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Abstract— We consider the problem of direct data-driven
predictive control for unknown stochastic linear time-invariant
(LTI) systems with partial state observation. Building upon our
previous research on data-driven stochastic control, this paper
(i) relaxes the assumption of Gaussian process and measurement
noise, and (ii) enables optimization of the gain matrix within the
affine feedback policy. Output safety constraints are modelled
using conditional value-at-risk, and enforced in a distributionally
robust sense. Under idealized assumptions, we prove that our
proposed data-driven control method yields control inputs
identical to those produced by an equivalent model-based
stochastic predictive controller. A simulation study illustrates the
enhanced performance of our approach over previous designs.

I. INTRODUCTION

Model predictive control (MPC) is a widely used technique
for multivariate control [1], adept at handling constraints
on inputs, states and outputs while optimizing complex
performance objectives. MPC employs a system model
to predict how inputs influence state evolution. Work on
Stochastic MPC (SMPC) [2] has focused on describing model
uncertainty probabilistically. SMPC methods optimize over
feedback control policies rather than control actions and
accommodate probabilistic and risk-aware constraints.

The system model required by MPC (and SMPC) is some-
times obtained from identification, making MPC an indirect
design method, since one goes from data to a controller
through an intermediate modelling step [3]. In contrast,
data-driven or direct methods seek to compute controllers
directly from input-output data. Accounting for constraints
in control, Data-Driven Predictive Control (DDPC) methods
were developed, including Data-Enabled Predictive Control
(DeePC) [4]–[6] and Subspace Predictive Control (SPC) [7].
For deterministic LTI systems in theory, both DeePC and
SPC produce equivalent control actions as from MPC.

Real-world systems often deviate from idealized determinis-
tic LTI models, exhibiting stochastic and non-linear behavior,
with noise-corrupted data. To address these challenges, data-
driven methods must account for noisy data and measurements.
For instance, in SPC applications, required predictor matrices
are often computed using denoising techniques [7]. Regular-
ized and distributionally robust DeePC were also developed
for stochastic systems [4]–[6]. Unlike in the deterministic
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case, however, these stochastic adaptations of DeePC and
SPC lack theoretical equivalence to model-based MPC.

Recognizing this gap, some recent advancements in DDPC
have aimed to establish equivalence with MPC methods
for stochastic systems. The work in [8], [9] proposed a
DDPC framework for stochastic systems, and their method
performs equivalently to SMPC if stochastic signals can be
exactly expressed by their Polynomial Chaos Expansion. This
paper builds in particular on our previous work [10], where
we proposed a data-driven control method for stochastic
systems, without estimation of disturbance as required in [8],
[9], and established that the method has equivalent control
performance to SMPC when offline data is noise-free. An
extended version of the paper can be found in [11].

Contribution: This paper contributes towards the continued
development of high-performance DDPC methods for stochas-
tic systems. Specifically, in this paper we develop a stochastic
DDPC strategy utilizing distributionally robust conditional
value-at-risk constraints, providing an improved safety con-
straint description when compared to our prior work in [10],
and providing robustness against non-Gaussian (i.e., possibly
heavy-tailed) process and measurement noise. Additionally,
in contrast with the fixed feedback gain in [10], we consider
control policies where feedback gains are decision variables
in the optimization, giving a more flexible parameterization
of control policies. As theoretical support for the approach,
under technical conditions, we establish equivalence between
our proposed design and a corresponding SMPC. Finally, a
simulation case study compares and contrasts our design with
other recent stochastic and data-driven control strategies.

Notation: Let M† be the pseudo-inverse of a matrix M .
Let ⊗ denote the Kronecker product. Let Sq+ (resp. Sq++)
be the set of q × q positive semi-definite (resp. definite)
matrices. Let col(M1, . . . ,Mk) (resp. Diag(M1, . . . ,Mk))
denote the vertical (resp. diagonal) concatenation of matrices
/ vectors M1, . . . ,Mk. Let Z[a,b] := [a, b]∩Z denote a set of
consecutive integers from a to b, and let Z[a,b) := Z[a,b−1].
For a Rq-valued discrete-time signal zt with integer index t,
let z[t1,t2] denote either a sequence {zt}t2t=t1 or a concatenated
vector col(zt1 , . . . , zt2) ∈ Rq(t2−t1+1) where the usage is
clear from the context; similarly, let z[t1,t2) := z[t1,t2−1].
A matrix sequence {Mt}t2t=t1 and a function sequence
{πt(·)}t2t=t1 are denoted by M[t1,t2] and π[t1,t2] respectively.

II. PROBLEM SETUP

Consider a stochastic linear time-invariant (LTI) system

xt+1 = Axt +But + wt, yt = Cxt +Dut + vt (1)
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with input ut ∈ Rm, state xt ∈ Rn, output yt ∈ Rp, process
noise wt ∈ Rn, and measurement noise vt ∈ Rp. The
system (A,B,C,D) is assumed as a minimal realization,
but the matrices themselves are unknown and the state xt

is unmeasured; we have access only to the input ut and
output yt in (1). The probability distributions of wt and vt
are unknown, but we assume that wt and vt have zero mean
and zero auto-correlation (white noise), are uncorrelated, and
their variances Σw ∈ Sn+ and Σv ∈ Sp++ are known. The
initial state x0 has given mean µx

ini and variance Σx and is
uncorrelated with the noise. We record these conditions as

E
[[wt

vt

]]
= 0, E

[[wt
vt

][
ws
vs

]
T]

=
[
δtsΣ

w 0
0 δtsΣ

v

]
, (2)

E[x0] = µx
ini, Var[x0] = Σx, E

[
x0

[
wt
vt

]
T]

= 0, (3)

with δts the Kronecker delta. Assume (A,Σw) is stabilizable.
In a reference tracking control problem for (1), the objective

is for the output yt to follow a specified reference signal
rt ∈ Rp. The trade-off between tracking error and control
effort may be encoded in an instantaneous cost

Jt(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R (4)

to be minimized over a time horizon, with user-selected
parameters Q ∈ Sp+ and R ∈ Sm++. This tracking should be
achieved subject to constraints on the inputs and outputs. We
consider here polytopic constraints, which in a deterministic
setting would take the form E

[
ut
yt

]
≤ f for all t ∈ N≥0, and

for some fixed matrix E ∈ Rq×(m+p) and vector f ∈ Rq.
We can equivalently express these constraints as the single
constraint h(ut, yt) ≤ 0, where

h(ut, yt) := max i∈{1,...,q} eTi
[
ut
yt

]
− fi, (5)

with ei ∈ Rm+p the transposed i-th row of E and fi ∈ R
the i-th entry of f . For the system (1) which is subject to
(possibly unbounded) stochastic disturbances, the determin-
istic constraint h(ut, yt) ≤ 0 must be relaxed. Beyond a
traditional chance constraint P[h(ut, yt) ≤ 0] ≥ 1− α with
a violation probability α ∈ (0, 1), a conditional value-at-risk
(CVaR) constraint is more conservative; the CVaR at level
α of h(ut, yt) is defined as the expected value of h(ut, yt)
in the α· 100% worst cases, and takes extreme violations
into account. With the noise distributions unknown, we must
further guarantee satisfaction of the CVaR constraint for all
possible distributions under consideration. Let D denote a
joint distribution of all random variables in (1) satisfying (2)
and (3), and let the ambiguity set D be the set of all such
distributions. The distributionally robust CVaR (DR-CVaR)
constraint [12], [13] is then

supD∈D D-CVaRα[h(ut, yt)] ≤ 0, (6)

where D-CVaRα[z] is the CVaR value of a random variable
z ∈ R at level α given distribution D.

If the system matrices A,B,C,D were known, this
constrained tracking control problem subject to (6) can be
approached using SMPC, as described in Section III-A. Our
objective is to develop a data-driven control method that
produces equivalent control inputs as produced by SMPC.

III. STOCHASTIC MODEL-BASED AND DATA-DRIVEN
PREDICTIVE CONTROL

We introduce a model-based SMPC framework in Section
III-A and propose a data-driven control method in Section
III-B, with their theoretical equivalence in Section III-C.

A. A framework of Stochastic Model Predictive Control

We focus here on output-feedback SMPC [14]–[16] which
typically combines state estimation and feedback control. The
formulation here broadly follows our prior work [10], but
we now consider a DR-CVaR constraint in place of chance
constraints, and we will allow optimization over the feedback
gain. This SMPC scheme merges the established works on DR
constrained control [12], [13] and output-error feedback [17],
while the combined framework is part of our contribution.

1) State Estimation: SMPC follows a receding-horizon
strategy and makes decisions for N upcoming steps at each
control step. At control step t = k, we begin with prior
information of the mean and variance of state xk, namely

E[xk] = µx
k, Var[xk] = Σx, (7)

where the mean µx
k is computed from a state estimator to

be described next; at the initial step k = 0, µx
0 = µx

ini is a
given parameter as in (3). For simplicity of computation, we
let Σx in (3) and (7) be the steady-state variance through the
Kalman filter, as the unique positive semi-definite solution
to the associated discrete-time algebraic Riccatti equation
(DARE) (8a), with observer gain LL ∈ Rn×p in (8b).

Σx = (A− LLC)ΣxAT +Σw (8a)

LL := AΣxCT(CΣxCT +Σv)−1 (8b)

Estimates x̂t of future states over the desired horizon are
computed through the observer, with innovation νt ∈ Rp,

νt := yt − Cx̂t −Dut, t ∈ Z[k,k+N) (9a)
x̂t+1 := Ax̂t +But + LLνt, t ∈ Z[k,k+N) (9b)
x̂k := µx

k (9c)

where we utilize in (9b) the observer gain LL in (8b) so that
(9) is equivalent to the steady-state Kalman filter.

At the control step with condition (7), we can predict future
states and outputs by simulating the noise-free model,

xt+1 := Axt +But, t ∈ Z[k,k+N) (10a)
yt := Cxt +Dut, t ∈ Z[k,k+N) (10b)
xk := µx

k (10c)

with nominal inputs ut as decision variables to be optimized,
and with resulting nominal states xt and nominal outputs yt.

2) Feedback Control Policies: While [10] considered an
affine feedback policy with fixed feedback gain, here we
apply an output error feedback control policy [17]

ut ← πt(ν[k,t)) := ut +
∑t−1

s=k M
s
t νs (11)

where the nominal input ut and feedback gains Ms
t ∈

Rm×p are both decision variables, with innovation ν in (9a).
Crucially, (11) leads to jointly convex optimization in decision
variables u,Ms

t , as we will see next.
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With the estimator (9) and policy (11), both input ut and
output yt of (1) can be written as affine functions of the
decision variables, through direct calculation, with y in (10),[

ut
yt

]
=

[
ut
yt

]
+ Λt ηk, t ∈ Z[k,k+N), (12)

where ηk := col(xk − µx
k, w[k,k+N), v[k,k+N)) ∈ Rnη is

a vector of uncorrelated zero-mean random variables of
dimension nη := n+nN+pN , and matrix Λt ∈ R(m+p)×nη

is linearly dependent on the gain matrices Ms
t as

Λt :=

[
∆U

t−k

∆Y
t−k

]
M∆M +

[
0m×nη

∆A
t−k

]
, t ∈ Z[k,k+N), (13)

where M∈ RmN×pN is a concatenation of Ms
t

M :=


Mk

k

Mk
k+1 Mk+1

k+1
...

...
. . .

Mk
k+N−1 Mk+1

k+N−1 · · · Mk+N−1
k+N−1

 (14)

and where ∆U
i ∈ Rm×mN ,∆Y

i ∈ Rp×mN ,∆A
i ∈ Rp×nη and

∆M ∈ RpN×nη are independent of both decision variables u
and Ms

t , with expressions available in Appendix A.

3) Deterministic Formulation of Cost and Constraint:
Given (12), col(ut, yt) has mean col(ut, yt) and variance
ΛtΣ

ηΛT
t , since ηk has zero mean and the variance Ση :=

Diag(Σx, IN⊗Σw, IN⊗Σv) ∈ Snη

+ via (2) and (7). Then, the
constraint (6) can be equivalently written as a second-order
cone (SOC) constraint of the decision variables u and Ms

t .

Lemma 1 (SOC Expression of DR-CVaR Constraint [11]).
With h(ut, yt) as in (5), for t ∈ Z[k,k+N), (6) holds iff

2
(
1−α
α

)1
2

∥∥(Ση)
1
2ΛT

t ei
∥∥
2
≤ −eTi

[
ut
yt

]
+ fi, i ∈ Z[1,q]. (15)

SMPC problems typically consider the expected cost∑k+N−1
t=k E[Jt(ut, yt)] summing (4) over the horizon, which

is equal to a deterministic quadratic function of u and Ms
t ,∑k+N−1

t=k

[
Jt(ut, yt) + ∥Diag(R,Q)

1
2Λt(Σ

η)
1
2 ∥2F

]
, (16)

given the mean and variance of col(ut, yt) and given that
E[∥z∥2S ] = ∥E[z]∥2S + ∥S 1

2Var[z]
1
2 ∥2F for any random vector

z and fixed matrix S; ∥ · ∥F denotes the Frobenius norm.

4) SMPC Optimization Problem and Algorithm: Using the
cost (16) and reformulation (15) of constraint (6), we have
the SMPC problem as a second-order cone problem (SOCP)

minimize
u,Ms

t

(16) s.t. (15) for t ∈ Z[k,k+N), (10), (13), (17)

which problem has a unique optimal solution when feasible,
since (16) is jointly strongly convex in u and Ms

t .
The nominal inputs u and gains Ms

t determined from (17)
complete the parameterization of control policies π[k,k+N)

in (11), and the upcoming Nc control inputs u[k,k+Nc) are
decided by the first Nc policies π[k,k+Nc) respectively, with
parameter Nc ∈ Z[1,N ]. The next control step will be set
as t = k + Nc, and the state mean µx

k+Nc
in (7) will be

iterated as the estimate x̂k+Nc
via (9); we let the nominal

state xk+Nc
via (10) be a backup value µx̄

k+Nc
of µx

k+Nc
that

ensures feasibility of (17) at the new control step [14]. The
entire SMPC control process is shown in Algorithm 1.

Algorithm 1 Distributionally Robust Optimized-Gain Stochas-
tic MPC (DR/O-SMPC)
Input: horizon lengths N,Nc, system matrices A,B,C, noise

variances Σw,Σv, initial-state mean µx
ini, cost matrices

Q,R, constraint coefficients E, f , and CVaR level α.
1: Compute Σx, LL via (8) and ∆U

[0,N),∆
Y
[0,N),∆

A
[0,N),∆

M

through Appendix A.
2: Initialize the control step k ← 0 and set µx

0 ← µx
ini.

3: Solve u[k,k+N) and Ms
t from problem (17).

4: If (17) is infeasible then Set µx
k ← µx̄

k, and redo line 3.
5: for t from k to k +Nc − 1 do
6: Input ut ← πt(ν[k,t)) in (11) to the system (1).
7: Measure yt from the system (1).
8: Compute νt via (9).
9: Set (µx

k+Nc
, µx̄

k+Nc
) as (x̂k+Nc

, xk+Nc
) in (9), (10).

10: Set k ← k +Nc. Go back to line 3.

B. Stochastic Data-Driven Predictive Control (SDDPC)

We develop in this section a data-driven control method,
which consists of an offline process for data collection and
an online process that makes real-time control decisions.

1) Use of Offline Data: In data-driven control, sufficient
offline data is required to capture the system’s behavior. Here
we explain how we collect data and use it to calculate some
quantities required in our control method. We first consider
noise-free data and then address the case of noisy data.

Consider a deterministic version of the system (1)

xt+1 = Axt +But, yt = Cxt +Dut. (18)

By assumption, (18) is minimal; let L ∈ N be such that the
extended observability matrix O := col(C,CA, . . . , CAL−1)
has full column rank. Let ud

[1,Td]
, yd[1,Td]

be a Td-length
trajectory of input-output data collected from (18). The input
sequence ud is assumed to be persistently exciting of order
Kd := L+ 1+ n, i.e., its associated Kd-depth block-Hankel
matrix HKd

(ud
[1,Td]

) ∈ RmKd×(Td−Kd+1), defined as

HKd
(ud

[1,Td]
) :=


ud
1 ud

2 · · · ud
Td−Kd+1

ud
2 ud

3 · · · ud
Td−Kd+2...

...
. . .

...
ud
Kd

ud
Kd+1 · · · ud

Td

,
has full row rank. We formulate data matrices U1 ∈ RmL×h,
U2 ∈ Rm×h, Y1 ∈ RpL×h and Y2 ∈ Rp×h of width h :=
Td − L by partitioning associated Hankel matrices as[

U1

U2

]
:= HL+1(u

d
[1,Td]

),
[
Y1

Y2

]
:= HL+1(y

d
[1,Td]

). (19)

The data matrices in (19) will now be used to represent a
quantity Γ ∈ Rp×(mL+pL) related to the system (18),

Γ =
[
ΓU ΓY

]
:=

[
CC CAL

] [ImL

G O

]†
, (20)

with C := [AL−1B, . . . , AB,B] the extended controllability
matrix and G := Toep(D,CB, . . . , CAL−2B) the impulse-
response matrix; Toep denotes the block-Toeplitz matrix

Toep(M1, . . . ,Mk) :=

[
M1

M2 M1...
. . . . . .

Mk ··· M2 M1

]
.
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Lemma 2 (Data Representation of Γ and D [10]). If system
(18) is controllable and the input data ud

[1,Td]
is persistently

exciting of order L+ 1+ n, then, given the data matrices in
(19), the matrix Γ defined in (20) and matrix D in system
(18) can be expressed as [ΓU,ΓY, D] = Y2 col(U1, Y1, U2)

†.

With Lemma 2, the matrices Γ, D are represented using
offline data collected from system (18), and will be used as
part of the construction for our data-driven control method.

In the case where the measured data is corrupted by noise,
as will usually be the case, the pseudo-inverse computation
in Lemma 2 is numerically fragile and does not recover the
desired matrices Γ, D. A standard technique to robustify this
computation is to replace the pseudo-inverse W † of W :=
col(U1, Y1, U2) in Lemma 2 with its Tikhonov regularization
(WTW + λIh)

−1WT with a regularization parameter λ > 0.
2) Auxiliary State-Space Model: The SMPC approach of

Section III-A uses as sub-components a state estimator, an
affine feedback law and a DR-CVaR constraint. We now
leverage the offline data as described in Section III-B-1 to
directly design analogs of these components based on data,
without knowledge of the system matrices.

We begin by constructing an auxiliary state-space model
which has equivalent input-output behavior to (1), but is
parameterized only by the recorded data sequences. Define
auxiliary signals xt,wt ∈ Rnaux of dimension naux := mL+
pL+ pL2 for system (1) by

xt :=

 u[t−L,t)

y◦[t−L,t)

ρ[t−L,t)

 , wt :=

 0mL×1

0pL×1

0pL(L−1)×1

ρt

 (21)

where y◦t := yt − vt ∈ Rp is the output excluding mea-
surement noise, and ρt := Owt ∈ RpL stacks the system’s
response to process noise wt on time interval [t+1, t+L]. The
auxiliary signals xt,wt together with ut, yt, vt then satisfy
the relations given by Lemma 3.

Lemma 3 (Auxiliary Model [10]). For system (1), signals
ut, yt, vt and the auxiliary signals xt,wt in (21) satisfy

xt+1 = Axt +But +wt, yt = Cxt +Dut + vt (22)

with A ∈ Rnaux×naux , B ∈ Rnaux×m, C ∈ Rp×naux given by

A := col(0mL×naux , 0p(L−1)×naux
,C, 0pL2×naux

)

+ Diag(Dm,Dp,DpL), with Dq :=
[

Iq(L−1)
0q×q

]
,

B := col
(
0m(L−1)×m, Im, 0p(L−1)×m, D, 0pL2×m),

C := [ΓU,ΓY,F− ΓYE] ,

with matrices ΓU,ΓY in (20), and zero-one matrices E :=
Toep(0p×pL, S1, . . . , SL−1) and F := [SL, SL−1, . . . , S1]
composed by Sj := [0p×(j−1)p, Ip, 0p×(L−j)p] for j ∈ Z[1,L].

The output noise vt in (22) is precisely the same as in
(1); wt appears now as a new disturbance of zero mean and
the variance Σw := Diag(0(naux−pL)×(naux−pL),Σ

ρ), where
Σρ := OΣwOT ∈ SpL+ is the variance of ρt. The matrices
A,B,C, D in (22) are known given offline data described
in Section III-B-1, since they only depend on ΓU,ΓY, D
which are data-representable via Lemma 2. Hence, the

auxiliary model (22) can be interpreted as a data-representable
realization of the system (1).

3) Data-Driven State Estimation, Feedback and Constraint:
The auxiliary model (22) will now be used for both state es-
timation and constrained feedback control purposes. Suppose
we are at a control step t = k in a receding-horizon process.
Similar to (7), auxiliary state xk has condition E[xk] = µx

k

and Var[xk] = Σx, where µx
k is known from the state

estimator to be introduced next; at the initial time k = 0,
the initial mean µx

ini is a parameter; the variance Σx is the
unique positive semi-definite solution to DARE (23a),

Σx = (A− LLC)ΣxAT +Σw (23a)

LL := AΣxCT(CΣxCT +Σv)−1 (23b)

given (A,C) detectable and (A,Σw) stabilizable [10, Lemma
5]. The state estimator for the auxiliary model (22) is
analogous to (9), with observer gain LL ∈ Rnaux×p in (23b),

νt := yt −Cx̂t −Dut, t ∈ Z[k,k+N) (24a)
x̂t+1 := Ax̂t +But + LLνt, t ∈ Z[k,k+N) (24b)
x̂k := µx

k (24c)

where x̂t is the estimate and νt is the innovation. The output-
error-feedback policy (11) in SMPC is now extended as πt(·),

ut ← πt(ν [k,t)) := ut +
∑t−1

s=k M
s
t νs (25)

where the nominal input ut ∈ Rm and gain matrices Ms
t ∈

Rm×p are decision variables. Let xt ∈ Rnaux and yt ∈ Rp be
the resulting nominal state and nominal output as

xt+1 := Axt +But, t ∈ Z[k,k+N), (26a)
yt := Cxt +Dut, t ∈ Z[k,k+N), (26b)
xk := µx

k. (26c)

The SOC formulation of constraint (6) is similar to (15),

2
(
1−α
α

)1
2

∥∥(Ση)
1
2ΛT

t ei
∥∥
2
≤ −eTi

[
ut
yt

]
+ fi, i ∈ Z[1,q] (27)

with matrices Ση := Diag(Σx, IN ⊗Σw, IN ⊗Σv) ∈ Snη-aux
+

and Λt ∈ R(m+p)×nη-aux with nη-aux := naux + nauxN + pN ,

Λt :=

[
∆U

t−k

∆Y
t−k

]
M∆M +

[
0m×nη-aux

∆A
t−k

]
(28)

where ∆U
i ∈ Rm×mN , ∆Y

i ∈ Rp×mN , ∆A
i ∈ Rp×nη-aux and

∆M ∈ RpN×nη-aux can be found in Appendix A, and where
M∈ RmN×pN is a concatenation of Ms

t as in (14).
4) SDDPC Optimization Problem and Algorithm: With the

results above, we are now ready to mirror the steps of getting
(17) and formulate a distributionally robust optimized-gain
Stochastic Data-Driven Predictive Control (SDDPC) problem,

minimize
u,Ms

t

(30) s.t. (27) for t ∈ Z[k,k+N), (26), (28) (29)

where the quadratic cost function is analogous to (16) as∑k+N−1
t=k

[
Jt(ut,yt) + ∥Diag(R,Q)

1
2Λt(Σ

η)
1
2 ∥2F

]
. (30)

Problem (29) has a unique optimal solution if feasible,
similar as problem (17). The solution (u,Ms

t ) finishes
parameterization of the control policies π[k,k+N) via (25),
where the first Nc policies are applied to the system. At
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the next control step t = k +Nc, the state mean µx
k+Nc

is
iterated as the estimate x̂k+Nc

via (9), with a backup value
µx̄

k+Nc
of µx

k+Nc
equal to the nominal state xk+Nc via (10).

The method is formally summarized in Algorithm 2.

Algorithm 2 Distributionally Robust Optimized-Gain Stochas-
tic Data-Driven Predictive Control (DR/O-SDDPC)
Input: horizon lengths L,N,Nc, offline data ud, yd, noise

variances Σρ,Σv, initial-state mean µx
ini, cost matrices

Q,R, constraint coefficients E, f , and CVaR level α.
1: Compute Γ and D as in Section III-B-1 using data ud, yd,

and formulate matrices A,B,C as in Section III-B-2.
2: Compute Σx,LL via (23) and ∆U

[0,N),∆
Y
[0,N),∆

A
[0,N),

∆M through Appendix A.
3: Initialize the control step k ← 0 and set µx

0 ← µx
ini.

4: Solve u[k,k+N) and Ms
t from problem (29).

5: If (29) is infeasible then Set µx
k ← µx̄

k, and redo line 4.
6: for t from k to k +Nc − 1 do
7: Input ut ← πt(ν [k,t)) in (25) to the system (1).
8: Measure yt from the system (1).
9: Compute νt via (24).

10: Set (µx
k+Nc

,µx̄
k+Nc

) as (x̂k+Nc
,xk+Nc

) in (24), (26)
11: Set k ← k +Nc. Go back to line 4

C. Theoretical Equivalence of SMPC and SDDPC

We establish theoretical results in this section, starting by
an underlying relation between the means of xk and xk.

Lemma 4 (Related Means of xk and xk [10]). If µx
k is the

mean of xk and µx
k is the mean of xk, then they satisfy

µx
k = Φorig µ̃

x
k , µx

k = Φaux µ̃
x
k (31)

for some µ̃ x
k ∈ RmL+n(L+1), where matrices Φorig,Φaux are

Φorig :=
[
C, AL, Cw

]
, Φaux :=

[
ImL

G O Gw
IL⊗O

]
,

with the matrices C, O, G defined in Section III-B-1 and Cw :=
[AL−1, . . . , A, In], Gw := Toep(0p×n, C, CA, . . . , CAL−2).

As we assume (31) holds, the SMPC and SDDPC problems
will have equal feasible and optimal sets.

Proposition 5 (Equivalence of Optimization Problems [11]).
If the parameters µx

k,µ
x
k satisfy (31), then the optimal (resp.

feasible) solution set of SDDPC problem (29) is equal to the
optimal (resp. feasible) solution set of SMPC problem (17).

We present in Theorem 7 our main theoretical result, saying
that our proposed SDDPC control method and the benchmark
SMPC method will result in identical control actions, under
idealized conditions in Assumption 6.

Assumption 6 (SDDPC Parameter Choice w.r.t. SMPC).
Given the parameters in Algorithm 1, we assume the pa-
rameters in Algorithm 2 satisfy the following.
(a) L is sufficiently large so that O has full column rank.
(b) Data ud, yd comes from the deterministic system (18); the

input data ud is persistently exciting of order L+ 1+ n.

(c) Given Σw in Algorithm 1, the parameter Σρ in Algorithm
2 is set equal to OΣwOT.

(d) Given µx
ini in Algorithm 1, the parameter µx

ini in Algorithm
2 is selected as Φauxµ̃

x
ini for some µ̃ x

ini ∈ RmL+n+nL

satisfying µx
ini = Φorigµ̃

x
ini. (Such µ̃ x

ini always exists
because Φorig has full row rank.)

Theorem 7 (Equivalence of SMPC and SDDPC). Consider
system (1) with initial state x0 and a specific noise realization
{wt, vt}∞t=0, and consider the following two processes:
a) decide control actions {ut}∞t=0 by executing Algorithm 1;
b) decide control actions {ut}∞t=0 by executing Algorithm 2,

where the parameters satisfy Assumption 6.
Then, the state-input-output trajectories {xt, ut, yt}∞t=0 re-
sulting from process a) and from process b) are the same.

Proof. The proof is similar to the proof of [10, Thm. 9],
requiring Proposition 5 and the fact that both problems (17)
and (29) have unique optimal solutions if feasible.

While in practice Assumption 6 may not hold, noisy offline
data can be accommodated as discussed in Section III-B-1,
and Σρ becomes a tuning parameter of our SDDPC method.

IV. NUMERICAL CASE STUDY

In this section, we numerically test our proposed method
on a batch reactor system applied in e.g. [8]. The system
has n = 4 states, m = 2 inputs and p = 2 outputs, and the
discrete-time system matrices with sampling period 0.1s are

[
A B
C

]
=


1.178 .001 .511 -.403 .004 -.087
-.051 .661 -.011 .061 .467 .001
.076 .335 .560 .382 .213 -.235
0 .335 .089 .849 .213 -.016
1 0 1 -1
0 1 0 0

 .

The process/sensor noise on each state/output follows the
t-distribution of 2 DOFs scaled by 10−4, which is a heavy-
tailed distribution. Control parameters are reported in TABLE
I. We collected offline data of length Td = 600 from the
noisy system, where the input data was the outcome of a
PI controller U(s) =

[
0 −1/s

2+1/s 0

]
Y (s) plus a white-noise

signal of noise power 10−2. In the online control process,
the reference signal is rt = [0, 0]T from time 0s to time 30s,
alternates between [0, 0]T and [0.3, 0]T from 30s to 60s, and
is rt = [0.5, 0]T from 60s to 90s. With our proposed SDDPC
method, the first output signal is in Fig. 1; the signal remains
around 0.4 from 60s to 90s because of the safety constraint
specified in TABLE I.

For comparison purposes, we implemented the simulation
with different controllers. In addition to distributionally robust
optimized-gain (DR/O) SMPC and SDDPC in this paper, we
applied the SMPC and SDDPC frameworks from [10], which
use chance constraints and a fixed feedback gain (CC/F).
To observe separate impacts of using the DR constraint and
optimized gains, we also implement SMPC and SDDPC
with DR constraints and a fixed feedback gain (DR/F). We
also compare to DeePC, SPC and deterministic MPC as
benchmarks. The model used in MPC methods is identified
from the same offline data in the data-driven controllers.
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Fig. 1. The system’s first output signal with DR/O-SDDPC.

The simulation results are summarized in TABLE II. We
evaluate (i) the controllers’ tracking performance through the
tracking cost from 0s to 60s and (ii) the controllers’ ability
to satisfy constraints according to the cumulative amount
of constraint violation between 60s and 90s, when the first
output signal hits the constraint margin. When the reference
signal is constant (0s–30s), SMPC and SDDPC tracked better
than other methods, aligning with the observation in [10].
Comparing DR/F and CC/F methods, the controllers with DR
constraints achieved lower amounts of constraint violation
(60s–90s), while the tracking performance is slightly worse
during 30s–60s when the reference signal has frequent step
changes. Comparing DR/O and DR/F methods, we observe
that the methods with optimized gain achieved lower tracking
costs when the reference signal changes frequently (30s–60s).

V. CONCLUSIONS

We proposed a Stochastic Data-Driven Predictive Control
(SDDPC) method that accommodates distributionally robust
(DR) probability constraints and produces closed-loop control
policies with feedback gains determined from optimization.
In theory, our SDDPC method can produce equivalent
control inputs with associated Stochastic MPC, under specific
conditions. Simulation results indicated separate benefits of
using DR constraints and optimized feedback gains.

APPENDIX A. DEFINITION OF ∆U
i , ∆Y

i , ∆A
i , ∆M

The matrices ∆U
i ∈ Rm×mN ,∆Y

i ∈ Rp×mN ,∆A
i ∈ Rp×nη

for i ∈ Z[0,N) and ∆M ∈ RpN×nη in (13) are what follows,
col

(
∆U

0 , . . . ,∆
U
N−1

)
:= ImN

col
(
∆Y

0 , . . . ,∆
Y
N−1

)
:= Ξ(A) (IN ⊗B)

col
(
∆A

0 , . . . ,∆
A
N−1

)
:= [Θ(A),Ξ(A), IpN ]

∆M := [Θ(AL),Ξ(AL), IpN − Ξ(AL) (IN ⊗ LL)]

where we let Θ(A) := col(C,CA, . . . , CAN−1) ∈ RpN×n,
Ξ(A) := Toep(0p×n, C, CA, . . . , CAN−2) ∈ RpN×nN , and
similarly define Θ(AL),Ξ(AL) with AL := A− LLC.

The matrices ∆U
i ,∆

Y
i ,∆

A
i ,∆

M in (28) are computed (with
underlying Θ(A),Ξ(A),AL) in the same way as above, with
A,B,C, LL, n replaced by A,B,C,LL, naux, respectively.
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