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Abstract— We study generalized games with full row rank
equality coupling constraints and we provide a strikingly simple
proof of strong monotonicity of the associated KKT operator.
This allows us to show linear convergence to a variational equi-
librium of the resulting primal-dual pseudo-gradient dynamics.
Then, we propose a fully-distributed algorithm with linear
convergence guarantee for aggregative games under partial-
decision information. Based on these results, we establish
stability properties for online GNE seeking in games with time-
varying cost functions and constraints. Finally, we illustrate our
findings numerically on an economic dispatch problem for peer-
to-peer energy markets.

I. INTRODUCTION

Generalized Nash equilibrium (GNE) problems arise in
many multi-agent applications, where the agents are coupled
not only because of their conflicting objectives, but also via
shared constraints – operational limits of the system, that the
agents should respect. Among others, GNE seeking is used in
energy markets [1], radio communication [2] and formation
control [3] problems.

The networked structure of these applications naturally
calls for distributed solution methods. In fact, part of the
recent literature focuses on semi-decentralized GNE seek-
ing algorithms [4], [5], [6], where the agents update their
decision locally, with the help of a coordinator that gathers
and broadcasts information over the systems (a setup also
named full-information scenario). Other works [7], [8], [9],
[10] deal with applications where the agents can only rely
on fully-distributed peer-to-peer communication and local
data. In this so-called partial-decision information scenario,
the agents compensate for the lack of global knowledge
by estimating the unknown quantities and by embedding
consensus dynamics in their local decision processes.

In both scenarios, to cope with the presence of coupling
constraints and to distribute the computation among the
agents, one should resort to Lagrangian reformulations. In
fact, all the references above leverage primal-dual pseudo-
gradient algorithms, aimed at solving the Karush–Kuhn–
Tucker (KKT) optimality conditions of the GNE problem.

In general, primal-dual algorithms fail to achieve linear
convergence, even for the class of strongly-monotone gen-
eralized games [4]. Importantly, together with linear conver-
gence, some crucial input-to-state stability (ISS) properties of
pseudo-gradient iterations are also not guaranteed. This lack
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of robustness is a critical issue for methods in the partial-
decision information scenario, where convergence should
be ensured despite the estimation error. To overcome this
complication, vanishing step sizes can be used to drive
the error to zero [11], at the price of slow convergence.
Alternatively, several fixed-step algorithms for GNE seeking
were derived based on operator-theoretic methods and on
the use of preconditioning [8], [9], [12], [7]. Unfortunately,
this approach comes with important limitations, such as
extending the analysis to time-varying setups.

For instance, there is no available fixed-step fully-
distributed method to solve GNE problems when the agents
can only exchange information over switching communi-
cation networks (while methods are available for games
without coupling constraints [13], [14]). Furthermore, in
many decision processes with real-world applications, the
cost functions of the agents and the system constraints can
vary over time [15], for instance in cognitive radio networks
and demand response in smart grids [16]. In such domains,
linearly convergent algorithms become particularly desirable,
as the solver needs to quickly update its solution in response
to changes in the environment. Despite its practical rele-
vance, there are very few works that study the online GNE
problem. The paper [17] proposes a regularized algorithm,
which only achieves inexact convergence, and which is not
fully-distributed. Instead, the authors of [18] develop an
algorithm for the partial-decision information scenario, but
that achieves sublinear regret only when the solution is
asymptotically constant and for diminishing step sizes.

Contribution: In this paper we study generalized games
with full row rank coupling equality constraints –as those
arising in resource allocation and transportation problems
[19], where demand-matching [10] and flow [1] constraints
are ubiquitous. For the first time, we show that, in this
setup, linear convergence to a GNE can be achieved via
primal-dual dynamics, both for the full- and partial-decision
information scenario. Thanks to this result, we can also
adapt the dynamics to online equilibrium seeking in time-
varying games. Here we focus on the prominent class of
aggregative games [4], for its desirable scalability properties,
but the analysis carries over to generally-coupled costs. We
summarize the novelties of our work as follows:

1) We provide a simple, constructive proof of the strong
monotonicity of the KKT operator in games with full-
row rank equality coupling constraints. As a conse-
quence, we show linear convergence to a GNE of the
pseudo-gradient ascent-descent method (Section III);

2) We design a linearly convergent algorithm for GNE
seeking in partial-decision information, via a tracking
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technique [11] that avoids the need for slack variables.
Our proof is based on a change of coordinates and a
small gain argument: due to its generality, the argument
also applies to the case of (Q-connected) time-varying
communication graphs (Section IV);

3) We exploit our linear convergence results to study
the tracking properties of the proposed methods with
respect to the solution of a game with time-varying costs
and constraints. In particular, for the fully-distributed
algorithm, we show that the extra error induced in
the dynamic tracking procedure does not jeopardize
stability (Section V)

Notation: 0n (1n) denotes the vector of dimension n
with all elements equal to 0 (1); In the identity matrix
of dimension n; the subscripts are omitted when there is
no ambiguity. If A is symmetric, λmin(A) = λ1(A) ≤
· · · ≤ λn(A) =: λmax(A) denote its eigenvalues. ⊗ de-
notes the Kronecker product. diag(A1, . . . , AN ) denotes the
block diagonal matrix with A1, . . . , AN on its diagonal;
col (x1, . . . , xN ) = [x⊤1 . . . x

⊤
N ]⊤. For a positive definite

symmetric matrix P ≻ 0, ⟨x, y⟩P = x⊤Py denotes the P -
weighted inner product, ∥x∥P the corresponding norm; we
omit the subscript if P = I . An operator F : Rn → Rn

is (µ-strongly) monotone in HP if, for any x, y ∈ Rn,
⟨F(x) − F(y), x − y⟩P ≥ 0(≥ µ∥x − y∥2P ); is contractive
in HP if it is Lipschitz with constant smaller than 1, i.e.,
for some ℓ < 1 and for any x, y ∈ Rn, ∥F(x)−F(y)∥P ≤
ℓ∥x− y∥P ; we omit the indication “in HP ” if P = I . If F
is differentiable, DF denotes its Jacobian.

II. MATHEMATICAL SETUP

We consider a set of agents, I := {1, . . . , N}, where each
agent i ∈ I shall choose its decision variable (i.e., strategy)
xi ∈ Rni . Let x := col((xi)i∈I) ∈ Rn, with n :=

∑N
i=1 ni.

The goal of each agent i ∈ I is to minimize its objective
function Ji(xi, x−i), which depends on both the local vari-
able xi and on the decision variables of the other agents
x−i := col((xj)j∈I\{i}). Furthermore, the feasible decisions
of each agent depends on the action of the other agents via
affine equality coupling constraints. Specifically, the feasible
set is X := {x ∈ Rn | Ax = b}, where A := [A1, . . . , AN ]
and b :=

∑N
i=1 bi, Ai ∈ Rm×ni and bi ∈ Rm being locally

available information. The game is then represented by the
inter-dependent optimization problems:

(∀i ∈ I) min
yi∈Rni

Ji(yi, x−i) s.t. (yi, x−i) ∈ X . (1)

The technical problem we consider here is the computation
of a GNE, namely a set of decisions that simultaneously
solve all the optimization problems in (1).

Definition 1: A collective strategy x⋆ = col ((x⋆i )i∈I) is a
generalized Nash equilibrium if, for all i ∈ I, Ji

(
x⋆i , x

⋆
−i

)
≤

inf{Ji
(
yi, x

⋆
−i

)
| (yi, x⋆−i) ∈ X}. □

Next, we postulate some standard regularity and convexity
assumptions for the constraint sets and cost functions.

Assumption 1 (Convexity): In (1), X is non-empty. For
each i ∈ I, Ji is continuous and Ji (·, x−i) is convex and
continuously differentiable for every x−i. □

As common in the literature [20], [4], among all the GNEs,
we focus on the subclass of variational GNEs (v-GNEs) [2,
Def. 3.11], which are more economically justifiable, as well
as computationally tractable [21]. Under Assumption 1 and
defining the pseudo-gradient mapping of the game

F (x) := col ((∇xi
Ji(xi, x−i))i∈I) , (2)

x⋆ is a v-GNE of the game in (1) if and only if there
exists a dual variable λ⋆ ∈ Rm such that the following KKT
conditions are satisfied [2, Th. 4.8]:

0n ∈ F (x⋆) +A⊤λ⋆, 0m ∈ − (Ax⋆ − b) . (3)

Let us restrict our attention to strongly monotone games.
Assumption 2 (Strong monotonicity): The game mapping

F in (2) is µF -strongly monotone and ℓF -Lipschitz contin-
uous, for some µF , ℓF > 0. □
The strong monotonicity of F is sufficient to ensure existence
and uniqueness of a v-GNE [22, Th. 2.3.3]; it implies strong
convexity of each function Ji(·, x−i) for any fixed x−i,
but not joint convexity of Ji(·). Strong monotonicity is a
standard condition for algorithms with linear convergence.
In addition, we make the following assumption.

Assumption 3 (Full rank constraints): A is full row rank.
AA⊤ ≥ µAI , ∥A∥ ≤ ℓA for some scalars µA, ℓA > 0. □
Assumption 3 postulates that there are no redundant con-
straints (or equivalently that redundant constraints are re-
moved). This condition is well known in duality theory and
optimization, as it ensures the uniqueness of dual solutions
(as it can be inferred by (3)).
A. Aggregative games

For ease of presentation, we will specialize our results to
the prominent class of aggregative games, which arises in a
variety of engineering applications, e.g., network congestion
control and demand-side management [23]. In particular, we
assume that the cost function Ji of each agent i depends
only on the local decision xi and on an aggregation value

σ(x) = 1
N

∑
ϕi(xi), (4)

where ϕi : Rni → Rq is a local function of agent i. In short,
overloading the function Ji with some abuse of notation, we
also write

Ji(xi, x−i) = Ji(xi, σ(x)). (5)

III. LINEAR CONVERGENCE IN GENERALIZED GAMES

We start by showing that the KKT operator is strongly
monotone, in a suitable norm, under Assumptions 2 and 3.

Lemma 1: Let ω := col(x, λ). The operator

ω 7→ A(ω) =

[
F (x) +A⊤λ
−Ax+ b

]
(6)

is µA-strongly monotone in HP , for some P ≻ 0 and µA >
0. □

Proof: For some 0 < ν < ℓA, let

P =

[
I νA⊤

νA I

]
≻ 0. (7)
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Algorithm 1 Semi-decentralized GNE seeking
Iterate to convergence: for all k ∈ N,

• Each i ∈ I: receive λk, σk from coordinator; update

xk+1
i = xki − α

(
∇xi

Ji(x
k
i , σ

k) +A⊤
i λ

k
)

• Coordinator: receive {ϕi(xik+1), Aix
k
i −bi}i∈I ; update

λk+1 = λk + α
∑

i∈I(Aix
k
i − bi),

σk+1 = 1
N

∑
i∈I ϕi(x

k+1
i )

For any x, x⋆ ∈ Rn and λ, λ⋆ ∈ Rm, we have

⟨A(ω)−A(ω⋆), ω − ω⋆⟩P
= ⟨F (x)− F (x⋆), x− x⋆⟩

+ ν⟨F (x)− F (x⋆), A⊤(λ− λ⋆)⟩
+((((((((((

⟨A⊤(λ− λ⋆), x− x⋆⟩
+ ν⟨A⊤(λ− λ⋆), A⊤(λ− λ⋆)⟩
− ν⟨A(x− x⋆), A(x− x⋆)⟩ −(((((((((⟨A(x− x⋆), λ− λ⋆⟩

≥ (µF − νℓ2A)∥x− x⋆∥2
− νℓF ℓA∥x− x⋆∥∥λ− λ⋆∥+ νµA∥λ− λ⋆∥2

which is positive definite for 0 < ν < 4µFµA

ℓ2F ℓ2A+4µAℓ2A
. The

conclusion follows by equivalence of norms.
Based on Lemma 1 we can prove linear convergence of
classic primal-dual iterations.

Theorem 1 (GNE seeking in full-decision information):
Let Assumptions 1-3 hold and ℓA := (ℓF + ℓA)

√
λmax(P )
λmin(P ) .

For any 0 < α < 2µA
ℓ2A

and any initial condition (x0, λ0),
the iteration

xk+1 = xk − α
(
F (xk) +A⊤λk

)
(8a)

λk+1 = λk + α
(
Axk − b

)
(8b)

converges linearly to the unique solution ω⋆ = (x⋆, λ⋆) of
the KKT conditions in (3): for all k ∈ N

∥ωk+1 − ω⋆∥2P ≤ ρ∥ωk − ω⋆∥2P , (9)

where ρ = 1− 2αµA + α2ℓ2A < 1. □
Proof: By Lemma 1, ∥ω−αA(ω)−(ω⋆−αA(ω⋆))∥2P =

∥ω − ω⋆∥2P − 2α⟨A(ω) − A(ω⋆), ω − ω⋆⟩P + α2∥A(ω) −
A(ω⋆)∥2P ≤ ρ∥ω−ω⋆∥2P , and the conclusion follows because
(8) can be rewritten as ωk+1 = ωk − αA(ωk).

For the case of aggregative games, (8a) can be imple-
mented in a semi-decentralized way, as in Algorithm 1.

IV. PARTIAL-DECISION INFORMATION

In this section, we consider aggregative games in the so-
called partial-decision information scenario, where there is
no central coordinator, and the agents can only exchange
information via peer-to-peer communication over a commu-
nication graph G = (I, E), with weight matrix W ∈ RN×N ,
and wi,j := [W ]i,j > 0 if and only if (j, i) belongs to the
set of edges E ⊆ I × I.

Assumption 4 (Communication): The graph G is strongly
connected. The weight matrix W satisfies:

Algorithm 2 Fully-distributed GNE seeking
Initialization: choose α > 0 as in Theorem 2; for all i ∈ I,
set x0i ∈ Rni , σ0

i = ϕi(x
0
i ), z

0
i ∈ Rm, λ0

i = z0i , r0i =
Aix

0
i − bi.

Iterate to convergence: for all k ∈ N, for all i ∈ I,
• Local variables update:

xk+1
i = xki − α

(
F i(xi,σ

k
i ) +A⊤

i λ
k
i

)
zk+1
i = zki + αNrki

• Tracking: Agent i exchanges the variables (σi,λi, ri)
with its neighbors, and does

σk+1
i =

∑
j∈Ni

wi,jσ
k
j + ϕi(x

k+1
i )− ϕi(x

k
i )

rk+1
i =

∑
j∈Ni

wi,jr
k
j +Aix

k+1
i −Aix

k
i

λk+1
i =

∑
j∈Ni

wi,jλ
k
j + zk+1

i − zki

• Double stochasticity: 1⊤W = 1⊤,W1 =W1;
• Self-loops: wi,i > 0 for all i ∈ I.

We denote θ := ∥W − 1
N 11⊤∥ < 1. □

To remedy the lack of global knowledge, we let each agent
i ∈ I keep:

• σi ∈ Rq: estimate of the aggregation σ(x);
• λi ∈ Rm: estimate of the dual variable λ;
• ri ∈ Rm: estimate of the residual Ax− b;
• zi ∈ Rm: additional dual variable.

We make the following standard assumption.
Assumption 5: For each i ∈ I, the function ϕi in (4)

is continuously differentiable and ℓσ-Lipschitz continuous;
furthermore, the mapping

F i(xi,σi) := ∇xiJi(xi,σi) +
1

N
[Dϕi(xi)]

⊤∇σiJi(xi,σi)

(10)

is ℓ̃σ-Lipschitz continuous with respect to σi. □
Our proposed dynamics are illustrated in Algorithm 2.
Let us define σ = col((σi)i∈I), r = col((ri)i∈I), λ =

col((λi)i∈I) and the extended game mapping

F (x,σ) := col((F i(xi,σi))i∈I). (11)

Note that F (x,1⊗ σ(x)) = F (x). Furthermore, let

λ̄ = 1
N

∑
i∈I λi, λ̃ = λ− 1⊗ λ̄ (12a)

σ̄ = 1
N

∑
i∈I σi, σ̃ = σ − 1⊗ σ̄ (12b)

r̄ = 1
N

∑
i∈I ri, r̃ = r − 1⊗ r̄. (12c)

The following lemma shows an invariance property typical
of tracking dynamics, as the one in Algorithm 2.

Lemma 2: For all k ∈ N, it holds that λ̄k
= 1

N

∑
i∈I z

k
i ,

r̄k = 1
N

∑
i∈I(Aix

k
i − bi), σ̄k = σ(xk). □

Proof: Via induction, by the initialization and double
stochasticity of W .

To study the convergence of Algorithm 2, we first need
the following crucial reformulation.
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Lemma 3: The iteration in Algorithm 2 is equivalent to[
xk+1

λ̄
k+1

]
=ξk − αA(ξk)︸ ︷︷ ︸

:=B1(ξk)

+
[
α
(
F (xk,1⊗σ̄k)−F (xk,σk)+A⊤λ̃

k
)

0

]
︸ ︷︷ ︸

:=B2(ωk)σ̃
k+1

r̃k+1

λ̃
k+1

 =

Wσ̃k

Wr̃k

Wλ̃
k


︸ ︷︷ ︸
:=B3(χk)

+

Π̃col((ϕi(x
k+1
i )− ϕi(x

k
i ))i∈I)

Π̃col((Ai(x
k+1
i − xki ))i∈I)
αN r̃k


︸ ︷︷ ︸

:=B4(ωk) (13)

where ω = (ξ,χ), ξ = (x, λ̄), χ = (σ̃, r̃, λ̃), and Π̃ :=
I − ( 1

N 11⊤) ⊗ IN , W = W ⊗ I , A = diag((Ai)i∈I): the
sequence (xk,σk, rk,λk)k∈N generated by Algorithm 2 and
the sequence (xk, σ̃k+1⊗σ(xk), r̃k+1⊗ (Axk− b), λ̄k

+

λ̃
k
)k∈N generated by (13) coincide. □

Proof: The update of χ follows by noting that σ̃ = Π̃σ,
r̃ = Π̃r, λ̃ = Π̃λ and Π̃W Π̃ = W Π̃. Then, the proof
follows by definition of A, by using Lemma 2, and finally
by noting that F (xk,1 ⊗ σ̄k) = F (xk) by Lemma 2. Note
that σ = σ̃+1⊗σ(x) and r = r̃+ 1

N⊗(Ax−b), which allows
us to eliminate the variables σ̄ and r̄ in the iteration, and
similarly for zi, since λ̄

k+1
= λ̄

k
+ 1

N

∑
i∈I(z

k+1
i − zki ) =

λ̄
k
+ 1

N

∑
i∈I(αNrki ) = λ̄

k
+α(Axk − b) by Lemma 2.

Theorem 2 (GNE seeking in partial-decision information):
Let Assumptions 1-4 hold. Then, there is αmax > 0 such
that, for all 0 < α < αmax, the iteration in (13) converges
linearly to ω⋆ = (ξ⋆,0), with ξ⋆ = (x⋆, λ⋆): for all k ∈ N

V (ωk+1) ≤ ηV (ωk),

where V (ω) := ∥ξ − ξ⋆∥2P + ∥χ∥2, for some η < 1. □

Proof: Note that the operator B3 in (13) is a contraction
by Assumption 4, definition of χ and (12); instead B1 is a
contraction for α small enough as in Theorem 1. Moreover,
the mappings B2 and B4 are Lipschitz continuous with
constant proportional to the step size α, by the assumptions.
Therefore, with Lemma 1 and the reformulation in (13) in
place, the proof can be carried out via standard small-gain
arguments, and is hence only sketched here. By the Cauchy–
Schwarz inequality, we can bound

∥B1(ξ
k) + B2(ω

k)− ξ⋆∥2P
≤ ∥B1(ξ

k)− B1(ξ
⋆)∥2

+ ∥B1(ξ
k)− B1(ξ

⋆)∥P ∥B2(ω
k)∥P + ∥B2(ω

k)∥2P
≤ (1− 2αµA + α2ℓ2A)∥ξk − ξ⋆∥2P

+ αℓ1∥ξk − ξ⋆∥P ∥χk∥+ α2ℓ2∥χk∥2

and

∥B3(χ
k) + B4(ω

k)∥2

≤ θ∥χk∥2 + αℓ3∥ξk − ξ⋆∥P ∥χk∥+ αℓ4∥χk∥2

+ α2ℓ5∥ξk − ξ⋆∥2P + α2ℓ6∥χk∥2,
where ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6 > 0 are parameters independent of
α, and ∥B2(ω

k)∥ is bounded independently of ∥xk∥ (hence,
of ∥ξk∥) by definition of B2.Therefore, for the norm V ,

V (ωk+1) =
[
∥ξk+1−ξ⋆∥P

∥χk+1∥

]⊤ [
∥ξk+1−ξ⋆∥P

∥χk+1∥

]

≤
[
∥ξk−ξ⋆∥P

∥χk∥

]⊤
M

[
∥ξk−ξ⋆∥P

∥χk∥

]
≤ λmax(M)V (ωk),

where

M :=

1− 2αµA + α2(ℓA + ℓ5) α 1
2 (ℓ1 + ℓ3)

α 1
2 (ℓ1 + ℓ3) θ + αℓ4 + α2(ℓ2+ℓ6)


and λmax(M) = ∥M∥ < 1 for small enough α > 0.

Note that, for the special case A = 1⊤, a linearly
convergent continuous-time method for GNE seeking in
partial-decision information was studied in [10]. Yet, to our
knowledge, Theorem 2 is the first result to ensure linear
convergence in the case of more general general full-rank
constraints. Due to space limitations, we do not derive here
an explicit expression for αmax and η (or µA in Lemma 1).

Remark 1: The proof of Theorem 1 directly applies to
the case of a time-varying graph with weight matrix W k,
provided that Assumption 4 holds for each k ∈ N. With some
modification, the argument can be extended also to the case
of doubly stochastic graphs that are not strongly connected
at each step, but such that ∥W kQW kQ+1 . . .W (k+1)Q −
1
N 11⊤∥ ≤ θ < 1, for a Q > 0 and all k ∈ N. □

V. EQUILIBRIUM TRACKING IN TIME-VARYING GAMES

We now consider the case where the game in (1) varies
over time at a rate such that we can not assume a time-scale
separation between the game evolution and the GNE seeking
iterations. For each time index t ∈ N, the agents acquire a
new instance of the game:

(∀i ∈ I) min
yi∈Rni

J t
i (yi, x−i) s.t. (yi, x−i) ∈ X t. (14)

We consider the case when the constraints of the game vary
only in their affine part, that is, X t := {x ∈ Rn|Ax =
bt}, and Assumptions 1–3 hold for each t. The games
in (14) define a primal-dual GNE pair sequence (ω⋆

t )t∈N,
corresponding to the zero set of the KKT operators (At)t∈N
defined for all t as in (3), with F, b replaced respectively
by F t := col((∇xiJ

t
i )i∈I) and bt. The GNE sequence is

unique for each t following the strong monotonicity of At

and [24, Ex. 22.12]. As the rate at which the problem varies
is comparable to the agents’ computation time, the agents can
only compute an approximation of the GNE at time t before
they are presented with a new instance of the problem. The
goal of the agents is then to find a sequence (ωt)t∈N which
asymptotically tracks relatively well the GNE sequence. We
formulate the following assumption, which is standard in the
literature of online optimization [25, Assm. 1], [15, Eq. 9]
and is verified, for example, for games affected by a bounded
process noise in the linear constraints [17, Lemma 5].

Assumption 6: For some δ ≥ 0, it holds that the solution
ω⋆
t of the game in (14) satisfies

sup
t∈N

∥ω⋆
t+1 − ω⋆

t ∥ ≤ δ.

Assumption 6 implies that the solution at time t is an
approximate solution for the problem at time t+1. Given an
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estimate of the solution at time ωt−1 for some time step t,
we then propose to compute ωt by performing K iterations
of the iteration in (8), warm-started at ωt, that is:

yt,0 = ωt−1 (15a)

yt,k+1 = yt,k − αAt(y
t,k) for k = 0, ...,K − 1 (15b)

ωt = yK , (15c)

where (yt,k)k∈{1,...,K} are auxiliary variables. The following
lemma shows that, for an appropriately chosen step size,
the proposed algorithm tracks the GNE trajectory up to an
asymptotic error which depends on δ and K.

Theorem 3: For any 0 < α < 2µA
ℓ2A

, ω0, K ∈ N>0, the
sequence (ωt)t∈N generated by the iteration in (15) satisfies

lim sup
t→∞

∥ωt − ω⋆
t ∥P ≤ ρK/2

1− ρK/2
δ
√

λmax(P ). (16)

where ρ is as in Theorem 1. □
Proof: Following Theorem 1, for α ≤ 2µA

ℓ2A
,

∥ωt − ω⋆
t ∥P ≤ ρK/2∥ωt−1 − ω⋆

t ∥P .
From the latter, the triangle inequality and the fact ∥z∥2P ≤
λmax(P )∥z∥2 for all z:

∥ωt − ω⋆
t ∥P ≤ ρK/2∥ωt−1 − ω⋆

t−1∥P + ρK/2∥ω⋆
t − ω⋆

t−1∥P
≤ ρK/2∥ωt−1 − ω⋆

t−1∥P + ρK/2δ
√

λmax(P ).

Iterating the latter t times, we obtain

∥ωt − ω⋆
t ∥P ≤ ρKt/2∥ω0 − ω⋆

0∥P +

t∑
τ=1

ρKτ/2δ
√

λmax(P ).

Since ρK/2 < 1, the thesis follows by the convergence of
the geometric sequence.
Let us now turn our attention to the time-varying counterpart
of the partial-decision information setup described in Section
IV. Again, we consider aggregative games in the form

J t
i (xi, x−i) = J t

i (xi, σ
t(x))

where σt(x) := 1
N

∑
i∈I ϕ

t
i(xi) and we postulate that ϕti

satisfies Assumption 5 for all t. As in Section IV, we
augment the state of each agent with an estimate of σt(x),
of the dual variable and of the residual Ax− bt. For every t,
denote ω⋆

t = (ω⋆
t ,0), where ω⋆

t = (x⋆t , λ
⋆
t ) is a primal-

dual solution of the game at time t and the vector of
zeros represents the target estimation error. We then define
the reference trajectory as (ω⋆

t )t∈N. At each time-step, we
propose to appropriately re-initialize the dynamic tracking of
the estimated variables and, in the spirit of the iteration in
(15), to apply a finite number of iterations of Algorithm 2.
The resulting method is illustrated in Algorithm 3. We obtain
the following counterpart of Lemma 2 for the re-initialized
dynamic tracking.

Lemma 4: For all t ∈ N, it holds that r̄t =
∑

i∈I(Aix
t
i−

bti), σ̄
t = σt(xt), λ̄t

=
∑

i∈I(z
t
i). □

Proof: Let for some t:

r̄t = 1
N

∑
i∈I Aix

t
i − bti. (17)

Algorithm 3 Time-varying fully-distributed GNE seeking
Initialization: choose α > 0 as in Theorem 2; for all i ∈ I,
set x0i ∈ Rni , σ0

i = 0, z0i ∈ Rm, λ0
i = z0i , r0i = Aix

0
i ,

b0i = 0, ϕ0i (·) = 0.
Iteration: at time t ∈ N>0, for each agent i ∈ I,

1) Acquire J t
i , ϕti, b

t
i

2) Re-initialize x̂t,0i = xt−1
i , ẑt,0i = zt−1

i , σ̂t,0
i = σt−1

i −
ϕt−1
i (xt−1

i )+ϕti(x
t−1
i ), r̂t,0i = rt−1

i +bti−bt−1
i , λ̂

t,0

i =
λt−1
i

3) For all k ∈ {0, ...,K − 1}, for all i ∈ I :

• Local variables update:

x̂t,k+1
i = x̂t,ki − α

(
F t

i(x̂
t,k
i , σ̂t,k

i ) +A⊤
i λ̂

t,k

i

)
ẑt,k+1
i = ẑt,ki + αN r̂t,ki

• Estimation update: Agent i exchanges the variables
(σ̂t,k

i , λ̂
t,k

i , r̂t,ki ) with its neighbors, and updates

σ̂t,k+1
i =

∑
j∈Ni

wi,jσ̂
t,k
j + ϕti(x̂

t,k+1
i )− ϕti(x̂

t,k
i )

r̂t,k+1
i =

∑
j∈Ni

wi,j r̂
t,k
j +Aix̂

t,k+1
i −Aix̂

t,k
i

λ̂
t,k+1

i =
∑

j∈Ni
wi,jλ̂

t,k

j + ẑt,k+1
i − ẑt,ki

4) Set xti = x̂t,Ki , zti = ẑt,Ki , σt
i = σ̂t,K

i , rti = r̂t,Ki ,
λt
i = λ̂

t,K

i

From the update step 4) and the re-initialization step 2), we
obtain xti = x̂t,Ki = x̂t+1,0

i and
1
N

∑
i∈I r̂t+1,0

i = r̄t − 1
N

∑
i∈I(b

t+1
i − bti)

(17)
= 1

N

∑
i∈I(Aix̂

t+1,0
i − bt+1

i ).

Then, by Lemma 2, 1
N

∑
i∈I r̂t+1,K

i = 1
N

∑
i∈I Aix̂

t+1,K
i −

bt+1
i . From the latter and the update step 4),

r̄t+1 = 1
N

∑
i∈I r̂t+1,K = 1

N

∑
i∈I Aix

t+1
i − bt+1

i .

The result follows by induction and similarly for σ̄t,λ̄t.
The re-inizialization of the dynamic tracking introduces an
additional error term in the solution tracking, which requires
the following technical assumption on the time variation of
the functions (ϕti)t∈N:

Assumption 7: For some δϕ > 0, it holds that

sup
x,t

∥col(ϕti(xi)− ϕt+1
i (xi))i∈I∥ ≤ δϕ.

Theorem 4: Let ωt = col(xt, λ̄
t
, σ̃t, r̃t, λ̃

t
). There exists

αmax such that, for every 0 < α < αmax, the sequence
(ωt)t∈N generated by Algorithm 3 satisfies

lim sup
t→∞

∥ωt − ω⋆
t ∥Q ≤ ηK/2

1−ηK/2

√
λmax(Q)((1 +NℓA)δ + δϕ)

where Q = diag(P/2, I), for some η ∈ (0, 1). □
Proof: Following the same steps as in Lemma 3, the

inner iteration (Step 3) of Algorithm 3 is equivalent to the
iteration in (13), where F and ϕi are substituted by their
time-varying counterpart. Now denote

ψt =col(0,0, col((ϕti(x
t
i)− ϕt−1

i (xti))i∈I ,

col(bti − bt−1
i )i∈I ,0).
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From Assumptions 6, 7 and from Ax⋆t = bt,

∥ψt∥ ≤ δϕ +
∑

i∈I ∥bti − bt−1
i ∥

≤ δϕ +N∥bt − bt−1∥ ≤ δϕ +NℓAδ
(18)

From Theorem 2 and accounting for the re-initialization step,
we find for every t:

∥ωt − ω⋆
t ∥Q ≤ ηK/2∥ωt−1 + ψt − ω⋆

t ∥Q (19)

for some η ∈ (0, 1). By the triangle inequality, Assumption
6 and (18), and from the fact ∥z∥2Q ≤ λmax(Q)∥z∥2, we have

∥ωt−1 + ψt − ω⋆
t ∥Q ≤ ∥ωt−1 − ω⋆

t ∥Q + ∥ψt∥Q
≤ ∥ωt−1 − ω⋆

t−1∥Q + ∥ω⋆
t − ω⋆

t−1∥Q + ∥ψt∥Q
≤ ∥ωt−1 − ω⋆

t−1∥Q +
√

λmax(Q)((1 +NℓA)δ + δϕ).

By substituting the latter in (19) and by iterating the resulting
inequality, we obtain: ∥ωt − ω⋆

t ∥Q ≤ ηKt/2∥ω0 − ω⋆
0∥Q +∑t

τ=1 η
Kt/2

√
λmax(Q)((1+NℓA)δ+δϕ). As ηK/2 < 1, the

result follows by convergence of the geometric series.
Remark 2: Considering a time-varying matrix constraint

At (instead of A) would generate some complications, as the
matrix P in (7) would be time-varying as well. This case can
be dealt with under the extra assumption that ĀA⊤

t ≥ µA

for a matrix Ā and all k ∈ N; but it is not discussed here. □

VI. NUMERICAL EXAMPLE1

We demonstrate the proposed algorithms on a market
clearing problem for peer-to-peer energy market inspired by
[26]. We consider N = 6 prosumers that aim at determining
their energy portfolio. At each time-step t, the agents can
either purchase power from a main energy operator, produce
it from a dispatchable energy source or trade it with their
respective neighbors over a randomly generated undirected
graph GE. Furthermore, the agents can exchange information
over an undirected connected communication graph G. We
denote for each agent i and each time-step t the power
purchased from the main operator as xmg

i,t , the produced
power as xdg

i,t and the power that agent i purchases from
agent j as xtr

i,j,t, j ∈ N E
i , with N E

i the set of neighbors of
agent i over GE. The energy price posed by the main operator
increases linearly with the aggregate power requested. Thus,
by defining the aggregative value σmg(xmg) =

∑
i∈I x

mg
i ,

the cost incurred by each agent for purchasing energy from
the operator is Jmg(xmg

i,t , σ
mg(xmg

t )) = cmgσmg(xmg
t )xmg

i,t ,
cmg > 0. We consider a quadratic cost on the power
generation incurred by the agents [26, Eq. 2], with the form
Jdg
i,t(x

dg
i,t) = cdg(xdg

i,t − xdg, ref
i,t )2 where xdg, ref

i,t is the time-
varying scheduled setpoint of the dispatchable generators and
cdg > 0. The price (or revenue) of trading energy between
peers is linear [26, Eq. 10], and the agents incur a quadratic
cost on the transactions for utilizing the market; thus the total
objective function related to the peer-to-peer trading is given
by J tr((xtr

i,j,t)j∈N E
i
) =

∑
j∈N E

i
(ctrxtr

i,j,t + κtr(xtr
i,j,t)

2). The
agents cannot sell power to the main operator and, due to
physical limitations, the power generated by the dispatchable

1https://github.com/bemilio/Simple peer to peer
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Fig. 1: Convergence of Algorithm 2 for the day-ahead market
clearing problem.
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Fig. 2: Tracking error of Algorithm 3 for the real-time market
clearing problem with respect to the day-ahead solution
computed by 105 iterations of Algorithm 2.

units must be non-negative. As the formulation in (1) does
not consider inequality constraints, this is enforced by a
Lipschitz continuous approximation of the logarithmic bar-
rier function Jbar(xmg

i,t , x
dg
i,t) = Γγ(x

mg
i,t ) + Γγ(x

dg
i,t), where

Γγ(y) := min(− log(y),−γy + 1 − log(1/γ)) for γ ≫ 0.
The total cost incurred by each agent is thus

J t
i (xi,t, x−i,t) = Jmg(xmg

i,t , σ
mg(xmg

t )) + Jdg
i,t(x

dg
i,t)

+ J tr((xtr
i,j,t)j∈N E

i
) + Jbar(xmg

i,t , x
dg
i,t).

Moreover, given a power demand pd
i,t, the agents need to

satisfy the power balance equation [26, Eq. 1]∑
j∈N E

i
(xtr

i,j,t) + xmg
i,t + xdg

i,t = pd
i,t. (20)

As the power balance constraints are local, we do not apply
the dynamic tracking method to the associated dual variables
(i.e., dual variables are managed locally, see [27, Rem. 2]).
Instead, coupling constraints between the agents decisions
arises via trading reciprocity constraints [26, Eq. 8]:

xtr
i,j,t + xtr

j,i,t = 0. (21)

We first consider a time-invariant scenario and compute the
day-ahead market clearing solution over an entire day, with
time-steps of 15 minutes: namely, the cost of agent i is given
by

∑T
t=1 J

t
i , and the constraints in (20)-(21) are imposed

for all t = 1, 2, . . . , T , with T = 96. Figure 1 shows that,
as expected, Algorithm 2 exhibits a linear convergence rate
with respect to the Lyapunov function in Theorem 2.

Then, we consider a real-time scenario. In particular, the
agents only have access to a prediction on their load demand
and generation setpoint over the coming quarter of an hour;
hence the cost of agent i at each time t = 1, 2, . . . , T is
given by J t

i . Note that the agents are in fact faced with a
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Fig. 3: Constraint violation incurred by Algorithm 3 for real-
time market clearing. The inequality constraints enforced via
the barrier function Jbar are always satisfied.

time-varying generalized game as discussed in Section V,
which we address via Algorithm 3. The results are shown in
Figure 2. Because of the slow convergence (i.e., η is close
to 1), K = 1 results in a significant tracking error; however,
good performance is observed already for K = 100. Finally,
in Figure 3, we show the constraint violation obtained by the
proposed method over the simulation horizon. As constraints
are only satisfied asymptotically, performing only a finite
number of iterations per time-step leads to a constraint
violation, which as expected decreases with K.

VII. CONCLUSION

Strongly monotone GNE problems with full row rank
equality coupling constraints can be solved with linear
convergence rate, both in semi-decentralized and fully-
distributed settings, via primal-dual algorithms. The contrac-
tivity properties of the iterates also allow the tracking of
the solution sequence in time-varying games; in this online
setting, the asymptotic tracking accuracy can be increased
by increasing the update frequency.

As our results exploit the strong monotonicity of the KKT
operator in a (non-diagonally) weighted space, it is not clear
how to embed projections in the proposed methods, which
is the main drawback of our approach. Future work should
hence focus on linear convergence in generalized games with
local constraints (and with inequality coupling constraints).
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