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Abstract— Encrypted computation opens up promising av-
enues across a plethora of application domains, including
machine learning, health-care, finance, and control. Arithmetic
homomorphic encryption, in particular, is a natural fit for
cloud-based computational services. However, computations are
essentially limited to polynomial circuits, while comparisons,
transcendental functions, and iterative algorithms are notori-
ously hard to realize.

Against this background, the paper presents an encrypted
system identification service enabled by a reliable encrypted
solution to least squares problems. More precisely, we devise
an iterative algorithm for matrix inversion and present reliable
initializations as well as certificates for the achieved accuracy
without compromising the privacy of provided I/O-data. The
effectiveness of the approach is illustrated with three popular
identification tasks.

Index Terms— Control systems privacy, cyber-physical secu-
rity, system identification, homomorphic encryption

I. INTRODUCTION

In today’s increasingly connected world, security is cru-
cial for the safe and reliable operation of cyber-physical
systems. Encrypted control (see [1] for an introduction)
addresses this need by allowing the design and evaluation
of controllers without exposing sensitive information such
as system dynamics or input/output signals to (semi-trusted)
external parties (see, e.g., [2] resp. [3]). In this manner,
private control as-a-service is enabled. However, many of the
existing approaches assume an accurate system model, which
has to be identified beforehand. To complete such services,
it is desirable to also privately outsource the system identifi-
cation process, as knowledge and hardware limitations apply
equally to both system identification as well as controller
design and execution. To address this need, we propose an
encrypted system identification service.

Related works and our contributions. Many system
identification tasks can be reformulated as least squares
problems, which is also a classical problem in statistical anal-
ysis and machine learning. Therefore, different confidential
solution strategies for linear regression have been developed
in the emerging field of privacy-preserving machine learning,
despite the large focus on logistic regression [4]–[6]. The
existing literature can be classified by application scenarios,
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encryption methods, optimization algorithms, and provided
reliability analysis.

A wide variety of the existing works like [7] and [8]
focuses on linear regression over distributed data, which
enables the use of secure multi-party computation [9] for
the privacy-preserving calculations, but does not coincide
with the use case of system identification as-a-service. Early
works in the client-server setting like [10] use the partially
homomorphic Paillier cryptosystem and are forced to evalu-
ate the matrix inverse locally.

Iterative methods for computing matrix inverses have been
preferred over alternative approaches, as they are less compli-
cated to initialize compared to gradient-based methods [11]
and scale better than calculating adjugate matrices [12].
Publications adjacent to ours that are also based on Newton-
type or related methods do not consider a reliable encrypted
initialization [13], [14], or do so in a rather conservative
way [15]. In the very recent work [16], the authors give con-
vergence guarantees for solving linear regression problems
but they rely on plaintext information for the initialization
and do not certify the quality of the solution.

The present paper addresses the above shortcomings by
providing novel certificates for whether a prescribed error
bound can be met, while being largely independent of side-
knowledge. Furthermore, we improve on existing approaches
by integrating encrypted matrix inversion as a subtask with
a more comprehensive and practically relevant privacy-
preserving system identification framework via a tailored
least squares algorithm, where end-to-end privacy is provided
through leveled homomorphic encryption.

Outline. The remaining paper is structured as follows.
In Section II, we will revisit basics on linear system identi-
fication and homomorphic encryption and introduce iterative
techniques for finding inverses of matrices and scalars. Our
encrypted least squares algorithm is outlined in Section III,
where we also give details on a suitable initialization and
certificates for the accuracy of our solution. The implemen-
tation is discussed in Section IV before presenting numerical
case studies in Section V verifying the effectiveness of our
proposed method in several settings.

II. PRELIMINARIES

A. Basics on linear system identification

One of the simplest tasks in the framework of system
identification aims for fitting the coefficients ai and bj of
a single-input single-output (SISO) transfer function

G(z) = bmzm + ⋅ ⋅ ⋅ + b1z + b0
zn + an−1zn−1 + ⋅ ⋅ ⋅ + a1z + a0
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to L given I/O samples
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⎛
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⎝
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⎟
⎠
,

where ŷ(k) reflects the actual system outputs y(k) affected
by additive (and independent) Gaussian measurement noise.
A standard approach to estimate suitable model parameters
(see, e.g., [17]) is to minimize the Euclidean norm of
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−ŷ(ℓ − 1) . . . −ŷ(L − 2)
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where ℓ ∶= L − n. Similarly, the identification of multi-input
multi-output (MIMO) state space models

x(k + 1) = Ax(k) +Bu(k) (1)
y(k) = Cx(k) +Du(k)

is trivial under the simplifying assumption C = I and D = 0.
In fact, additionally assuming that the measurement noise is
identically distributed across all outputs1, useful estimates Â
and B̂ then follow from minimizing the Frobenius norm of

Â (ŷ(0) . . . ŷ(L − 2)) + B̂ (u(0) . . . u(L − 2))
− (ŷ(1) . . . ŷ(L − 1)) . (2)

Another straightforward identification is possible for multi-
step subspace predictors of the form

YN = A ξ + BUN ,

where YN and UN stand for I/O sequences of length N < L
and where ξ refers to a generalized initial condition reflect-
ing, e.g., the past n inputs and outputs, i.e.,

ξ(k) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u(k − 1)
⋮

u(k − n)
y(k − 1)
⋮
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Indeed, meaningful estimates Â and B̂ then follow from
minimizing the Frobenius norm of

Â (ξ̂(n) . . . ξ̂(L −N))

+ B̂
⎛
⎜
⎝

u(n) . . . u(L −N)
⋮ ⋮

u(N − 1 + n) . . . u(L − 1)

⎞
⎟
⎠

−
⎛
⎜
⎝

ŷ(n) . . . ŷ(L −N)
⋮ ⋮

ŷ(N − 1 + n) . . . ŷ(L − 1)

⎞
⎟
⎠
. (3)

1Note that more complex covariance models can be considered by
performing weighted minimizations in (2) and (3).

All three examples of system identification lead to a least
squares problem of the form

min
Z
∥MZ − V ∥2F , (4)

where the decision variable Z and the parameter V may be
vectors (as for the SISO transfer function case) or matrices
(as in the two other cases). In all cases, the entries of M and
V reflect entries of UL or YL. To specify the solution of (4),
we make the following assumption throughout the paper.

Assumption 1: The matrix M in (4) has full column rank.
The optimizer to (4) is then given by

Z∗ ∶=M †V (5)

with the pseudoinverse

M † ∶= (M⊺M)−1M⊺. (6)

B. Basics on public-key homomorphic encryption

Public-key homomorphic encryption (HE) schemes aug-
ment the basic encryption-decryption functionality of ordi-
nary cryptosystems by the capability of evaluating arithmetic
operations on encrypted values (i.e., without intermediate
decryption). This combination of features fits nicely with the
idea of a service for outsourcing a computational task: the
client can securely distribute its encrypted input data and
public key to an external computing party (server), while
keeping the secret key, sk, private. In this way, it is ensured
that the server can indeed process the client’s data while
keeping its privacy untainted. In the following, we will write
ct(z) to denote an encrypted representation (ciphertext)
of a value z, such that Decsk(ct(z)) = z, where Decsk
denotes decryption using the secret key. If z is a matrix, we
consider ct(z) to be the matrix that contains as its elements
ciphertexts of the corresponding elements of z.

Regarding the computational capability, we require a lev-
eled fully homomorphic scheme meaning that a fixed amount
of successive encrypted additions and multiplications of the
form

Decsk (ct(z1)⊕ ct(z2)) = z1 + z2, (7a)
Decsk (ct(z1)⊙ ct(z2)) = z1z2, (7b)

are supported. More specifically, we will make use of the
state-of-the-art CKKS cryptosystem [18], which is based on
the ring learning with errors problem. In CKKS, a complex
number (message) is encoded into an element of the poly-
nomial ring ZQc[X]/(XNr + 1) prior to encryption, where
Qc and Nr are the ciphertext modulus and ring dimension,
respectively. Notably, the encoding involves a discretization
step, which implies a limited fixed-point precision.

Now, the leveled nature of CKKS essentially means that
every ciphertext is associated with a level lc tied to the
ciphertext’s modulus via Qlc = Q0s

lc , where Q0 is the
base or decryption modulus and s is the factor between the
moduli of two adjacent levels. At the maximum level lmax,
we have Qlmax = Qc. By principle, encrypted multiplication
introduces a relatively large error into CKKS ciphertexts,
which can, however, be controlled by means of rescaling the
resulting ciphertext. Rescaling effectively reduces the level
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while preserving the represented value with high precision.
Practically speaking, the number of successive multiplica-
tions, kmul, that a given encrypted algorithm can perform,
starting from a newly encrypted value, is constrained by lmax

as an upper bound. This is all the more critical when it comes
to iterative algorithms. Thus, we will discuss kmul in more
detail in Section IV-C.

In the following, we will assume that encoding and rescal-
ing are applied where it is appropriate without explicitly
mentioning these operations for ease of presentation. Further,
we note that all arithmetic operations on scalar ciphertexts
used in the following can be reduced to (7). Analogously,
we consider operations on encrypted matrices to reduce to
the available encrypted operations on their entries following
the elementwise representation discussed above. In particular,
this implies that encrypted forms of subtraction and exponen-
tiation as well as matrix multiplication and transposition can
be readily used. In terms of the level of security provided by
the scheme, the most prominently contributing parameters
are the base modulus Q0, the maximum supported depth
lmax, the scaling factor s and the ring dimension Nr. Choices
for these values are discussed in Section IV-C. For a more in-
depth yet accessible introduction into HE and CKKS in the
context of encrypted control, the reader is referred to [19].

C. Basics on iterative matrix inversions and scalar divisions

As apparent from Section II-A, inverting a (data) matrix is
at the heart of many system identification approaches. Aim-
ing for an encrypted system identification, we need to carry
out the inversion in an encrypted fashion. Now, it is easy
to see that many standard procedures for inverting matrices
in plaintext are not suitable for an encrypted realization. In
fact, efficient algorithms like Gauß-Jordan elimination need
decisions based on the matrix elements, which is not feasible
for homomorphically encrypted matrix elements, since only
addition and multiplication operations are available. Further
algorithms like Cholesky decomposition need a large amount
of successive inversions and square roots of the matrix
elements, which leads to large multiplicative depths. As a
consequence of the statements from subsection II-B, we
here consider procedures, which require as few divisions
as possible. In this context, one promising approach for
inverting M is the iteration

Wk+1 ∶= (2I −WkM)Wk (8)

due to Schulz [20], which is guaranteed to converge to (6)
for a suitable initialization W0 (see below). Now, a popular
choice for the initialization is of the form W0 ∶= αM⊺, where
convergence is guaranteed for any

α ∈ (0,2/σ2
max(M)) (9)

with σmax(M) denoting the largest singular value of M .
Clearly, computing a suitable initialization in plaintext is
straightforward. However, for the desired encrypted sys-
tem identification, only an encrypted representation of M
will be available. Hence, we will later compute an over-
approximation µ of σ2

max(M) in an encrypted fashion and

set α close to 2/µ. This will require the evaluation of
an encrypted division. Fortunately, a division of the form
1/µ can be carried out analogously to (8). In fact, for any
w0 ∈ (0,2/µ), the iteration

wk+1 ∶= (2 −wkµ)wk (10)

converges to 1/µ.

III. RELIABLE ENCRYPTED SYSTEM IDENTIFICATION

In the following, we aim for an encrypted system iden-
tification as-a-service. More precisely, we consider a client,
which sets up a homomorphic cryptosystem and transmits
encrypted I/O-data to the service provider (server), which
solves (5) in an encrypted fashion using the homomorphisms
(7) and an approximation of M † via (8). The server then
returns an encrypted approximation of Z∗ to the client, who
can decrypt and use the identified model parameters Ẑ.

A key feature of our approach is that the client can specify
a desired error bound ϵ > 0 (in plaintext) and that the server
chooses a corresponding number of iterations kinv such that

∥Z∗ − Ẑ∥max = ∥M †V −WkinvV ∥max ≤ ϵ (11)

holds under certain assumptions specified below. As the
server will not be able to validate these assumptions (due
to encrypted data), encrypted certificates will be provided to
the client, which is another feature of our approach.

Next, we present a reliable initialization of (8) and then
specify a sufficient number of iterations kinv to achieve (11).
Finally, certificates for the underlying assumptions are dis-
cussed in Section III-C.

A. Reliable initialization and division

In order to initialize the iterative matrix inversion (8) with
a suitable W0 ∶= αM⊺, we need to choose an α as in (9).
Such a choice is non-trivial if the server has only access
to an encrypted version of M . We will see, however, that
additionally providing the magnitude

β ∶= ∥(UL

YL
)∥
∞

(12)

of the I/O-data in an encrypted fashion is sufficient to make
a reliable choice. More precisely, we assume that the server
obtains ct(1/β2) (along with the encrypted I/O-data). The
server can then exploit the following bound on σ2

max(M).
Lemma 1: Let M ∈ Rl×ν and let β be as in (12). Assume

the entries of M reflect entries of UL or YL. Then,

σ2
max(M) < ∥M∥2F ≤ lνβ2. (13)

Proof: The first relation in (13) reflects a standard
result. In fact, we have σ2

max(M) = λmax(M⊺M) and

∥M∥2F = trace(M⊺M) =
ν

∑
i=1

λi(M⊺M).

Since M has full column rank by Assumption 1, we have
λi(M⊺M) > 0 for every i ∈ {1, . . . , ν}, which establishes
the first inequality in (13). We further have

∥M∥2F =
ν

∑
i=1

l

∑
j=1

∣Mij ∣2 ≤ lνβ2,
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which provides the second inequality in (13).
In the following, the leading idea is to use the over-

approximation µ ∶= ∥M∥2F of σ2
max(M) to derive a suitable

factor α as in (9) close to 2/µ. Importantly, it is straight-
forward to compute ct(µ) in an encrypted fashion given
encrypted UL and YL. However, as division is not a native
homomorphic operation, we will rely on (10) to approximate
ct(1/µ). To initialize this iteration with a suitable w0 ∈
(0,2/µ), the latter relation in (13) is helpful. In fact, we
can specify w0 as τ/(lν) ⋅ ct(1/β2) for any τ ∈ (0,2) and
evaluate the iteration (10) in an encrypted fashion. Now,
convergence to 1/µ follows from the relative errors

ek ∶= 1 −wkµ. (14)

In fact, the initialization w0 ∈ (0,2/µ) ensures ∣e0∣ < 1.
Moreover, it is easy to see and well-known that the relation
ek+1 = e2k applies for all k. Hence, we find ek = e2

k

0 and
consequently limk→∞ ek = 0. Another useful implication is
that ek ≥ 0 for k ≥ 1. Clearly, this implies wk ≤ 1/µ for k ≥ 1
according to (14). We will exploit this property and consider
kdiv ≥ 1 iterations (10) in the following. It remains to note
that wk+1 = (1+ ek)wk implies wk > 0 for every k ≥ 1 given
a positive w0 as considered here.

B. Reliable matrix inversion and system identification

Once wkdiv
has been computed (in an encrypted fashion),

the server can use it to initialize Wk ∶= αM⊺ with an α
satisfying (9). To specify this choice, we study the relative
error matrix

Ek ∶= I −WkM

analogously to (14). Now, it is easy to see that ∥E0∥2 is
either determined by the smallest or the largest eigenvalue
of the matrix M⊺M , which is positive definite due to
Assumption 1. In fact, we have

∥E0∥2 = ∥I − αM⊺M∥2 (15)
=max{1 − αλmin(M⊺M), αλmax(M⊺M) − 1}.

Due to λmin(M⊺M) > 0 and λmax(M⊺M) = σ2
max(M),

we obtain ∥E0∥2 < 1 for any α as in (9). Moreover, the
relation Ek+1 = E2

k holds (analogously to ek+1 = e2k). As
a consequence, convergence of Ek to the zero matrix is
guaranteed. Nevertheless, we are eventually interested in a
precise system identification in the sense of (11). Clearly,

∥(M † −Wk)V ∥max ≤ ∥(M † −Wk)V ∥2 ≤ ∥M † −Wk∥2∥V ∥2.
Thus, we need to investigate the absolute error matrix Fk ∶=
M † −Wk. Now, for an initialization of the considered form
W0 ∶= αM⊺, one can show that Fk = EkM

†. Hence,

∥M † −Wk∥2 = ∥EkM
†∥2 ≤ ∥Ek∥2∥M †∥2.

In summary, we aim for finding a kinv such that

∥Ekinv∥2∥M †∥2∥V ∥2 ≤ ϵ. (16)

Finding such a kinv is hard without further specifications.
In fact, while ∥V ∥2 can be easily bounded from above
(see Thm. 3 below), doing so for ∥Ekinv∥2 and ∥M †∥2 is
non-trivial. To solve this issue, the server will make two

assumptions and provide certificates (specified below) to the
client for securely verifying their validity.

Assumption 2: ∥E0∥2 ≤ p for a predefined p ∈ (0,1).
This assumption corresponds to an initialization that is
contained in the region of convergence and that has at least
distance 1 − p from its boundary. A sufficient condition for
this assumption to hold is provided in the following lemma.

Lemma 2: Let p ∈ (0,1), kdiv ≥ 1, and α ∶= (1 + p)wkdiv .
Then, ∥E0∥2 ≤ p holds if

( µ

ν − 1)
ν−1 1 − p

1 + p ≤ wkdiv det(M⊺M). (17)

Proof: As apparent from (15), we have ∥E0∥2 ≤ p
whenever

1 − αλmin(M⊺M) ≤ p and αλmax(M⊺M) − 1 ≤ p. (18)

Due to wkdiv ≤ 1/µ < 1/σ2
max(M) for kdiv ≥ 1, the latter

relation in (18) holds by the specification of α. Since the
former relation in (18) is equivalent to

λmin(M⊺M) ≥ 1 − p
α
= 1 − p
(1 + p)wkdiv

(19)

and since µ = ∥M∥2F = trace(M⊺M), (17) would ensure its
validity if

λmin(M⊺M) ≥ ( ν − 1
trace(M⊺M))

ν−1

det(M⊺M). (20)

This completes the proof since the right-hand side in (20) is
a known lower bound [21, Thm. 1] on the eigenvalues of a
positive definite matrix.

Assumption 3: µ ≥ qβ2 for a predefined q > 0.
Remarkably, q = 1 is typically a safe choice (except for the
rare case that the data point determining β in (12) is not
contained2 in M ). In combination, the two assumptions allow
for choosing a kinv ∈ N such that (11) holds as specified next.

Theorem 3: Let p, kdiv, and α be as in Lemma 2. Let β
be as in (12), let q > 0, and let ϵ > 0. Assume the entries of
M ∈ Rl×ν and V ∈ Rl×r reflect entries of UL or YL. Further
assume that ∥E0∥2 ≤ p, µ ≥ qβ2, and

ϵ < p
√

1 + p
1 − p

lr

q
. (21)

Then, (11) holds for any kinv ∈ N satisfying

kinv ≥ log2
⎛
⎜
⎝

log2 (ϵ
√

1−p
1+p

q
lr
)

log2(p)
⎞
⎟
⎠
. (22)

Proof: We obviously have ∥V ∥2 ≤ ∥V ∥F ≤
√
lrβ

(analogously to (13)). Moreover, we find

∥M †∥2 =
1

σmin(M)
= 1√

λmin(M⊺M)
≤
√
(1 + p)wkdiv

1 − p

according to (19). Due to kdiv ≥ 1 and µ ≥ qβ2, we further
have wkdiv ≤ 1/µ ≤ 1/(qβ2). Hence,

∥M †∥2 ≤
1

β

√
1 + p
(1 − p)q .

2Note, for instance, that y(L − 1) is not contained in M (but in V ) for
the three system identifications discussed in Section II-A.
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Now, using ∥E0∥2 ≤ p and Ek+1 = E2
k , we additionally derive

∥Ekinv∥2 ≤ p2
kinv . In combination, (16) and, thus, (11) hold if

p2
kinv

√
1 + p
1 − p

lr

q
≤ ϵ.

Deriving a lower bound on kinv for this condition to hold is
straightforward and leads to (22), where (21) ensures kinv > 0
and a well-defined right-hand side in (22).

C. Validation via encrypted certificates

It remains to specify the concept and the realization of
the certificates associated with the two assumptions, i.e.,
∥E0∥2 ≤ p and µ ≥ qβ2. Given that inequalities are hard to
validate using (arithmetic) HE, the core idea is to compute
the left- and right-hand sides of these (or related) inequalities
in an encrypted fashion and to leave their validation to the
client. Regarding the second assumption, this is trivial as
ct(µ) is computed anyway and since ct(1/β2) is available.
Hence, the server can easily compute ct(µ)⊙ct(1/β2) and
leave the verification of µ/β2 ≥ q to the client. Regarding
the first assumption, we rely on the sufficient condition (17).
Here, both sides can be evaluated based on solely encrypted
multiplications and additions since ν and p are given in
plaintext and since the determinant can be evaluated, e.g.,
using Laplace expansion. However, directly evaluating (17)
typically leads to large left- and right-hand sides, which
might result in overflow. Hence, we suggest to downscale
both sides by multiplying them with (1/β2)ν . This leads to
the equivalent condition

( µ

β2

1

ν − 1
ν−1

√
1 − p
1 + p)

ν−1
1

β2
≤ wkdiv det(

M⊺M

β2
) , (23)

which can still be evaluated effectively using HE due to the
availability of ct(1/β2). We give some additional details
on the implementation of the certificates and the encrypted
system identification itself in the following section.

IV. IMPLEMENTATION DETAILS

In the previous section, we provided the theoretical basis
for a reliable encrypted system identification. To provide
a comprehensive presentation of the resulting service, we
now shed light on some implementation details. To this end,
we first provide an overview of the functional blocks and
flow of data in Section IV-A. In Section IV-B, we discuss
some algorithmic improvements to render the encrypted
implementation more efficient. Finally, specifications of the
utilized cryptosystem are give in Section IV-C.

A. Overview

Figure 1 provides an overview of the functional blocks
that make up our system identification service. From the
client’s perspective, the interaction with the server consists
in submitting a request with the mandatory data to the server
and eventually receiving the identified system parameters as
well as certificates for their accuracy as a response. On the
sever side, the encrypted system identification builds on the
following steps. During the preprocessing, upon receiving
ct(UL), ct(YL), ct(1/β2), L, and ϵ from the client, the

server assembles ct(M) and ct(V ). Furthermore, it chooses
p ∈ (0,1) and q > 0 (typically close to 1) as well as
τ ∈ (0,2) (typically close to 2). It then computes ct(M⊺M),
ct(µ) (while exploiting µ = trace(M⊺M)), and ct(w0) =
τ/(lν) ⋅ct(1/β2). Finally, the server selects a kdiv ≥ 1 and a
kinv satisfying (22). After preprocessing, the algorithm splits
into the computation and validation branches (see Fig. 1).
The first block in the computation branch is the division
stage. Here, ct(wkdiv

) is computed by evaluating (10) in
an encrypted fashion based on the initialization ct(w0).
Next, during the inversion stage, the server first computes
ct(α) = (1 + p) ⋅ ct(wkdiv

). It then computes ct(Wkinv
)

via (8) by exploiting that the computation of ct(W1) in-
volves ct(M⊺M). The computation branch is completed by
the least squares stage, where ct(Ẑ) = ct(Wkinv

)ct(V )
is evaluated. In the validation branch, the server prepares
the two certificates specified in Section III-C. The second
certificate only requires to compute ct(µ) ⊙ ct(1/β2). For
the first certificate building on (23), the server picks up this
result and initially computes

(ct(µ)⊙ ct(1/β2)) ⋅ ( 1

ν − 1
ν−1

√
1 − p
1 + p) .

Raising it to the power of ν−1 is implemented in terms of ⊙
using binary exponentiation. The evaluation of the left-hand
side in (23) is completed by multiplication with ct(1/β2).
Regarding the right-hand side, the server first computes
ct(M⊺M)⊙ ct(1/β2) and then uses Laplace expansion to
evaluate the encrypted determinant before multiplying the
result with ct(wkdiv

). After completing all computations,
the server sends ct(Ẑ) to the client together with the
encrypted left- and right-hand sides of the inequalities (23)
and µ/β2 ≥ q.

Input data (from client)

PreprocessingComputation

branch

Validation

branch

Division stage

Inversion stage

Least squares stage

Certificates

Output data (to client)

ct(wkdiv
)

ct(wkdiv
)

ct(Wkinv
)

ct(V ), ct(M), ct(M⊤M), ct(µ), ct(w0)

ct(Ẑ) ct(µ/β2)

ct(l.h.s. of (23))

ct(r.h.s. of (23))

ct(UL), ct(YL) ct(1/β2), L, ϵ

Fig. 1. Overview of the proposed encrypted system identification.
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B. Iteration variants with smaller multiplicative depth

As already briefly noted in Section II-B, a limiting fac-
tor for the encrypted implementation of algorithms is the
required multiplicative depth. Fortunately, tailored reformu-
lations often allow to reduce the multiplicative depth. For
instance, a reformulation of the iterations (8) and (10) here
allows to halve the multiplicative depth per iteration. As a
preparation, we note that the multiplicative depth of each
original iteration is two. Now, we will see that (8) can be
replaced by the iterations

Fk+1 = (2I −Hk)Fk and (24a)
Hk+1 = (2I −Hk)Hk. (24b)

In fact, the following equivalence applies.
Lemma 4: Let F0 ∶= W0 and H0 ∶= W0M . Then, the

iterations (8) and (24) are such that Fk =Wk for every k ∈ N.
Proof: We first show that Hk = WkM applies for

every k ∈ N by mathematical induction. Clearly, the relation
trivially holds for k = 0 by definition of H0. For the induction
step, we subsequently find

Hk+1 = (2I −WkM)WkM =Wk+1M

according to (24b) and (8). With Hk =WkM and F0 =W0,
it is then easy to see that (24a) is equivalent to (8).

Now, while being equivalent to (8), the iterations (24)
only have a multiplicative depth of one each. Since they
can be carried out in parallel, the multiplicative depth can
indeed be halved. Moreover, an analogue approach can be
applied to (10). At this point, it is important to note that
similar reformulations have already been used in other works
(see [15], [16]). Furthermore, the iteration (24) ultimately
traces back to Goldschmidt’s division algorithm [22].

C. Specifications of the cryptostem

As mentioned in Section II-B, we implement our
scheme using the CKKS cryptosystem as realized in the
OpenFHE [23] library. To parametrize the cryptosystem, the
required multiplicative depth is again crucial. To specify
this depth, we initially summarize the multiplicative depth
required per block in Table I. Here, it is important to note
that the utilization of the Goldschmidt-style iterations (24)
reduces the required depth per iteration but it increases
the effort for the initialization. Nevertheless, we can build
upon the preprocessed data when initializing H0 and its
scalar counterpart. Regarding the certificates, the maximal
depth is typically determined by the depth ν − 1 required
to compute the determinant and the two accompanying
multiplications (leading to ν + 1 as in Tab. I). However,
for small ν, also the depth of the power expression or that
underlying ct(wkdiv) can dominate. Hence, we formally find
max{3 + ⌈log2(ν − 1)⌉,1+ν, kdiv+2} for the maximal depth
of the certificates. In summary, the total depth of the scheme
is given by max{5 + kdiv + kinv,2 + ν} assuming ν ≥ 3.

In the numerical case study below, we have ν ∈ {4,6,8}
and consider kdiv = 5 and kinv = 12. Hence, we need to
setup the cryptosystem such that a multiplicative depth of
23 is supported (if bootstrapping should be avoided). We do

TABLE I
REQUIRED MULTIPLICATIVE DEPTH PER BLOCK.

Block / stage Depth Source

Preprocessing 1 ct(M⊺M), ct(µ), and ct(w0) (parallel)

Division 1 + kdiv Initialization and iterations
Inversion 2 + kinv ct(α), initialization, and iterations
Least squares 1 Multiplication ct(Wkinv

)ct(V )

Certificates 1 + ν Scaling, determinant, and multiplication

so by choosing the decryption modulus Q0 = 260 and the
rescaling factor s = 230 leading to a ciphertext modulus of
Qc ≈ 4.74 × 10250. By setting a ring dimension of Nr = 215
we achieve a security of approximately 133 bits according to
the LWE estimator [24], which satisfies the well-established
128-bit security standard [25].

V. NUMERICAL CASE STUDY

A. Setup

To evaluate the performance of our scheme, we solve the
three identification tasks from Section II-A for synthetic data.
More precisely, we assume the system dynamics are specified
by the SISO transfer function (TF)

G(z) = z2 + 0.5z + 2
z3 + 0.5z2 + 0.25z + 0.5 (25)

with n = 3. We then apply a random input signal of length
L = 20 with samples drawn from a standard normal distribu-
tion. The corresponding output signal is subject to normally
distributed measurement noise with zero mean and standard
deviation 10−3. For the identification of the state space
model (SSM), where full state measurements are assumed,
we consider the controllable canonical form of (25). For the
multi-step predictor (MSP), we consider N = 2.

Now, regarding the parameters of our scheme, we assume
the client aims for an error bound ϵ = 10−3 in (11). Further-
more, we fix kdiv = 5 and kinv = 12 in all tasks for better
comparability (as a constant multiplicative depth results).
The parameters q and τ are chosen as 1 (as suggested) and
1.999, respectively. The remaining parameter p is selected
as the largest value for which (21) holds in each task.
Taking into account, that the triple (l, ν, r) reads (17,6,1),
(19,4,3), and (16,8,2) for the three tasks TF, SSM, and
MSP, respectively, p takes the value 0.997 for all.

B. Results

As apparent from Figure 2, the identification can be carried
out successfully for each task. In fact, the specified error
bound is always satisfied. Remarkably, this is also confirmed
by the certificates for both the TF and SSM task. However,
for the MSP task, the first certificate is invalid (as it is only
sufficient but not necessary for the error bound to hold). Fig-
ure 2 also confirms the quadratic convergence of the iterative
matrix inversion underlying our approach. However, due to
quantization and approximation errors naturally appearing in
HE schemes, convergence of the encrypted scheme stops
at some point. In fact, the smallest error achieved by the
encrypted system identification is significantly larger than
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Fig. 2. Evolution of the approximation errors for the three identification
tasks depending on the inversion iteration k. For each task, intermediate
results of the encrypted implementation (solid) are compared with the
plaintext counterpart (dashed).

for the plaintext counterpart. Nevertheless, for the considered
case study, the achieved errors of order 10−5 are satisfactory
when taking into account that ∥Z∗ − Ztrue∥max is of the
order 10−4 in each case, where Ztrue reflects the true model
parameters determined by (25). Finally, we briefly comment
on the required computation time for a single identification,
which is on the order of 10 minutes on a standard computer
(with an AMD Ryzen 7 5800H CPU using 8GB RAM).
Note, in this context, that the provided service is typically
not real-time critical and that we did not consider any code
optimization yet.

VI. CONCLUSIONS AND OUTLOOK

We presented an encrypted system identification as-a-
service enabled by a reliable encrypted solution to least
squares problems of the form (4). The encrypted solution
builds on encryption-friendly iterative algorithms to approx-
imate the pseudo-inverse M † central to the solution (5).
While encrypted versions of Newton-Schulz iterations (8)
or Goldschmidt-style iterations (24) have been used before
for other applications, our contribution stands out for reli-
able initializations as well as certificates for the achieved
accuracy without compromising the privacy of data provided
by the client. The certificates can be prepared concurrently
with the actual computations (see Fig. 1) leveraging the
the computational capabilities of the service provider. The
effectiveness of the scheme has been illustrated by three
numerical examples, where the certificates approved the
desired accuracy in two cases.

Future research directions are twofold. First, various im-
provements of the proposed certificates are promising. This
may include tighter bounds or more efficient implementations
(e.g., w.r.t. determinants). Second, we here neglected the
effect of quantization effects, naturally arising in HE, for our
theoretical investigations. Formally including these effects in
our approach would further increase its value.
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