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Linear time-invariant solutions for LQ optimal control problems with
terminal-state affine constraints

L. Tarantino, A. Astolfi and M. Sassano

Abstract— We study the problem of steering the state of a
system from a given initial condition towards a prescribed affine
set while minimizing a quadratic cost functional. While the
optimal solution is defined in terms of a time-varying open-
loop control law, herein the problem is solved by limiting the
search for the optimal input in the space of linear time-invariant
feedback control laws. This choice preserves the LTI nature of
the original plant in closed loop. Within this framework, the
solution of the underlying optimal control problem hinges upon
the solution of a nonlinear constrained optimization problem.
Constructive algorithms and comparison with the time-varying
optimal control law are discussed.

Index Terms— Optimal control, Optimization, Linear systems

I. INTRODUCTION

Over the last century two main, somewhat alternative,
methodologies for solving optimal control problems have
been envisioned [1], [2], [3], [4], [5]. These are nowadays
considered as the two cornerstones of the theory concerning
the problem of controlling a dynamical systems in an optimal
fashion: Dynamic Programming (DP) (see, e.g., [6], [7])
and Pontryagin’s Minimum Principle (PMP) (see, e.g., [8]).
Methods inspired by DP are particularly appealing for a
number of reasons. In particular DP provides necessary and
sufficient conditions of optimality, characterizing both the
optimal (feedback) solution and the optimal cost for any
initial condition in the state space. The optimal solution is
obtained from the knowledge of the solution to the so-called
Hamilton Jacobi Bellman partial differential equation (HJB-
PDE). Obtaining a closed-form solution to the HIB-PDE is,
in general, a daunting task. In the case of linear dynamics,
however, such a solution revolves around the solvability of an
algebraic equation, the celebrated Algebraic Riccati Equation
(ARE), whenever the time horizon is infinite. In this specially
structured setting the optimal solution is then yielded by a
time-invariant state feedback. On the other hand, the use

L. Tarantino and M.Sassano are with the Dipartimento di Ingegne-
ria Civile ed Ingegneria Informatica (DICII), Universita degli Studi di
Roma "Tor Vergata", Via del Politecnico 1, 00133, Roma, Italy (e-mail:
lorenzo.tarantino @uniroma2.it, mario.sassano@uniroma2.it)

A. Astolfi is with the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London, SW7 2AZ, UK and with Diparti-
mento di Ingegneria Civile ed Ingegneria Informatica (DICII), Universita
degli Studi di Roma "Tor Vergata", Via del Politecnico 1, 00133, Roma,
Italy (e-mail: a.astolfi@ic.ac.uk)

This work has been partially supported by the Italian Ministry for
Research in the framework of the 2020 Program for Research Projects
of National Interest (PRIN), Grant No. 2020RTWES4; by the European
Union’s Horizon 2020 Research and Innovation Programme under grant
agreement No. 739551 (KIOS CoE); and by the EPSRC grants EP/W005557
and EP/X033546.

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

of a finite horizon of optimization affects the nature of the
problem and its solution, so that the HIB-PDE reduces to
a Differential Riccati Equation (DRE), leading to a time-
varying state feedback.

The computational complexity intrinsically related to the
computation of a solution to the HIB-PDE represents the
major drawback of methods relying on DP, together with the
fact that, within this framework, problems characterized by
the presence of constraints involving the state variables and
possibly in the presence of free terminal time are difficult
to handle (see [9], [10]). On the other hand, such a class of
problems becomes tractable within the framework provided
by PMP. It is worth pointing out, however, that with respect
to DP, methods based on PMP only provide necessary con-
ditions of optimality and, moreover, the optimal solution is
characterized, in the finite horizon setting, by the solution of
a two-point-boundary-value problem (TPBVP). As a conse-
quence this strategy yields an open-loop control law. Closed-
form parameterization of the optimal open-loop solutions to
such a problem, in the setting of fixed terminal time, have
been provided in [11], together with results concerning the
existence of a solution to such a class of problems. An
extension of these results towards the case involving free
terminal time has been provided in [12], although stated in
the context of optimal control of hybrid systems.

Considering the setting of LQ optimal control problems
with terminal-state affine constraints and free terminal time,
the main contribution of this work is to provide a constructive
characterization of an optimal solution within the set of
linear time-invariant feedback control laws. The result is
achieved by resorting to an equivalent formulation of the
control task in terms of a nonlinear optimization problem.
The derivation of such nonlinear programming problem from
the original problem is thoroughly discussed and analyzed.
The problem is characterized by the presence of an additional
constraint, involving a Lyapunov-like matrix equation. Once
solved, the solution of such an equivalent problem provides
the optimal time-invariant gain matrix. This has the simple
yet powerful consequence of preserving the linearity as
well as the time-invariant nature of the underlying plant.
Conversely, the candidate optimal solution, which is naturally
given by the solution of a two-point boundary value problem,
inevitably leads to an open-loop solution. When implemented
on the original plant, such a solution induces a time-varying
contribution to the closed-loop system, as discussed in [11]
and [12].

The rest of the paper is organized as follows. The class
of problems considered, together with some preliminaries,
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is introduced in Section II. The main result, mainly involv-
ing the constructive characterization of the nonlinear opti-
mization problem equivalent to the original optimal control
problem, providing the optimal time-invariant state feedback
control law, is presented in Section III. Moreover, a gradient-
based strategy, providing a locally optimal solution to the
equivalent nonlinear optimization problem, is discussed in
Section IV. Section V provides simulation results in which
the proposed approach is compared against the one arising
in the open loop scenario. Finally, a perspective on future
work and some concluding remarks are given in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES
The main purpose of this paper is to study the class of LQ

optimal control problems described by the cost functional

I 2 2
2/, [z(T)llg + l[w(T)]| R dr,

min J(u(-),tr) = min
Jnin (u(-),tf) o

subject to the linear dynamics W
z(t) = Az(t) + Bu(t), z(ty) = xo, (2)

and to the terminal-state affine constraints
x(z(ty)) :== Sa(ty) + d = 0. 3)

The variable = : R — R"™ describes the state of the system,
while u : R — R™ denotes the control input which acts on
the system. Moreover A € R**", B € R"*™, and t; >
to > 0 is the final time. The matrices Q € R™*", Q = QT
and R € R™*™, R = R, are assumed to be positive semi-
definite and positive definite, respectively. Finally S € R/,
with { < n, is assumed to be full-row rank and d € R!. The
following structural assumption is required in what follows.

Assumption 1. The pair (A, B) is reachable. o

By introducing the costate variable \ : R — R™ and the
(minimized) Hamiltonian function associated to the problem
(1), (2), (3), namely the function

1 1
H(z,)\) = §xTQx - 5ATBR-HBTA —\Az, @

it is well known (see, e.g. [2], [3]) that, for a prescribed initial
condition zy € R", necessary conditions of optimality for the
problem defined by (1), (2), (3) are provided by the two-point
boundary value problem described by the equations

&= Az — BR BT\, x(ty) = o,
A=—Qx— AT\ Atp) =:Ap==S"p,
%)
Smf +d=0,
H(zy, Ap) =0,

where x; = z(t;) and p € R'. Then, a candidate optimal
control law is provided in terms of the open-loop policy

u*(t) = —R7'BTA(1). (6)

Remark 1. An optimal control problem similar to (1), (2),
(3) has been considered in [11], although in the presence

of a prescribed value for the terminal time t; € Rq. It is
shown therein (see [11, Prop. 1]) that the problem admits an
optimal solution for specific ¢;. Therefore, existence of the
optimal control law for the cost functional (1), subject to (2)
and (3), is intimately related to the properties of the function
tps J(tg) :=min, J(u(-), ty). A

Two relevant observations are in order about the compu-
tation and the structure of the candidate optimal solution
provided by (5) and (6). As far as the former aspect is
concerned, (5) entails that the solution revolves around
the solution of an ordinary differential equation with split
boundary conditions, which may not be straightforward to
find. Furthermore, regarding the latter aspect, the intrinsically
open-loop nature of the control law derived in (6) may not
be particularly desirable in practice, as it is not robust to
uncertainties or perturbations. The above reasoning motivates
the results discussed herein, which consist in addressing and
solving the optimal control problem defined by (1), (2),
(3) while further constraining the set of admissible control
laws to the class of linear, time-invariant, feedback policies.
The following statement introduces formally the problem
investigated in the paper.

Problem 1. Let xp € R™ be given and suppose that
Assumption 1 holds. Suppose that u belongs to the set of
feedback policies F := {u(-) = Kuz(:), K € R™*"},
namely

u(t) = Kx(t), (7)

for all t € [to,tf], with ' € R™*™. Find, if they exist, a
final time ¢ > ¢o and a constant gain matrix K* = K *(z0)
such that v* = K*x minimizes (1) with respect to all u € F,
with ¢ replaced by t}, along the trajectories of (2), (7), and
such that x(z(t})) = 0. o

The restriction to the class of time-invariant state feedback
described by (7) allows characterizing the optimal terminal
time ¢ and the optimal time-invariant gain matrix K~ (z0) by
relying on the solution to an equivalent constrained nonlinear
optimization problem. This is precisely the purpose of the
next section, in which such an equivalent problem is formally
introduced and discussed. In the following, without loss of
generality, it is assumed that ¢y = 0.

III. TIME-INVARIANT FEEDBACK SOLUTION

The objective of this section is to provide a constructive
characterization of the solution to Problem 1. As discussed
in the previous section, the latter constitutes, in turn, a
time-invariant feedback approximate solution to the optimal
control problem defined by (1), (2), (3).

Proposition 1. Fix xy € R" and consider the nonlinear
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optimization problem

i 5 ool (sa)
st Sexligpg4d=0 (8b)
AL+ LAk = et Qe Kt — Qe (8¢c)
L=L">0,t; >t (8d)

with Ag := A+BK, Qi := Q+K "RK. Suppose that there
exists an optimal solution (K*, s L*) to (8). Then the pair
(t}, K™*) constitutes a solution for Problem 1. Moreover, the
optimal cost provided by implementing v~ = K*x is given
by J* = § ol o

Remark 2. As implicitly suggested by the statement of
Proposition 1, the additional constraint imposed to the con-
trol law, namely the requirement v € JF, is such that
Problem 1 cannot admit a solution for xy; = 0 whenever
d # 0 in (3). In fact, with g = 0 and u € F, the closed-
loop dynamics (2), (7) become #(t) = Agx(t),zo = 0.
This in turn implies that x(¢) = 0 for all ¢ > 0 and hence
Sx(ty) = 0 violates the terminal constraint unless d = 0. A

Remark 3. Although the nonlinear programming problem (8)
provides a finite-dimensional equivalent formulation of Prob-
lem 1, its solution appears to be a challenging task in
practice. This is mainly due to the presence of exponential
constraints involving the product of two unknown variables,
namely t; and K. To overcome, or at least circumvent,
such a computational bottle-neck it may be possible to
envision iterative strategies that ensure (local) convergence
to a solution of (8). This approach is however enabled only
by the ability of efficiently computing the time-to-impact
function' @ () for a fixed value of the gain matrix K (see
Section IV-A) and, subsequently, of suitably updating the
current estimate of the optimal feedback matrix (see Section
IV-B). These aspects are addressed in the following section.

A

IV. LOCALLY-CONVERGENT GRADIENT DESCENT
STRATEGY

The main purpose of this section is to provide a con-
structive, iterative, strategy that ensures local convergence
to a solution of the nonlinear programming problem (8).
More precisely, as detailed below, convergence is guaranteed
provided the initial condition of (2) is sufficiently close to the
affine set described by the constraint x(z) = 0 and the matrix
K sought for is sufficiently small. The following standing
assumption is required to hold throughout the rest of this
section.

Assumption 2. The terminal constraint is defined as in (3)
with [ = 1, namely x(z) = 0 defines a (n — 1)-dimensional
affine subset of R". o

!Given an autonomous linear system & = Az and a prescribed affine
set S, the time-to-impact function ¢(zg) : R™ — R U {oo} is defined as
the smallest time instant 77 such that eA77zo € S, whereas p(xo) = o0
whenever the trajectory ensuing from xg does not intersect S.

A. Computation of the time-to-impact function

Suppose that there exists a sufficiently small constant
p € Ry such that |Szg + d|| < p, namely the initial
condition z is sufficiently close to the affine set described
by (3). The above hypothesis, together with the selection
of a sufficiently small matrix K, implies that the matrix
exponential e(AtBK)t may be approximated, for small values
of ¢, via the Taylor expansion of order v € N according to

e(A+BE)t z% %(A + BK)iti . 9)

Therefore, provided Assumption 2 holds, the time-to-impact

function ¢x (xg) of (2), (7), for fixed K, with respect to

(8b) can be approximated on the basis of the following
observation.

The substitution of the matrix exponential e(ATB5) a5 in

(9) into the constraint (8b) yields the scalar equation
1 1
0=d+ (Sxo)t + i(SAK.IQ)f? + ...+ ;(SAVK.I())(JJV
= TTK (t)
(10)

with respect to the scalar variable t € R (recall that Ax =
A+ BK). In fact, S(A+ BK)'zg € R for all i € N. Define

E:={r7 € Ry : mx(77) = 0}, (11)

namely the set of positive real roots of the polynomial (10).
Then, the time-to-impact function is approximated by

min{=} if|Z] >0

ek (T0) = { -

where |E| denotes the cardinality of the set =.

(12)
otherwise

Remark 4. By truncating the Taylor series expansion (9) at
terms of order v = 2, the closed-form expression of the
solutions to (10) is given by

TI:t _ —S.’EQ + \/(51'0)2 - 4(SAK£C0)d
(SAkwo)

Therefore, the approximation of the time-to-impact function
(12) yields a finite value, provided that both solutions 7, and
;" are real and that at least one of them belongs to the set =.
Moreover closed-form solutions which can be given in terms
of elementary operations are available up to order v = 4,
whereas for order v > 5, and only for certain polynomial
equations, one must resort to the so-called Galois Theory
(see [13, Chap. 22]). In general, for large v practical methods
such as the Newton method (see [14, Chap. 5]) are more
appealing when solving the problem of finding the roots of
a given polynomial. A

(13)

Example 1. The constructions around equations (10)-
(12) are illustrated via the following numerical simulation
involving the system (2) with

0 -2 -1 -1

1 -1 0 2
-2 =2 0o -2 |’
-1 -1 1 1 —

A= B= (14)

\
= =0 o
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Fig. 1: Time histories of the map x(z(¢t)) (blue line) and
of its successive approximations, obtained by truncating the
Taylor series expansion (9) at order v = 1 (red line), v = 2
(green line), v = 3 (cyan line). The point indicated by a star
denotes the positive real root of the actual x(z(t)), whereas
the dashed portions of the trajectories highlight the zero-
crossing of x(z(t)).

Suppose that S = [ 1 —1 1 —1],d =3 and 2o =
[ 1 11 1 }T. Suppose that K is selected according to
K =1[01250 —18 1.125 6.875 |.Figure I depicts the
time histories of the function x : R” — R, t — x(x(¢))
(blue line) and of its successive approximations, obtained
by evaluating the Taylor series expansion (9) respectively
at order v = 1 (red line), v = 2 (green line), v = 3
(cyan line). In the specific case study, the function ¢ +—
x(z(t)) intersects the zero value at ¢ = 0.14 (blue star),
as illustrated in Figure 1. The latter figure further highlights
how the third-order approximation is already sufficient to
capture the behavior of the function x near its root with
respect to the time variable. It must be stressed, however,
that this approximation better captures such a behavior for
sufficiently small values of time ¢. Therefore, in the presence
of large values of the matrix K, an expression based on the
Taylor series expansion (9) may fail to provide an accurate
approximation of the time to impact, even for large values
of v. A

B. Gradient descent update

The constructions in Section IV-A allow to address the
problem of satisfying (8b) for a fixed value of the matrix
K. On the other, towards an iterative approach to compute a
solution to (8), one must also be able to compute a suitable
update of the value of K such that the cost induced by (8c)
is decreased. To this end, consider the time histories of the
closed-loop, autonomous, dynamics (2), (7), namely

x(t) = eAKt;L"Q, (15)

Algorithm 1

Require: Matrices A, B, Q, R, S, vector d, initial condi-
tion xg, initial guess on the gain matrix K, real scalar
e > 0, order v of the Taylor series expansion of e,
step-size v € R~g, v € (0,1)
Begin Initialization
1. AKp — A+BKP, QKP — Q+K;RKP
2. get ty, as the minimal root of 7x, (t) = 0 in =
3. get L, as the positive definite solution of

T Aty At
AKPLP +L;DAKP = e Kp fPQer Kplfp _QKP

4. Jp + Lo Lyxg
End Initialization
Do
Fori=1:m,7=1:n
5. KZUJ <— Kp + €Eij,
6. get t v as the minimal root of 7y (f) =0
in 2

7. get Lj; as the positive definite solution of

.
ATy Ly + L Ary=e 50 Quey 555 — Quey
8. Jjj %xJL}’jmo
9. approximate (7, j)-th partial derivative as in (19)
End
10. approximate V g J according to (20)
11. Kpy1 < K, — Vi,
14[(20Jrl < A+BKP+1, C?KPJrl < Q+K;+1RKP+1
12. get ty, , as the minimal root of 7x,,, (t) =0 in E
13. get Ly as the positive definite solution of
A; LP+1 + LP+1AKP+1

p+1

A

T ty A
— K. 1 K.
= ¢ fpt1lpt QKP+1€

t
19 p41 —
p+17 p+ QKP+1

14. Jp+1 — %x(—l)—Lerle’ Jp — Jp+1, Kp — Kn
While ||V ]| > 10~

and

tr
J(Km(~)7tf) =: JK,tf = %x(—)r (/ eA;TQKeAKTdT> xg,

' (16)
obtained by replacing (15) into the control law (7), and, in
turn, the latter into the cost functional (1). Since the direct
evaluation from (16) of VgJ € R™*", representing the
main ingredient enabling a gradient descent strategy, is in
general a daunting task, due to the non-trivial dependence
of J from K, an approach to circumvent such a difficult
task is presented herein, based on the approximation of the
derivatives of J with respect to the (4, j)-th element of K. To
begin with, let (K, ty,, L,,) be an admissible solution for (8)
at a certain iteration p and let € € R+ be sufficiently small.
Consider the variation of K, along the direction given by
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E; ; the (i, j)-th element of the canonical basis? of R™*",
namely

Kp =K, +eEjy;. (17)

To compute the sensitivity of the cost induced in the direction
associate to K}, it is required to first ensure feasibility of
such a varlatlon This objective is achieved by determining
a solution ¢y € Z via the approximation of the equation
characterizing the constraint on the terminal state, provided
in the Section IV-A. Let ¢y denote such a solution. It is
then possible to solve the Lyapunov-like equation (8c), with
ty and K replaced by ¢ e, and K}, respectively. On the basis
of the knowledge of the latter solution, denoted as L; ;, one
may then determine the sensitivity of the cost induced by
K7, hence in the direction E” according to

J;jj— xOL X0, (18)

from which one can approximate the partial derivative of .J
with respect to K} ; as

o7 1

~=(J5 = Jy). 1
8Kl”] € (‘]1,] ‘];D) ( 9)
By repeating the previous reasoning for all 7 = 1,...,m,
7 =1,...,n, it is then possible to obtain the approximation
of ViJ as
oJ oJ
aKfl o 8Kfn
Vi J(Kp) = : : ; (20)
oJ oJ
a]:{;Unl o aK;Jnn

from which it is finally possible to provide, for the current
iteration p, the gain update law

Ky = Kp — Vi, Q1)

Therefore, by the gradient nature of the update law (21),
there exists a step size v € (0,1) such that K, constitutes
an updated value of the gain matrix with the property that
the cost J is decreased, provided K, is feasible for the
overall optimization problem (8). This is, in turn, ensured
by the existence of ¢y, € E, hence satisfying (8), together
with the existence of a positive definite solution to (8c).

C. Locally convergent algorithm

Building on the constructions discussed in the two previ-
ous sections, the purpose herein is to summarize the proposed
iterative method by means of Algorithm 1. Given the initial
guess on the gain matrix K, the initialization phase (steps 1-
4) provides the corresponding initial guesses ¢y, , obtained
according to the constructions introduced in Section IV-A,

2The matrix E; ; given by

1
(Ei,j)r,c = {

0 otherwise

ifr=i,c=j

represents the (4, j)-th element of the canonical basis of R™>*™.

and L,, thus ensuring the feasibility of the initial guess K.
The updated value of the gain matrix K, is then iteratively
evaluated following the steps introduced in Section IV-B
(steps 5-11), until the stopping criterion (last line), requiring
that the Frobenius norm® ||V J|| is less than a given
tolerance, is satisfied. These iterations in turn, provide a
sequence of {K,} along which the corresponding values of
the sequence of updated costs {.J,} (each term obtained by
following steps 12-14) are decreasing, thus converging to a
local extremum of (8), provided it exists. Finally note that,
by construction, such an extremum cannot correspond to a
local maximum.

V. A SIMPLE CASE STUDY

The effectiveness of the proposed strategy is corroborated
by means of numerical simulations discussed in this section.
Towards this end, consider a LTI system defined as in (2)

with 0 1 0
=l =[]

The desired cost functional is defined as in (1) with the
weighting matrices described by Q = I and R = 1, where
I denotes the identity matrix. Furthermore, it is assumed
that the constraint on the terminal state is captured by the
scalar-valued function y : R? — R, namely with [ = 1,
as in (3) with S = [1 1] and d = —2. Therefore, the
constraint defines the affine set consisting of the straight line
in the (z1,z2) plane passing through the points (0,2) and
(2,0). Consistent with the comments discussed in Remark 2,
the set (0, 2] x (0, 2] is considered for admissible initial
conditions. Figure 2 depicts the minimal value of the cost
functional (1) provided by the optimal open loop control
law (5), (6) (solid blue surface), together with the minimal
value of the cost obtained by implementing the time-invariant
feedback control law obtained by solving the nonlinear
optimization problem (8) (light-gray transparent surface).
The dashed red line depicts the set x(z) = 0. Figure 3
instead shows the time histories of the trajectories obtained
by implementing the optimal open-loop (dashed blue line)
and the time-invariant feedback (solid yellow line) control
laws, initialized at o = (0.5, 0) (star) and xzo = (1, 1.8)
(diamond). It is interesting to observe that, for the former
initial condition, the trajectory induced by the time-invariant
feedback essentially recovers the trajectory yielded by the
implementation of the optimal open-loop control law. In this
case, the solution to (8) yields K* = [1.1979, —0.4407],
t}FB = 1.14113s and Jrp = 0.8285, with the optimal
open-loop solution yielding ¢3 = 1.4100s and Jo, =
0.8267. For the latter initial condition, on the other hand,
a different behavior can be observed for the two resulting
trajectories, with the one arising from the implementation
of the feedback control law moving away from the one
obtained by implementing the optimal open-loop solution,

(22)

3Given a matrix M € R™*™ its Frobenius norm is defined as || M || z :=
V/tr(M T M), in which, for a given square matrix I' € R™%™ the trace
operator, tr(-) is defined as the map tr : R"*™ — R, tr(T") — I'1 1 +
B Fn,n-
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Fig. 2: Minimal cost for all initial conditions = € (0, 2] x
(0,2] for the problem defined by (1), (2), (3) obtained via
the optimal open-loop solution (6) (blue solid surface) and
by the linear time-invariant feedback (7) (gray transparent
surface).
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Fig. 3: Time histories of the trajectories obtained by im-
plementing the optimal open-loop solution (6) (blue dashed
line) and by implementing the linear time-invariant feedback
(7) (solid yellow line), starting from the initial conditions
2o = (0.5, 0) (star) and 2o = (1, 1.8) (diamond).

thus resulting in different values for both the terminal times
and the incurred cost. In particular the solution to (8) in this
case provides K* = [—1.4445, —6.0183], t3, = = 0.7372s
and Jpp = 3.1132, whereas the solution to the two point
boundary value problem (5) is such that t}OL = 0.4500s and
Jor = 2.5856.

VI. CONCLUSIONS AND FURTHER WORK

This paper has studied the problem of transferring the state
of a dynamical system from a given initial configuration

to a desired affine set, while minimizing a certain cost
functional along the induced trajectory. In terms of the
framework of optimal control problem, the problem above
can be formulated in terms of a finite-horizon optimal control
problem with terminal state constraints and a free terminal
time. While the solution to such a control problem can be
obtained by relying on constructions inspired by PMP, the
obtained solution may suffer from the drawback of being
described in terms of an open loop control law. Therefore,
herein we formulate a similar problem in which the set
of feasible control laws is restricted to the class of LTI
feedbacks from the current state. Within this framework, the
solution of the underlying optimal control problem hinges
upon the solution of a nonlinear constrained optimization
problem. An iterative method to tackle the latter nonlinear
programming problem has been proposed and corroborated
by numerical simulations in a simple case study.

Further work aims at envisioning strategies that allow
reducing the computational complexity related to the solution
of the proposed nonlinear programming problem, which
would enable its use in a more general formulation of the
problem involving linear hybrid systems.
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