2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Out-of-equilibrium fluctuations drive correlations
between enzyme and metabolic product levels

A. Borri

Abstract— Enzyme-driven catalysis of a substrate into a
product forms the fundamental backbone of cellular metabolic
pathways. In the deterministic formulation of such a reaction
scheme, the equilibrium level of the metabolic product is inde-
pendent of the steady-state enzyme, so that any perturbation in
enzyme levels causes a transient change in metabolic product
levels that perfectly adapts to the original enzyme-independent
steady state. In this work, we consider a stochastic formulation
of the problem, where enzyme levels constantly fluctuate due to
the inherently noisy gene expression process as well as to the
extrinsic noise in substrate availability. Our results show that
such out-of-equilibrium fluctuations can result in positive (or
negative) enzyme-product and substrate-product correlations,
whose behavior qualitatively and quantitatively changes in
different scenarios characterized by perturbations of nominal
parameters and variable noise levels.

Index Terms— Metabolic Pathways, Enzymatic Reactions,
Systems Biology, Chemical Master Equations

I. INTRODUCTION

One of the most challenging fields in Life Science re-
search involves deep understanding of how complex cellular
functions (like metabolism, growth, cycle, etc.) arise from
the interactions of molecules in a biochemical network.
To this end, mathematical and computational methods in
systems biology (including recent results on large-scale gene
regulatory networks [1], [2]) are fundamental to study the
complex molecular interactions within biological systems
and to accelerate discoveries.

In this note we investigate a modified version of the
classical enzymatic reaction scheme, where a product P
accumulates by means of the catalytic action on an enzyme
E on a substrate S. Enzyme activity is ubiquitous in many
and diverse cellular machinery, including metabolism control
in both transcriptional and post-translational way with inter-
esting applications in the designing of synthetic circuits to
improve the productivities of engineered metabolic pathways
[3]. Besides, these studies are gaining an even growing
interest because of the recent possibility to measure enzyme
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activity at a single-cell level [4]. Within these single-cell
frameworks, the intrinsic noise affecting the stochasticity
of biochemical interaction of particles in gene expression
processes, as well as the extrinsic noise accounting for other
kind of fluctuations, mostly provided by the environment,
cannot be neglected: examples can be found in metabolic
pathways affected by stochastic fluctuations [5], [6], [7], [8],
[9], dealing with single-cell metabolite distributions [10] or
with metabolic heterogeneity emerging from fluctuations in
enzyme expression and catalysis [11], as well as in other
cellular functions, such as in sequestration mechanisms [12].

The aim of the work is to investigate product-enzyme
correlations according to a stochastic formulation of the
enzymatic reaction network where two noise sources are
considered, one acting on the enzyme production level, the
other acting as an extrinsic noise in substrate availability.
The following Section is devoted to introducing the model
in details. We will show in Section III that dealing with
just first-order moments (that means, according to a mere
deterministic approach) any relationships in enzyme-product
levels may be lost or, at least, underestimated, since per-
turbations in enzyme levels cause a transient change in
metabolic product levels that perfectly adapts to the original
enzyme-independent steady-state level. On the other hand, by
explicitly accounting for the noisy fluctuations (the explicit
computations of the second-order moments are reported in
Section IV), non-trivial correlations emerge: these results are
reported in Section V, according to a preliminary investiga-
tion across different parameter regimes.

II. MODEL FORMULATION

The scheme of the metabolic network under investigation
is reported in Figure 1. Besides E we consider a second en-
zyme, Z, acting to catalyze the substrate production. The red
arrows denote the control action of E on product production
and of Z on substrate production. In the following, we will
refer to m, ne, ng, Ny to denote the copy numbers of the
four molecular players.

The rate of P production, namely k2 (ns, ne ), is modeled
by the general Michaelis-Menten formalism where ¢ is a
saturating function with respect to the substrate S and is
linear with respect to the enzyme E:
Ux

ne + M,

One first source of noise in our model is provided by the
enzyme production, supposed to happen in bursts [13], [14]:

o(ns,ne) = Ne (D

Ne — Ne + 1, n=12...

2

ary = c1 - P(& = 1),
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Fig. 1. Molecular scheme of the reaction network under investigation

where £; is a discrete random variable with a given proba-
bility distribution. In the following, we will denote with &,
and o7 the mean value and variance of £;, respectively.

Another source of noise is on the substrate production rate,
defined by k19 (n,), with 1(n,) provided by the following
saturating function

ny

)= 3

vn) = @)

Z is also supposed to be produced in bursts, that is:

n, — n, + 1, asy = ca - P(& =), n=12...
“4)

where &7 is a discrete random variable with a given probabil-
ity distribution. In the following, we will denote with &, and
o3 the mean value and variance of £, respectively. Notice
that there is no consumption for Z when S is produced: Z
acts as an enzyme catalyzing S production.

Furthermore, linear clearance rates are supposed for the
four molecular players, denoted by
z4%0, P

Shn B

The modeling choice adopted to deal with the proposed
enzymatic reaction scheme is that of a Stochastic Hybrid
Systems (SHS) [15], where the state variables n,, n., ns,
np evolve continuously according to the following Ordinary
Differential Equation (ODE) system

n, = —d,n,

Nle = —deNe

. ®)
ns = qul}(nz) - kQQO(nsa ne) —dsns

np = kap(ns, ne) — dpny

between any two stochastic events provided by the noisy
enzymes productions (2)-(4), with n. and n, updating ac-
cording to the related Continuous Time Markov Chain.

III. FIRST-ORDER MOMENTS

Let X = (n.,ne,ns,n,)7, and consider a generic nonlin-
ear function x(X). In the following we will denote average

values with (-). The general formula providing the dynamics
of the average value (x (X)) is [15]:

d d
= (X0) = (FER(x)
+3 (X +61) = X(X))ary)  (6)

+

NE

((X(X 4 02p) = x(X)) azy)

3
—

where h(-) is the nonlinear function describing the ODE part
(continuous flow) of the SHS in (5), and 1, = (1,0,0, 0)7,
b2y = (0,1,0,0)T are the reset provided by the stochastic
part (discrete jump) of the SHS. By properly setting x(-)
we can write the dynamic equations for any order moments.
However, because of the nonlinearities in h(-), moment
equations are not available in closed form, not even for the
first-order case, therefore we need to resort to approximation
techniques, like moment closure techniques [16], or Linear
Noise Approximations (LNA) [17], the latter based on the
linearization of the nonlinear functions of the ODE.

Therefore, accounting for the linear approximations of the
involved nonlinear functions

(W(n2)) = 9((n2),  {p(ns,ne)) = o((ns) s (ne)) (N
the following approximated first-order moment equations are
obtained from (6), by setting x(X) = n;, for j € {z,e, s,p}:

d(nz)

dt = 6252 —d. <nz>
d(ne)

= c1&1 — de (ne)
il >
o = ((n2) = kae((n)  (ne)) = ds (ns)

d <”p> _
) — kp((na)  (me)) — d ()

According to (8), by exploiting the notation

j€{ze s, p} ©)

. '_grnoo (nj) =ny,
for the average stationary solutions, they satisfy the following
algebraic system

= 0252 o = 6151
o e (19)
np = @1/1 — d—pns ko = dpny
where -
P =pMsme), ¢ =1([nz) (11)
for short.

Remark 1: The average ODE model in (8) results in the
so-called deterministic formulation of the problem, detailing
the average values of the involved molecular players without
accounting for the fluctuations of internal/external noises.
According to the stationary values obeying the constraints
reported in (10), we find that the steady-state level of the
metabolic product may be made independent of the steady-
state enzyme level: for instance by suitably tuning the model
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parameters in order to keep fixed 7, according to different
sets of parameter values. In these cases, according to such a
deterministic formulation, any perturbation in enzyme levels
causes a transient change in metabolic product levels that
perfectly adapts to the original stationary level. It will be
shown how such illusory independence falls apart according
to the stochastic approach, pointing out the inadequacy of a
purely deterministic framework.

The following Lemmas address systematically the quali-
tative behavior of the deterministic formulation.

Lemma 2: According to (10), there exists a unique posi-
tive solution for the average stationary values 7o, i, and is
the following

_ kla_ k2n7€_ dsMs + \/Z

Mg 12
n 5. (12)
kY4 kg +d M, — VA

M, = (13)
2d,
with
A = (dM, + kolig — b 9)° + ddoky M. (14)

Proof. By substituting 7, and 7, (the latter as a function of
ns) in the last of (10) we have the following second-order
equation for mg:

dsmig® + (ds My + koTie — ky)ig — kiMoo =0 (15)

whose real roots are readily computed by

—_ k1) — kofie — ds M £ VA
s 2d,

with A > 0 given by (14). It readily comes from the Routh
criterion that the two real roots have opposite sign; therefore
there exists a unique positive root for ng, provided by (12).
By substituting (12) into 7, equation in (10), we have (13).
Besides, 7, is positive, since, the following inequality holds:

(16)

A < (ki + kol + dyM;)°. (17)

|
Lemma 3: The positive solution provided by Lemma 2 is
locally asymptotically stable.

Proof. The proof readily comes from the computation of the
Jacobian matrix from (8). Indeed,

—d, 0 0 0
0 —d, 0 0
J = — __ _ 18
kﬂ/}z _kZ‘pe _ds - kQ‘:Ds 0 ( )
0 ko®e kops —dp
with ) M
Ve=v(m) = o = 9
and 5 o
__ ' Ng
e — ¥Fellls = — = 20
Pe = pe(ms) B | ey T M (20)
o Mg
Vs = <,05(TTS, 7Te) = = (21)
ong (=79 (s + Mj)?

The eigenvalues are clearly given by the diagonal elements,
which are all strictly negative since ¢, is a positive function
for positive entries.
|
Besides the general case, there can be found different sim-
plified frameworks according to the following hypotheses.

A. The case of ns < M

In case of ny < M,, we have scarce copy numbers of
substrate, so that
Ns
M
and the stationary solutions for m; and 7, in (12)-(13)
simplify into

J— klMsa

Ng = T———F 7>

kgne + dSMS

B. The case of ng > M

In case of n, > M, we have abundance of substrate, so
that

‘Mg (22)

P(ns,ne) =~

_ k1 kotpie
= 23
"y dp(kaTie + ds M) 23)

o(ng,ne) >~ ne (24)

In this case the stationary solutions for 7y and 72, in (12)-(13)
simplify into
kome

dp

Ng=——"—"", Np= (25)
provided that

koTie < k1t (26)

in order to ensure positiveness of the solution. Indeed, by
looking at (12) as coming from Lemma 2 and treating the
case of ng > M as a limit for My — 0, then n; converges
to (25), provided that condition (26) is true; otherwise, Ny
would converge to 0, a not admissible solution according to
(24).

C. The case of n, > M,

In case of n, > M,, i.e. we have abundance of Z, so that
Y(n,) ~1

that means the substrate production does not depend of Z
explicitly any more. From a deterministic viewpoint, we just
have to replace (27) into Lemmas 2-3.

27)

IV. SECOND-ORDER MOMENTS

In order to investigate correlations in enzyme-product
levels, we need to compute the second-order moments, by
properly setting x(X) in (6) as any quadratic function of X:
Jjr €{0,1,2}, z € {z,¢,5,p}

(28)

— plzpdemnisyd
X(X) - nzz nee nss npp I

with . + je + js +jp = 2

Dealing with the two enzymes F and Z, it is easy to
write their variances (02 and o2, respectively) as functions
of the two sources of noise &; and &». Indeed, by setting
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x(X) = n? and x(X) = n? in (6) and, then, looking for

€ z
stationary solutions, we obtain:

C1

oc = nf) -7 = 5 (o1 + &) (29)
o =(2) —7" = (o3 + &) (30)

A further result that straightforwardly comes from the
reaction network is that the two enzymes are uncorrelated.
Indeed, by setting x(X) = n.n. in (6), it readily comes that
(€29

Oze = <nzne> —nne =0

Dealing with the other covariances involving Z and E, we

have: s

klwz 2
zs — —— 32
7 dz + ds + k?@s 7z ( )

kikat). @5 2

7 T, + dy)(ds + dy + kas) (33)

katpe 2
g = ———F——7—— 4
7es do +ds + kops ° G
kZ(de + ds)@ 2 (35)

TP = (dy + dp)(de + ds + kapz) °

Regards to the noises involved, as expected, 0., and o),
involve only Z fluctuations, whilst 0., and o, involve only
FE fluctuations.

Finally, dealing with S, P fluctuations and their covari-
ance, we have:

—2
2 k‘%% 2
Oy = — — "0,
(ds + k2908)(dz + ds + k2908) (36)
i k3pe” 2
(ds + k2@s)(de + ds + k2ps)
_ k2 ka0 B (ds+ds+dp k) L2
Tsp = (@4 dy)(ds T kops)(ds+ds+hops)(ds +dp+hops) 02
k32 ((de+do) (du+ho) +da (detdy) ) 5
T (et dp) (ds+h20:) (de+dsThas) (ds T dpThaps)  Ce
U (37
o2 — ki k3 0s P5 (ds+dz+dp+kaPs) o2
P T dp(d.+dp)(ds+keps)(d.+ds+hops) (do+dp+kaps)  ~ 2
1872 (A (et do) (Aot dy) o) (@i bdedy) |
Ty (et dp) (dat F292) (Aot dat 232) (Aot dp T2 5) é@g)

V. SIMULATIONS

Numerical Monte Carlo simulations have been performed
in MATLAB® to support and validate analytical results
achieved according to linearizations (7). In our simulations,
achieved according to a sufficiently long run of the Gillespie
Stochastic Simulation Algorithm (SSA) [18] applied to the
SHS (ergodic approach), we consider approximate steady-
state sampled first-order and second-order moments for the
model, obtained when a numerical fixed point is reached (our
stopping criterion consists in the Euclidean distance between
two consecutively computed sampled moments, collected in
vector form, being lower than 1079).

TABLE I
NOMINAL MODEL PARAMETERS.

Parameter Description Value
k1 Substrate production rate 60
ko Maximal product production rate 0.8
ds Substrate clearance rate 0.1
dp Product clearance rate 0.025
de Enzyme clearance rate 0.3
d, 7 clearance rate 0.2
M S value of half-maximal P production 300
M., Z value of half-maximal S production 300
c1 Enzyme production propensity 6
c2 Z production propensity 10
&1 Average E burst size 4
& Average Z burst size 2

The nominal values of the parameters are reported in
Table I and are partially varied according to the different
scenarios described in the following subsections. Regards to
the random variables £; and & related to the two noise
sources, we adopted a geometric probability distribution
according to past literature [6], [19]:

P& =n) = o (1 — ay)" 71, a; €(0,1), n=1,...
(39)
for i = 1,2, with «; set in order to have average burst sizes
& = 1/a; equal to 4 and 2 for the nominal values of &; and
&, in Table I, respectively.
According to the values in Table I we have the following

nominal values for the stationary values:

m; =100, 7 =80, T;=53.36, T, =386.57.
(40)

The next subsections report on the investigated scenarios.

A. Variable average burst size &, for the enzyme E

Scenario A accounts for varying values of the average
burst size &; of the enzyme E (which straightforwardly leads
to variations of the average stationary value of E, see the
second equation in (10)), keeping unchanged all other values
in Table 1.

By varying &;, 71, varies as well and, because of the last
constraints in (10), also 75 and 72, vary. On the other hand, it
would be interesting to investigate what happens by keeping
fixed 7, in spite of varying T, in order to understand
whether there exists a correlation in enzyme-product (and
in substrate-product) levels, and whether such correlations
vary with varying n.. Therefore, in order to get unchanged
stationary values of 7, and 7, with varying &;, we jointly
vary M,. More in details, by varying &;, Tig varies from (10)
and we solve (15) with respect to Mg, by fixing ny at the
nominal values in (40). This way, only n, varies, see Fig. 2.

Fig. 3 shows correlations between P and S and between
P and E, drawn according to the analytical formulas written
in Section IV for the second-order moments, and validated
by the Gillespie algorithm applied to the SHS. They appar-
ently show a non-trivial stationary correlation (P correlates
positively with E and negatively with .S), that does not seem
to vary by increasing the average burst size for enzyme F
production.
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Fig. 2. Average stationary values for varying average burst size £; of the

enzyme E with respect to its nominal value, and M (substrate value of
half-maximal product production rate) changed to keep constant stationary
values for S and P.
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Fig. 3. Stationary correlations for varying average burst size &1 of the

enzyme E with respect to its nominal value.

B. Variable average burst size &y for enzyme Z

Scenario B accounts for varying values of the average
burst size & for enzyme Z (which straightforwardly leads
to variations of the average stationary value of Z, see the
first equation in (10)), keeping unchanged all other values in
Table 1. Also in this case, by varying & the four stationary
values vary (because 7, varies), unless the simplifying
assumption of n, > M, holds true, according to (27) in
Section III.C. Instead, similarly to the investigations carried
out in Section V.A, we aim at fixing the four stationary
values and find out what happens because of the stochastic
fluctuations. Therefore we jointly change ¢ in order to keep
fixed all stationary values at their nominal values, see Fig.
4.
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Fig. 4. Scenario B: average stationary values for varying average burst size
&2 of species Z, and ca (Z production propensity) changed with respect to
its nominal value to keep constant stationary values for all species.

Stationary correlations
T : : :

04
0.3

0.2

ASa-acy

0.1

Correlation coefficient
S

-0.2 —©— P-S correlation (Gillespie SSA)
= ©- -P-S correlation (LNA)
0.3 —©— P-E correlation (Gillespie SSA) | |
’ - ©- -P-E correlation (LNA)
-0.4 ]
q
05 1 j
-0.6 L 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Average Z burst size
Fig. 5. Scenario B: stationary correlations for varying average burst size

&2 of species Z, and cg (Z production propensity) changed with respect to
its nominal value to keep constant stationary values for all species.

The stationary correlations are reported in Fig. 5 and show
non-trivial correlations between P and S and between P
and E. In this case, despite all molecular players have fixed
stationary values, these correlations strongly vary with &;.

C. Variable clearance rate d,, for product P.

Scenario C accounts for varying values of the product
clearance rate d,, (leading to variations of the average sta-
tionary value of P, see the last equation in (10)), keeping
unchanged all other values in Table I. The average stationary
values of the other species remain fixed, according to (12)
in Lemma 2, see Fig. 6.

The stationary correlations are reported in Fig. 7 and
show negative correlation between P and S and positive
correlation between P and F; besides, it is apparent how
P-E correlation has a definite positive trend, with respect to
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increasing values of d,, differently from P-S correlation that
does not seem to vary as much with d,.

VI. CONCLUSIONS

In this manuscript, we analyze a nonlinear dynamical
system inspired by the fundamental process of enzyme-
mediated conversion of a substrate into a product. We
considered a stochastic formulation of the model where noise
is incorporated in two different ways — the expression of the
enzyme I occurs in stochastic bursts consistent with data on
single-cell gene expression across cell types. Stochasticity is
also introduced in the substrate import rate captured by its
dependence on another enzyme Z that is also synthesized
in bursts. All other processes were modeled using an ordi-
nary differential equation leading to an overall SHS model
formalism. Given the inherent nonlinearity that occurs due
to the Michaelis—Menten kinetics of enzymatic reactions, we

analyzed the system using the well-known LNA method that
quantifies the magnitude of copy-number fluctuations in the
small-noise regime.

A key contribution of this paper is the analytical derivation
of closed-form formulas quantifying these fluctuations that
we specifically use to study the correlation between the levels
of the product and enzyme, and between the product and
substrate levels. These formulas were rigorously validated
with the exact simulation of the underlying SHS under a
variety of parameter regimes.

Future work will extend this analysis to feedback between
the product and enzyme expression, or the substrate import
process, and also consider longer chains of metabolic path-
ways with multiple enzyme-catalyzed steps.
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