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Abstract— Learning input signals that make a dynamic
system respond with a desired output is often data intensive
and time consuming. It is therefore natural to ask whether, in
a heterogeneous multi-agent scenario, an input signal learned
by one agent can be suitably adapted and transferred to make
the other agents respond with the same desired output, despite
exhibiting different dynamics. In this paper, we propose a novel
method to achieve this by employing a dynamic input transfer
map. The method does not require any a-priori knowledge of
the individual agents’ dynamics. Instead, a small amount of
experimental data from the source and target systems are used
to estimate the transfer map. We evaluate the proposed method
and compare it to existing approaches using static input transfer
maps by investigating two example scenarios: (i) a simulation
scenario for muscle dynamics, (ii) an experimental setting with
a group of two-wheeled inverted pendulum robots and a sim-
to-real motion learning problem.

I. INTRODUCTION
In many systems and control applications, a common task

is to find a feedforward input signal that makes the output
of a dynamical system track a desired reference signal.
Methods that solve these problems, such as iterative learning
control (ILC), e.g. [1] or reinforcement learning, e.g. [2],
usually achieve this by improving a feed-forward input signal
over repeated trials using a learning policy based on the
corresponding output signal. In multi-agent systems (MAS),
the exchange of these signals between individual agents is a
crucial element to transfer the experience gained on a source
system to one or multiple target systems. This transfer is
a key component in methods such as the one proposed in
[3], in which a recurring transfer is used by a MAS to find
a collective solution for a motion task or in the methods
proposed in [4]–[7], in which it is used to transfer already
learned output signals from a source to a target system. The
latter is used if one or multiple agents aim to perform the
same task to which a solution is already available for a source
agent [5] or to use the source agent’s experience to accelerate
the learning on the target systems [7]. This is especially
beneficial if learning on the source system is easier, faster
or safer [8]. A typical example of such a case is the so-
called sim-to-real transfer, in which a certain task is learned
by a digital clone of the target system in simulation and
the learned input signal is then transferred to the target to
perform the task [9], [10] (see Fig. 1).
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Fig. 1: Sim-to-real scenario with and without the use of an input transfer
map. A simulation model f (1) is used to learn input signals u for a set
of given, desired output signals y(1). If the learned input signals u are
applied to real-world agent 2 with different dynamics f (2), the resulting
outputs y(2) differ from the desired y(1). However, using an input transfer
map t(1→3) for agent 3 with dynamics f (3), the desired outputs y(1) from
the source system can be reproduced on agent 3.

If the agents’ dynamics are similar, a direct transfer
without transformation of signals between agents can be
used, e.g. [11]. In [12], [13] the authors propose methods
to determine if the agents’ dynamics are sufficiently similar
for direct transfer to be useful, based on known system dy-
namics. However, if the source and target agents’ dynamics
are dissimilar, a direct transfer of input or output signals
might not be feasible and could lead to unwanted behaviour
on the target system [13]. In [14], [15] the authors propose a
method for feedback-controlled systems which circumvents
the problem of dissimilar dynamics for signal transfer. They
propose the use of an adaptive controller to force similar
dynamics on source and target agents. This allows the
direct transfer of signals, once the adaptive controllers have
converged. However, as demonstrated in [3], multi-agent
systems can greatly benefit from heterogeneous dynamics,
e.g. for cooperative learning.

To use individual dynamics in dissimilar multi-agent
systems, one can use a transfer map, which transforms
the signals before transferring them between agents with
dissimilar dynamics. In [4], [5], [16] the authors propose
the use of a scalar map to enable the transfer of signals
between dynamic systems. However, this is only shown to
work for linear systems with dynamics that only differ in
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gain or for low-frequency signals. For dissimilar systems
and high-frequency signals, a dynamic map, is needed to
achieve similar behaviour on source and target systems. In
[17] and [7] the authors propose different, promising methods
for using a dynamic map for signal transfer. These methods
are shown to work for dissimilar systems, however, they
require precise a-priori model knowledge of the linear system
dynamics of all agents, which can come either from precise
modelling or extensive system identification procedures with
large amounts of data, both of which can be infeasible or
even impossible in certain applications.

In the present manuscript, we present a consistent nota-
tional framework for signal transfer in MAS and derive a
connection between input transfer and output transfer, two
different strategies found in the existing literature. Based on
that relationship we propose a novel method for input transfer
between agents with dissimilar dynamics using a dynamic
map. The method does not require any a-priori individual
model knowledge, it instead requires a small amount of
experimental data from the source and target system. We
evaluate the method in simulation for a commonly used
simulation model of muscle dynamics and compare it to
selected literature methods. Furthermore, we evaluate the
method in an experimental setting with a group of two-
wheeled inverted pendulum robots (TWIPR), which feature
non-linear, high-order, non-minimum phase dynamics and a
complex sim-to-real motion learning problem.

II. NOTATION

We employ the following notation: R denotes the set of
real numbers, N the set of positive integers, N0 the set of
non-negative integers and Z the set of integers. Scalar values
and scalar functions are denoted by lower-case regular letters,
e.g. a ∈ R or f : R → R. Vector values and vector functions
are denoted by lower-case bold letters, e.g. x ∈ R3 or f :
R3 → R2. Matrices are denoted by upper-case bold letters,
e.g. P ∈ R3×3.

III. METHOD

A. Dynamic System Description

Consider a group of A ∈ N agents i ∈ {1, . . . , A}. We
assume that the i-th agent’s behavior can be described by a
single-input single-output (SISO) state model

x
(i)
k+1 = g(i)(x

(i)
k , u

(i)
k ) (1)

y
(i)
k = h(i)(x

(i)
k , u

(i)
k ) (2)

with k ∈ [0, . . . , N − 1] being the sample time index and
N ∈ N the number of samples. The functions g(i) : Rni ×
R → Rni and h(i) : Rni × R → R with ni ∈ N are time-
invariant and describe the state and output dynamics of agent
i, respectively.

Assumption 1 (Stability): We assume the dynamics given
in (1) to be input-to-state stable [18].

Assumption 2 (Initial Conditions): We assume the initial
conditions of all agents to be identical, i.e. x

(i)
0 = x0 =

0, i ∈ {1, . . . , A}. Furthermore, we assume that (x0, 0) is a
stationary point with zero output for all agents, i.e. y(i)k =

0 ∀i, k if u(i)
k = 0 ∀i, k.

We denote the relative degree of the i-th agent’s
dynamics by m(i) ∈ N0, i.e., the effect of the
input signal on the output signal is delayed by m(i)

samples. Formally, m(i) is the largest integer such that(
∀ u(i) = [u

(i)
0 , . . . , u

(i)
N−1]

T , u′(i) = [u
′(i)
0 , . . . , u

′(i)
N−1]

T
)

y
(i)
k = y

′(i)
k for k = [0, . . . ,m(i)−1]. We can then compactly

characterize the i-th agent’s input/output dynamics by its
relative degree m(i) and a map f (i) : RN → RN with


y
(i)

m(i)

...
y
(i)

m(i)+N−1


︸ ︷︷ ︸

=:y(i)

= f (i)




u
(i)
0
...

u
(i)
N−1


︸ ︷︷ ︸

=:u(i)


, i ∈ {1, . . . , A}. (3)

with u(i) ∈ RN the input signal and y(i) ∈ RN the
corresponding output signal.

Remark 1 (Linear Dynamics): Note that f
(i)
l (u(i)), 1 ≤

l ≤ N , the l-th row of operator f (i), depends only on the
first l inputs. If g(i) and h(i) are linear functions, we can
rewrite (3) as

y(i) = P(i) · u(i) (4)

with P(i) ∈ RN×N being a lower-triangular Toeplitz (LTT)
matrix.

Assumption 3 (Heterogeneity): We assume the agents’
dynamics to be heterogeneous, i.e. in general for any non-
trivial u ∈ RN and any pair of agents (i, j)

f (i)(u) ̸= f (j)(u) ∀i, j ∈ {1, . . . , A}, i ̸= j . (5)

B. Input & Output Transfer Map

Consider two agents i, j ∈ {1, . . . , A}, i ̸= j described by
their input/output maps f (i) and f (j) and their relative degrees
m(i) and m(j). Let u ∈ RN be an input signal applied to both
agents, i.e. u(i) = u(j) = u. Let y(i) ∈ RN and y(j) ∈ RN

be the corresponding output signals according to (3). Given
Ass. 3, the two outputs are different if u is non-trivial. We
can describe the relation between y(i) and y(j) for any input
u using the output transfer map.

Definition 1 (Output Transfer Map): Given two
input/output maps f (i), f (j) with corresponding relative
degrees m(i), m(i) ∈ N0. If a solution f (i→j) : RN → RN

for the operator equation

f (j) = f (i→j) ◦ f (i) (6)

exists, we call f (i→j) an output transfer map and m(i→j) =
m(j) −m(i) ∈ Z the corresponding degree information.

Remark 2 (Interpretation of the output transfer map):
Given f (i→j), m(i→j) and m(i) we can construct the
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relevant output y(j) of agent j from the output y(i) of agent
i for the same input u(i) = u(j) = u with

y
(j)

m(j)

...
y
(j)

m(j)+N−1


︸ ︷︷ ︸

y(j)

= f (i→j)

f (i)(u)︸ ︷︷ ︸
y(i)

 (7)

where m(j) = m(i) +m(i→j).

Remark 3 (Model Inversion): Given (6), if f (i) has an
inverse

(
f (i)

)−1
then f (i→j) uniquely exists and can be

written as
f (i→j) = f (j) ◦

(
f (i)

)−1

. (8)

We will now introduce a dual concept, namely input transfer
maps.

Definition 2 (Input Transfer Map): Given two
input/output maps f (i), f (j). If a solution t(i→j) : RN → RN

for the operator equation

f (i) = f (j) ◦ t(i→j) (9)

exists, then t(i→j) is called an input transfer map.

Remark 4 (Interpretation of the input transfer map):
Given an input u(i) ∈ RN for agent i and t(i→j) we can
readily construct an input u(j) ∈ RN for agent j, such
that both agents generate the same relevant output y ∈ RN

with
y
(j)

m(j)

...
y
(j)

m(j)+N−1


︸ ︷︷ ︸

y(j)

= f (j)(t(i→j)(u(i))︸ ︷︷ ︸
u(j)

) = f (i)(u(i)) =


y
(i)

m(i)

...
y
(i)

m(i)+N−1


︸ ︷︷ ︸

y(i)

(10)

Remark 5 (Model Inversion): Given (9), if f (j) has an
inverse

(
f (j)

)−1
then t(i→j) uniquely exists and can be

written as
t(i→j) =

(
f (j)

)−1

◦ f (i) . (11)

See Fig. 2 for a graphical comparison of input and output
transfer maps. From (6) and (9), we can see that the rela-
tionship between the input transfer map and output transfer
map can be written as

f (j→i) ◦ f (j) = f (j) ◦ t(i→j) . (12)

We know that if f (j) is invertible, f (j→i) and t(i→j) uniquely
exist and can be written as

f (j→i) = f (i) ◦
(
f (j)

)−1

(13)

t(i→j) =
(
f (j)

)−1

◦ f (i) . (14)

If, additionally, f (i) and f (j) commute, i.e., if

f (i) ◦ f (j) = f (j) ◦ f (i) , (15)

Fig. 2: Output transfer map f (i→j)(top) and input transfer map
t(i→j)(bottom). The output transfer map describes the relation in outputs
of two heterogeneous systems to the same input, whereas the input transfer
map describes the relation in inputs for heterogeneous systems that yield
the same output.

then
f (i) ◦

(
f (j)

)−1

=
(
f (j)

)−1

◦ f (i) (16)

and therefore
f (j→i) = t(i→j) . (17)

Remark 6 (Commutation of input/output maps): In the
linear case (see Remark 1), the input/output maps f (i), f (j)

are (left) multiplications by LTT-matrices P(i) and P(j).
As LTT-matrices of the same dimensions commute and all
LTT-matrices are invertible, (17) holds in the linear case.
Conditions for non-linear maps can be found in [19].

C. Estimation of the Input Transfer Map and Input Transfer

We consider the following problem. There is a source
agent i and a set of At ∈ N target agents j ∈ {1, . . . , At},
all of which, source and target, with unknown and possibly
non-linear dynamics f (i) and f (j), respectively. Furthermore,
we are given R ∈ N pairs of input/output signals (u

(i)
r ,y

(i)
r )

of the source agent i, with r ∈ {1, . . . , R}. For each agent j
and each pair r of input/output signals (u

(i)
r ,y

(i)
r ), we want

to find the input signal u(j)
r , that, when applied to the target

agent j, yields the corresponding output signal y
(i)
r of the

source agent. The obvious approach would be to identify the
individual dynamics of the source and target systems directly
and use (11) to calculate the corresponding input transfer
map. However, this approach has two major drawbacks:

1) Identifying the individual system dynamics of source
and all target systems can require large amounts of
data and can be difficult for high-order systems.

2) To obtain a stable input transfer map, the source
dynamics and the inverse of the target dynamics need
to be stable.

Identifying the input transfer map directly from input/output
data of source and target agents would overcome the need for
individual system identification. Moreover, when identifying
an estimate t̂(i→j) of the input transfer map t(i→j), we may
impose several convenient restrictions (at the expense of es-
timation accuracy). For we example we could restrict t̂(i→j)

to be linear and low-order, only considering the relevant
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frequencies for the desired output signals. Restricting t̂(i→j)

to be stable is not strictly necessary, however, for large N
or in the presence of noise, may be beneficial.

However, we cannot identify t(i→j) from input/output data
without knowledge of at least one dynamic model or without
an iterative process. We instead use the relationship between
input and output transfer as shown in (17) and assume
that this relationship is at least approximately valid for the
underlying dynamic models.

Assumption 4 (Commutation of input/output maps):
Given a source agent i and target agents j with dynamics
f (i) and f (j), respectively, we assume that (17) approximately
holds for the source and target agent dynamics, so that

t(i→j) ≈ f (j→i) . (18)

To obtain an estimate t̂(i→j) from input/output data of
the source agent i and one target agent j, we propose the
following general procedure:

1) Excite source agent i and target agent j with the
same input uest ∈ RNest and denote the corresponding
output signals by y

(i)
est ∈ RNest and y

(j)
est ∈ RNest .

2) Determine an estimate f̂ (j→i) of the output transfer
map f (j→i) from the outputs y

(i)
est and y

(j)
est . Depend-

ing on the applications, restrictions such as the ones
discussed above, may be imposed on the estimate.

3) Given Assumption 4, let the input transfer map of agent
i and j be t̂(i→j) ≈ f̂ (j→i).

4) Use t̂(i→j) to transfer the input signals u
(i)
r , i.e.,

u
(j)
r = t̂(i→j)(u

(i)
r ), r ∈ {1, . . . , R} (see Fig. 3).

Fig. 3: Estimating the input transfer map t(i→j) from agents i and j’s
outputs y

(i)
est and y

(j)
est to a common input signal uest. The estimated input

transfer map can then be used to transfer inputs u
(i)
r from the source agent

i to the target agent j with u
(j)
r = t̂(i→j)(u

(i)
r ).

The procedure leaves two degrees of freedom for imple-
mentation:

1) the choice of estimation input uest

2) the restrictions on and estimation algorithm for f̂ (j→i),
respectively t̂(j→i).

In most multi-agent systems, we can assume that source and
target dynamics have an equal relative degree m(i) = m(j).
Then, from Def. 1, m(j→i) = 0. In the following, we restrict
the estimate f̂ (j→i) of the output transfer map to be linear

and, because of m(j→i) = 0, model it as a biproper transfer
function F (j→i)(z) of fixed degree D ∈ N, i.e.

F (j→i)(z) = α ·
1 +

D∑
d=1

adz
−d

1 +
D∑

d=1

bdz−d

, (19)

with α, ad, bd ∈ R, d ∈ {1, . . . , D} being 2D + 1 unknown
parameters.

As uest we choose an input sequence with a frequency
spectrum that covers the frequencies found in the input
signals to be transferred. A common choice is to use a
sine-sweep as shown in Fig. 4. We use standard system
identification methods to identify F (j→i)(z) from the outputs
y
(i)
est and y

(j)
est .

We construct the corresponding N ×N LTT-matrix

T(i→j) =


p1 0 · · · 0
p2 p1 · · · 0
...

...
. . .

...
pN pN−1 · · · p1

 (20)

where pk ∈ R, k ∈ [1, . . . , N ] are the first N samples of
the impulse response of F (j→i)(z). As discussed above, we
assume that this also represents a valid approximate of the
input transfer map, i.e., T̂(i→j) ≈ F̂(j→i), and transfer the
input signals u

(i)
r , r ∈ {1, . . . , R} by

u(j)
r = t̂(i→j)

(
u(i)
r

)
= T̂(i→j) · u(i)

r . (21)

Remark 7 (Assumptions in the proposed approach): Re-
call that the suggested procedure rests on the assumption that
f̂ (j→i) ≈ t̂(i→j) (see Condition (12)). Adequateness of the
assumption and the restrictions imposed on the estimation
f̂ (j→i) clearly depend on the particular applications. For
the application scenarios in the following sections, we do
not attempt to justify adequateness ex ante, but argue ex
post by demonstrating successful input transfer by evaluating
simulation or experimental results.

IV. EVALUATION

We evaluate the proposed method in two scenarios:
• a simulation of muscle stimulation dynamics in Sec.

IV-B and
• real-world experiments using a group of inverted pen-

dulum robots and a sim-to-real scenario in Sec. IV-C.
We aim to show that the proposed method can

1) estimate an input transfer map t̂(i→j) from short
training sequences recorded on a source and (multiple)
target systems,

2) allow the transfer of different input signals from a
source to multiple target systems such that the resulting
outputs on the target systems are close to the desired
outputs of the source system and

3) work in an experimental sim-to-real environment
with real robots with unknown, non-linear and non-
minimum phase dynamics .
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Fig. 4: Simulation of muscle dynamics using the Hill muscle model. It
consists of a serial element (SE), a parallel element (PE) and a contractile
element (CE) modelling the muscle’s force response F to a stimulation
input u. The short input signal uest is applied to both muscles f (1) and
f (2) and from their responses y

(1)
est , y(2)

est we estimate the corresponding
input transfer map.

A. Comparison and Transfer Metric

We compare the proposed method to the following estab-
lished approaches:

1) (AE1) Direct transfer of the input signal from source
to target system (e.g. used in [11], [13]), i.e. taking
t̂(i→j) as the identity map.

2) (AE2) Use scalar multiplication as a transfer map, i.e.
t̂(i→j)(u) = α∗ · u (see [4], [5], [16]), with

α∗ = argmin
α

∥∥∥α · y(i)
est − y

(j)
est

∥∥∥
2

∈ R . (22)

To evaluate the input transfer map t̂(i→j) we are using the
following metrics:

Let ε(i→j)(u) ∈ R be the input transfer error with

ε(i→j)(u) =

√
1

N

[
y(i) − y(j)

]T [
y(i) − y(j)

]
(23)

with y(i) being the desired output of the source agent i and
y(j) the output of target agent j after applying the input
t̂(i→j)(u). Furthermore let ε

(i→j)
rel (u) ∈ R be the relative

input transfer error with

ε
(i→j)
rel (u) =

ε(i→j)(u)

ε
(i→j)
dir (u)

. (24)

The error ε
(i→j)
dir is the input transfer error when using a

direct transfer of the input signal without transformation of
the input.

B. Simulation Example

As a simulative example, we use the Hill muscle model
[20], which describes a muscle’s force response F to a
stimulation signal u as shown in Fig. 4. The model is used
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F
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)
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3
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0
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(1)
4

Reference y
(1)
r y

(2)
r with direct transfer (EA1)

y
(2)
r with scalar transfer (EA2) y

(2)
r with proposed method

Fig. 5: Reference outputs y
(1)
r of muscle 1 (blue solid line) and outputs

y
(2)
r of system 2 using the different methods for input transfer. The proposed

method (red solid line) yields outputs close to the desired reference outputs.
Direct transfer (grey dotted line) and scalar transfer (gray dashed line) do
not generate outputs that are close to the desired references.

frequently to simulate the non-linear muscle dynamics for
stimulation.

We consider two muscles with dynamics f (1), f (2)

which differ in their model parameters and their activa-
tion dynamics. Four different pairs of input/output signals
(u

(1)
r ,y

(1)
r ), r ∈ {1, . . . , 4} from the source agent 1 are

given. The goal is to estimate an input transfer map t̂(1→2)

that can be used to calculate the input signals u(2)
r that, when

applied to agent 2, yield the outputs y
(2)
r = y

(1)
r . A short

sine-sweep input signal uest is applied to both muscles and
the outputs y

(1)
est and y

(2)
est are recorded (see Fig. 4). Based

on the outputs of both systems, we use the method proposed
in Sec. III-C with an order D = 2 (an for comparison
the established approaches EA1, EA2 from Sec. IV-A) to
estimate the input transfer map t̂(1→2).

The estimated input transfer map is then used to transfer
the reference inputs u

(1)
r , r ∈ {1, . . . , 4} to system 2 with

u
(2)
r = t̂(1→2)(u

(1)
r ). In Fig. 5 the desired output signals

y
(1)
r and the output signals y

(2)
r of system 2 after applying

the transferred inputs u
(2)
r are shown for the three different

methods.
The input transfer errors ε(1→2)

r and relative input transfer

TABLE I

Method ε1 εrel,1 ε2 εrel,2 ε3 εrel,3 ε4 εrel,4

Direct Transfer 69.4 1 88.4 1 86.5 1 118 1
Scalar Transfer 42.2 0.61 59.5 0.67 71.9 0.83 92.6 0.78
Proposed Method 11.6 0.16 25.2 0.29 21.0 0.24 22.8 0.19

Input transfer error εr and relative input transfer error εrel,r for the four
different reference signals and three different methods in the simulation
study. Smaller values indicate a better transfer. Bold values denote the best
result for the corresponding signal.
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Fig. 6: Experimental evaluation using a sim-to-real scenario for a group of three inverted pendulum robots. For three desired output signals y(0)
r , r ∈ {1, 2, 3}

the corresponding input signals u
(0)
r are learned in-silico using a simplified simulation model f (0) and then transferred to the three real agents using the

identified input transfer maps t̂(0→j), j ∈ {1, 2, 3}.

errors ε(1→2)
rel,r for the four different signals and three different

methods are shown in Tab. I. Direct transfer of the input
signals (EA1) leads to a mean input transfer error of 90.6N
with significant difference between the desired and actual
output signals as seen in Fig. 5. The scalar input transfer map
(EA2) achieves a reduction in error as compared to the direct
transfer with a mean relative input error of 0.72 and a mean
absolute error of 66.6N. However, the output signals also
show significant differences to the desired output signals. The
proposed method yields output signals close to the desired
reference and achieves the smallest errors for all signals, with
a mean input error of 20.2N and a mean relative input error
of 0.22 in comparison to the direct transfer. However, due to
the non-linearity of the underlying systems (i.e. not fulfilling
the assumptions as outlined in Remark 7) the transfer is not
perfect.

For the considered example, we have shown that we can
successfully estimate an input transfer map from only a short
initial stimulation despite the non-linearity and dissimilar
dynamics of the individual muscles. We have also shown
that we can use this map to successfully transfer multiple
different input signals from the source muscle to the target
muscle and achieve force outputs that are close to the output
of the source system.

C. Experimental Evaluation

To evaluate the method in a real-world robotic sim-to-
real scenario, we are using so-called two-wheeled inverted
pendulum robots (TWIPR), which have unstable, non-linear
and non-minimum phase dynamics [21] (see Fig. 6). For the
robots to stay upright, we use a state feedback controller and
we consider the feedback-controlled system as the agent. The
input to the controlled system u(j) is the external input to the
feedback-controller and has the unit of a torque. As output
y(j) we are using the robot’s pitch angle θ in radians. The
output angle θ is determined using an IMU mounted on the
robot.

We consider a scenario with three real-world robotic
agents j ∈ {1, 2, 3} with physical differences (see Tab. II)
that lead to significantly different behaviour of the closed-
loop systems. We are further considering three different
desired output signals y(0)

r , r ∈ {1, 2, 3} of differing lengths.
The goal is to find for all agents j ∈ {1, 2, 3} the input
signals u

(j)
r , r ∈ {1, 2, 3} that yield the corresponding

desired outputs y
(0)
r .

TABLE II

Agent j Mass m (kg) COG lcg (mm) Inertia Iyy (g·cm2)

1 3.9 34.1 165200
2 1.8 20.7 102400
3 0.9 14.1 34300

Physical differences of the robotic agents i ∈ {1, 2, 3}

We are using a simplified, linear simulation model f (0) of
arbitrary TWIPR dynamics and an iterative learning control
algorithm to learn the corresponding input signals u

(0)
r , r ∈

{1, 2, 3} in-silico that yield the desired output signals y
(0)
r

for the simulation model (see [3], [22]).
We apply a short test input uest to the simulation model

and all real-world agents with a length of Test = 10 s (Nest =
1000) and record the corresponding output signals (see Fig.
7). From the recorded outputs of the simulation model y(0)

est

and the three robotic agents y
(j)
est we estimate the three input

transfer maps t̂(0→j) from the simulation to the real-world
agents using the method proposed in III-C with a degree of
D = 2. These maps are then used to determine the inputs
u
(j)
r = t̂(0→j)(u

(0)
r ), r ∈ {1, 2, 3}.
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Fig. 7: The simulation model’s output y(0)
est and the three agents’ outputs

y
(1)
est , y(2)

est , y(3)
est to the input uest. Note the significant difference between

the individual responses, indicating different closed-loop dynamics.

Remark 8 (Output Constraints): Each agent has an out-
put constraint −π

2 < θk < π
2 , i.e. it is not allowed to touch

the ground with the robot’s body, since this alters the robot’s
dynamics. If a robot touches the ground during an experiment
at a time instant k < N , the experiment is aborted. The
transfer error is only calculated up to the time instant k.
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Fig. 8: Desired output signals y
(0)
r , r ∈ {1, 2, 3} and the outputs y

(j)
r of the three agents j ∈ {1, 2, 3} after input transfer using the proposed method.

TABLE III

ε̄1 ε̄2 ε̄3

Direct Transfer (EA1) 28.1◦ 35.6◦ 45.0◦

Scalar Transfer (EA2) 9.4◦ 24.1◦ 25.2◦

Proposed Method 1.9◦ 5.2◦ 6.5◦

Mean input transfer error ε̄r = 1
3

∑3
i=1 ε

(0→i)
r over the three agents for

the desired reference outputs y
(0)
r , r ∈ {1, 2, 3}.

The three desired output signals y
(0)
r and the outputs

y
(i)
r of the three target agents j ∈ {1, 2, 3} after input

transfer using the proposed method are shown in Fig. 8.
Reference output y(0)

1 describes a backwards and forwards
motion with moderate pitch angles. Reference output y(0)

2 is
a sinusoidal pendulum motion with increasing amplitude up
to 70◦. The third reference y

(0)
3 is a quick forward diving

motion and abrupt breaking. It features high pitch angles
and a steep transient in the breaking motion. For all three
desired output signals and all agents, the agents’ outputs y(i)

r

with the proposed method for input transfer are close to the
desired output with only short deviations. In Tab. III, the
mean input transfer errors ε̄r = 1

3

∑3
j=1 ε

(0→j)
r for each

desired output signal y(r)
r , r ∈ {1, 2, 3} over all agents j are

shown. For each of the desired outputs, the proposed method
performs significantly better than direct transfer or scalar
transfer of the input signals, with mean errors below 7◦. The
mean input transfer errors over all agents and desired output
signals ε̄ = 1

3

∑3
r=1 ε̄r for direct transfer (EA1) and scalar

transfer (EA2) are significantly higher with ε̄EA1 = 36.2◦

and ε̄EA2 = 19.6◦.
In Fig. 9, the desired output signal y(0)

3 and the outputs
y
(1)
3 of agent 1 for the three different methods are shown

in comparison. Direct transfer (EA1) and scalar transfer
(EA2) of the input signal yield output signals with significant
errors (ε(0→1)

3,EA1 = 29.6◦, ε
(0→1)
3,EA2 = 33.1◦), whereas the

proposed method yields an output close to the desired one
with ε

(0→1)
3 = 6.1◦. Only during the first abrupt breaking

motion between t = 1.5 s and t = 2.5 s does the output of
agent 3 differ significantly from the desired reference. This
might be due to non-linearities such as friction or slippage,
which are possibly not covered well in the input transfer
map.

We have successfully shown, that the proposed method
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Fig. 9: Comparison between the three methods for input transfer for agent
1 and output reference y

(0)
3 . Direct transfer and scalar transfer do not yield

an output close to the desired reference, where as the proposed method
successfully yields an output close to the desired reference with an input
transfer error ε(0→1)

3 = 6.1◦.

works well in an experimental scenario in which different
in-silico learned input signals are successfully transferred
to three different real-world agents, despite their non-linear,
non-minimum phase dynamics. The proposed method works
significantly better than the two established approaches we
compared it to.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a new method for input transfer between
heterogeneous dynamics without individual model knowl-
edge. The method estimates an input transfer map from short
experimental input/output sequences on source and target
systems, which can then be used to transfer different input
signals from source to target systems. We have shown in a
simulation example and in experiment with a robotic non-
linear MAS that the proposed method performs significantly
better than established alternative methods, namely direct or
scalar transfer in the same scenarios.

The proposed method allows for data-efficient estimation
of the input transfer map and the transfer of input signals
from source to multiple target systems. This can significantly
improve the learning time in a sim-to-real scenario, in which
a simulation is used for learning and the learned input signals
are transferred to the target systems. It also enables the
transfer of signals between heterogeneous agents in a MAS
during cooperative learning.

Up to now, we have only justified the assumption f (j→i) ≈
t(i→j) and the restrictions imposed on the identified input
transfer map t̂(i→j) by evaluating the outcome of simulation
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and experimental studies. While we know that the assump-
tion holds for linear dynamics, future work will attempt to
characterize classes of nonlinear dynamics for which the
assumption is also valid. Future work will also include
investigating the possibility of estimating the input transfer
map directly, without the need for the output transfer map.
This might allow the use of dynamic input transfer in more
applications and for a wider class of system dynamics.
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