AIS model forms a perfectly observed Markov
decision process with the state at each t given by st ∈ S.
Thus, we can use it to compute an approximately optimal
control strategy by formulating a dynamic programming
decomposition of the problem. Such an approximate strategy
has a bounded performance loss which improves linearly
with a decrease in ε and δ [14]. Thus, an AIS constitutes a
principled compression of the memory learned by enforcing
(AP1) and (AP2b) while satisfying (AP2a).

In light of these advantages, we adopt this framework
in our CAV-HDV merging scenario to predict the tra-
jectory of HDV–2 and, subsequently, compute a control

Fig. 2: A visualization of the encoder-decoder architecture.

strategy for CAV–1. In this framework, at each t ∈ N,
the state of CAV–1 is x1,t = (z1,t , v1,t), the control
action is u1,t and the observation received by CAV–1 is
yt = (z1,t , v1,t , u1,t−1 , z2,t , v2,t , u2,t−1). We deploy an
encoder-decoder neural network architecture to represent an
AIS model which learns a representation of the unknown
impact of CAV–1’s actions on the actions of HDV–2. This
is illustrated in Fig. 2, where we denote the encoder by
ψ : S × Y × U → S and the decoder by ϕ : S × U → Y3,
where Y ⊂ R6. We seek to learn this AIS model purely
from observation data. For this, we compare the distributions
predicted by the decoder against data that constitutes sam-
pled points from the ground truth. Next, we describe each
component of our neural network architecture.

B. Encoder-Decoder Architecture

1) The encoder ψ aims to learn a mapping which enforces
(AP2a) i.e., its aim is to compress the memory mt into an
AIS st = σt(mt) at each t ∈ N. Note that its input includes
the previous AIS, latest observation, and previous control
action given as a tuple (st−1, yt, ut−1). We illustrate this in
Fig. 2. The encoder comprises of two fully connected layers
followed by a recurrent neural network (RNN). The hidden
state of the RNN at each t ∈ N is treated as the output of the
encoder st. The linear layers receive the inputs (yt, ut−1),
and the RNN ensures that the encoder receives the previous
AIS st−1. Thus, the AIS is updated at each t ∈ N as

st = ψ(st−1, yt, ut−1). (8)

2) The decoder ϕ aims to learn a mapping to enforce
(AP1) and (AP2b), i.e., to predict a distribution on future
observations and the expected cost based on the AIS and
the control action. The decoder comprises of three fully
connected layers. At each t ∈ N, the decoder takes as an
input the AIS st and control action u1,t of CAV–1. The
decoder generates a distribution of future states of HDV–2
over a horizon It, (x2,t+1, x2,t+2, . . . , x2,t+H) given by

ϕ(st, u1,t) = p̂y(x2,t+1, . . . , x2,t+H | st, u1,t). (9)

We enforce (AP2b) for the entire control horizon It to serve
two purposes: (i) to enable the decoder to predict the future
states of HDV–2, and (ii) to allow a planning depth across
the control horizon It during the implementation of the MPC
controller. We do not include an expected cost term in the
output of the decoder because the cost (3) at each time is
deterministic. Thus, if the decoder learns to best predict the
trajectories, it automatically ensures both (AP1) and (AP2b).
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C. Training

In this subsection, we describe how we train both the
encoder ψ and the decoder ϕ by considering the left-hand
side in (7) from (AP2b) as a training loss. Let the underlying
distribution on the ground truth be denoted by p and the
predicted distribution of the decoder be p̂y. The training
loss is given by d(p̂y, p)2, where d(·, ·) is the distance-based
maximum mean discrepancy (MMD) metric for two proba-
bility distributions [14, Proposition 32]. We consider that p̂y

is a multivariate normal distribution on the possible future
realizations of the states (x2,t+1, . . . , x2,t+H) of HDV–2
over the horizon It. Then, we fix the standard deviation of
p̂y to 1 and consider that outputs of the decoder represent the
mean value vector of the distribution. At each t ∈ N, we have
access to a sampled observation (xref

2,t+1, . . . , x
ref
2,t+H) from

the underlying distribution p. To minimize the loss d(p̂y, p)2,
we need to construct an estimator of the gradient of this train-
ing loss using only sampled points. From [14, Proposition
33], an unbiased estimate of the gradient ∇d(p̂y, p)2 from
the mean of p̂y and sampled points from p is the gradient
of (x2,t+i − 2 · xref2,t+i)

⊤x2,t+i for all i = 1, . . . ,H. This
estimate is a surrogate loss for the training.

IV. SIMULATION AND RESULTS

We train and validate the use of AIS models for three
datasets for highway on-ramp merging scenarios. For the first
dataset, we use trajectory data from the NGSIM repository
for I-80 [19] to extract the positions, velocities, and accelera-
tions of the on-ramp vehicle along with the two consecutive
interacting highway vehicles. Using this data, we validate
the predictive ability of our AIS model in real-life merging
scenarios and we present the results in Subsection IV-A.

Next, we use an inverse reinforcement learning (IRL)
technique described in [6] to replicate human drivers in
simulations and generate two more datasets for the scenario
presented in Section II. With the IRL technique, we assume
that the control actions of an HDV minimize an objective
function based on different driving styles, ranging from
conservative to aggressive. In the second dataset, we simulate
CAV–1 with a safe control strategy from [6] against HDVs
with different levels of aggression. This ensures that only 1%
of the included situations demonstrate unsafe merging. In the
third dataset, the control actions of both HDV–2 and CAV–1
are generated using the IRL technique with randomized
weights to simulate an exploratory control strategy. The
details of training and validation of predictions are presented
in Subsection IV-A. Furthermore, we utilize the prediction
of the AIS model to generate a control strategy for the CAV
using iterative MPC in Subsection IV-B.

A. Network Architecture and Prediction Results

1) The NGSIM dataset model takes in as an input to the
encoder ψ, a 9 dimensional vector made up of 2 dimensional
positions and speeds for the three vehicles. The linear layers
of the encoder are of dimensions (9, 8) and (8, 16) each
with a ReLU activation, followed by a recurrent gated unit
(GRU) layer with a hidden state of size 24. The hidden

Fig. 3: Predicted v/s actual trajectories for generated data.

state, which is the AIS along with the most recent actions
of each vehicle are provided as input to the decoder ϕ.
The decoder comprises three fully connected layers with
dimensions (24 + 3, 32), (32, 64), and (64, 2), respectively,
and with ReLU activation for the first two layers. The
decoder predicts the trajectory of the on-ramp vehicle for a
horizon of H = 1 time step. A comparison of the predicted
and the actual trajectories for three on-ramp vehicles is
plotted in Fig. 4. Each column in this plot corresponds
to a single vehicle, where the plots in the first row are a
comparison of the position in the direction perpendicular to
the highway (labeled as lateral position), and in the second
row, we plot the position along the direction of the highway
(labeled as longitudinal position). The AIS model performs
well in predicting the longitudinal positions with root mean
square error (RMSE) of 0.35 m for 4(a), 0.39 m for 4(b),
and 0.54 m for 4(c). It is also capable of closely predicting
the longitudinal positions with RMSE of 2.62 m for 4(a),
1.92 m for 4(b), and 1.73 m for 4(c).

2) The IRL dataset models follow a similar architecture
to the NGSIM based model. We use identical networks
across the two generated datasets. At each time t, input
to the encoder ψ is the most recent 2 dimensional state
and the action of both CAV–1 and HDV–2, which is a
6 dimensional vector. The encoder structure is given by
(6, 8), (8, 16) with ReLU activation followed by a GRU with
a 4 dimensional hidden state representing the AIS. Since we
consider only two vehicles in section II, a 4 dimensional
AIS is sufficient.The most recent action of CAV–1 along
with the AIS is the input to the decoder ϕ. The decoder
comprises three layers of dimensions (4 + 1, 2), (2, 4) with
ReLU activation, and (4, H), where H is the length of the
horizon. We compare the predicted and refernce trajectories
in Fig. 3 at different time instances t = 0, 5, 20, 25 sec.
The RMSE between all predicted and reference trajectories
is 0.17 m. For these datasets, we set the length of the control
zone Lc = 70 m and indicate the conflict point using a red
horizontal line.

B. Iterative MPC Implementation

To solve the MPC problem for the control input u1,t, we
can consider the AIS predictions as a constraint. However,
the complexity of the neural network model creates com-
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(a) (b) (c)

Fig. 4: Trajectory prediction v/s the reference trajectory from the NGSIM dataset for three on-ramp cars (a), (b), and (c).

Algorithm 1 Iterative MPC Implementation

Require: t, H ∈ N, jmax ∈ N, u(0)1,t = 0
1: Predict the AIS by st = ψ(st−1, xt, ut−1)
2: for j = 1, 2, . . . , jmax do
3: Predict states and control actions of HDV–2 by
y
(j)
t+1:t+H = ϕ(st, u

(j−1)
1,t )

4: Solve (4) to obtain u(j)1,t:t+H−1

5: return u
(jmax)
1,t

putational intractability. Therefore, we propose an iterative
MPC implementation in Algorithm 1 to sequentially compute
the neural network prediction and solve the MPC problem.
At each time step, we initialize u

(0)
1,t = 0 and compute

the prediction of the AIS by st = ψ(st−1, xt, ut−1) where
the inputs include the previous AIS st−1, current states xt,
and previous control inputs ut−1. Next, at each iteration j,
we predict states and actions of HDV–2 by y

(j)
t+1:t+H =

ϕ(st, u
(j−1)
1,t ) that use the AIS st and the control input u(j−1)

1,t

of the MPC in the last iteration. Then we solve the MPC
problem given the prediction y

(j)
t+1:t+H to obtain the new

inputs u
(j)
1,t . This procedure is repeated until a maximum

number of iterations jmax.

Remark 2. While Algorithm 1 performs well for finite
iterations in simulation, a formal proof of convergence needs
to be established in future work to ensure stability.

C. Simulation Results

We conduct simulations in Python programming lan-
guage in which CasADi [20] and the built-in IPOPT
solver [21] are used for formulating and solving the
MPC problem, respectively. The parameters of MPC are:
∆T = 0.2 s, H = 10, vmin = 0.0m/s, vmax = 14.0m/s,
umin = −3.0m/s2, umax = 2.0m/s2, ω1 = 1.0, ω2 = 10.0,
ω3 = 103, ρ = 1.0 s.

TABLE I: Performance comparison safe v/s exploratory.

Reaction Time Delay (ρ) Safe Exploratory

0.6 4984 (99.6%) 4578 (91.5%)
0.8 4996 (99.9%) 4793 (95.8%)
1.0 5000 (100%) 4971 (99.4%)

Figures 5 and 6 show the trajectories, speeds, and control
inputs of CAV–1 and HDV–2 in two simulations with two
human driving styles, i.e., an aggressive and a conservative
human driver. As shown from the figures, in both simula-
tions, safe distance is guaranteed, but CAV–1 has different
merging maneuvers depending on the behavior of HDV–2.
If the human driver accelerates to cross first, then CAV–1
slows down to yield, while if the human driver is more
conservative, CAV–1 finds it safe to cross before HDV–2.

To evaluate the performance of the MPC with two learned
prediction models, we conduct 5000 simulations with dif-
ferent initial conditions of the vehicles and different IRL
models for HDV–2 and compare the level of safety under
three different values for ρ. Recall from Subsection II-A
that CAV–1’s conservatism increases with ρ. Hence, we
observe that the number of unsafe situations decreases with
an increase in ρ. The results are indicated in Table I and
show that MPC with the model trained using the safe-
strategy dataset achieves a higher level of safety compared to
the model trained using the exploratory-strategy dataset. We
believe that this might be due to the model for the exploratory
dataset requiring further training.

V. CONCLUDING REMARKS

In this paper, we presented an approach to learn an AIS
model of CAV-HDV interactions for a CAV to maneuver
safely during highway merging. We validated the capability
of our AIS model by training with and predicting real-
life merging scenarios involving human-driven vehicles for
the NGSIM repository. Then, we showed that using data
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Fig. 5: Trajectories, speeds, and distances of the vehicles in the simulation with an aggressive human driver.

Fig. 6: Trajectories, speeds, and distances of the vehicles in the simulation with a conservative human driver.

generated from an IRL model for a mixed traffic scenario
with a CAV and an HDV, an AIS model can be learned
to predict future trajectories of the HDV. We proposed an
iterative MPC algorithm to generate control actions for the
CAV utilizing these predictions and showed using numerical
simulations that they are safe against a spectrum of driving
behaviors of the HDV. Future research should focus on
extending the framework for continuous-time control and
deriving safety guarantees for the control algorithm.
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[7] F. Altché and A. de La Fortelle, “An lstm network for highway
trajectory prediction,” in 2017 IEEE 20th international conference on
intelligent transportation systems (ITSC), pp. 353–359, IEEE, 2017.

[8] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W.
Choi, “Sequence-to-sequence prediction of vehicle trajectory via lstm
encoder-decoder architecture,” in 2018 IEEE intelligent vehicles sym-
posium (IV), pp. 1672–1678, IEEE, 2018.

[9] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of
surrounding vehicles with maneuver based lstms,” in 2018 IEEE
intelligent vehicles symposium (IV), pp. 1179–1184, IEEE, 2018.

[10] Z. el abidine Kherroubi, S. Aknine, and R. Bacha, “Novel decision-
making strategy for connected and autonomous vehicles in highway
on-ramp merging,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 8, pp. 12490–12502, 2021.

[11] J. Guo, S. Cheng, and Y. Liu, “Merging and diverging impact on
mixed traffic of regular and autonomous vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1639–1649,
2020.

[12] A. A. Malikopoulos, “Separation of learning and control for cyber-
physical systems,” Automatica, vol. 151, no. 110912, 2023.

[13] A. A. Malikopoulos, “On team decision problems with nonclassical
information structures,” IEEE Transactions on Automatic Control,
vol. 68, no. 7, pp. 3915–3930, 2023.

[14] J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate
information state for approximate planning and reinforcement learning
in partially observed systems,” Journal of Machine Learning Research,
vol. 23, no. 12, pp. 1–83, 2022.

[15] A. Dave, N. Venkatesh, and A. A. Malikopoulos, “Approximate
information states for worst-case control of uncertain systems,” in
Proceedings of the 61th IEEE Conference on Decision and Control
(CDC), pp. 4945–4950, 2022.

[16] A. Dave, N. Venkatesh, and A. A. Malikopoulos, “Approximate
Information States for Worst-Case Control and Learning in Uncertain
Systems,” arXiv:2301.05089 (in review), 2023.

[17] L. Yang, K. Zhang, A. Amice, Y. Li, and R. Tedrake, “Discrete
approximate information states in partially observable environments,”
in 2022 American Control Conference (ACC), pp. 1406–1413, IEEE,
2022.

[18] M. Fatemi, T. W. Killian, J. Subramanian, and M. Ghassemi, “Medical
dead-ends and learning to identify high-risk states and treatments,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 4856–
4870, 2021.

[19] U. S. D. of Transportation Federal Highway Administration, “Next
generation simulation (ngsim) vehicle trajectories and supporting
data,” 2016.

[20] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.
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