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Abstract— This is the companion paper of a two-part work on
the observation of the heat transfer phenomenon in biological
tissues. In particular, we are interested in real-time estimation
of the temperature in the interior of a spatial domain of interest
using measurements at its boundary. The prevailing model for
heat transfer in biological tissues, pioneered by Pennes [1], relies
on a parabolic reaction-diffusion partial differential equation.
However, neither the observation problem has been fully
explored nor have the available solutions proved suitable for
real-time applications. In the companion paper [2], we propose
the design of an observer whose formal properties, however,
cannot be easily reflected in its practical performance, due to
computational issues arising with the use of common numerical
solvers. The difficulties are mostly related to the integration of a
system of coupled PDEs/ODE, required by the algorithm. In this
paper, we propose an alternative implementation of the observer
that makes use of deep neural networks for predicting the
PDEs state, thus avoiding the online integration. Preliminary
results show that this approach is very effective in solving
the considered problem and is amenable to extension to other
classes of PDEs and to higher dimensions.

I. INTRODUCTION

Biological tissue heating has been widely studied in the
literature both for determining health hazards in case of
exposure to electromagnetic fields [3], [4], [5], [6], and for
devising therapeutic treatments [7], [8], [9]. Hyperthermia,
in particular, is used in oncology to increase the effectiveness
of radiotherapy and chemotherapy [10], [11].

Literature studies have shown that the clinical effective-
ness of hyperthermia treatments is critically related to the
ability to reach and maintain the desired temperatures at the
target, with the right timing, for the desired duration, in a
reproducible manner for all the subsequent treatments [12],
[13]. These quality requirements are, however, hard to
meet, particularly in tumours that are typically treated with
superficial hyperthermia, e.g., breast, head and neck, and
skin/extremities cancers. Recent advances [14] are paving
the way to the automatic delivery of hyperthermia treatments.
However, the absence of feedback control of the temperature
rise at the target prevents an appropriate level of accuracy
in the delivery of the needed thermal dose. To this end, it
is necessary to get information on the temperature of the
whole target volume. Currently, temperature measurements
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are invasive and only available at specific points. This work
is a first step toward a non-invasive temperature estimation
achieved through the design of an observer using only
measurements at one boundary.

The observation problem of Partial Differential Equations
(PDEs) is difficult and still open in general. For the class
of parabolic reaction-diffusion equations with an unknown
coefficient of the reaction term, which encompasses the bio-
heat equation studied here, some estimation approaches have
been proposed based on backstepping design [15], structured
uncertainties [16], interval observers [17] and sparsity [18].

Following a novel pathway in the context of infinite-
dimensional systems, the multiple-model (MM) observer
proposed in the companion paper [2] estimates the pre-
diction model that minimizes the measurement error. The
convergence of the estimation error to a bounded set is
formally proven and the bound is shown to depend on
the granularity of the approximation, hence on the number
of prediction models. In principle, the error can be made
arbitrarily small by increasing the number of prediction
models. This theoretical property encounters some practical
difficulties: by increasing the number of prediction models,
the implementation relying on traditional solvers, available,
for example, in Matlab, incurs numerical instability, and the
convergence rate cannot be pushed too far [2]. On the other
hand, if the number of prediction models is kept small, the
error bound is too high.

In this paper, we propose an alternative implementation
of the observer introduced in [2] that makes use of deep
learning for the prediction step. Deep learning is a machine
learning method based on multi-layer artificial neural net-
works, usually referred to as deep neural networks. The
solution of PDEs with deep learning is currently attracting
interdisciplinary attention. Since a great amount of data, not
always available, is usually required for training deep neural
networks, the key idea in solving PDEs with deep learn-
ing is to use additional information obtained by enforcing
physical laws at random points in the continuous space-time
domain to train such networks. This approach is known as
physics-informed learning. In [19], some of the prevailing
trends in incorporating physics into machine learning are
reviewed, and the current capabilities and limitations of
physics-informed learning are described.

Physics-informed learning is implemented in [20] through
the so-called Physics-Informed Neural Networks (PINNs)
to solve forward and inverse problems involving nonlinear
PDEs. We have used the Python library called DeepXDE for
solving PDEs through PINNs [21].

The main contribution of the paper is the proposition of
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a computational model of the observer in [2] making use
of PINNs for the prediction step to overcome the intrinsic
limitations of standard solvers. Beyond its practical utility,
the approach proposed here represents a methodological so-
lution for the extension of the observer to higher-dimensional
domains and other classes of problems.

The paper is organized as follows. Sect. II summarizes the
facts used in the subsequent developments on Penns’ bio-heat
equation and the observer proposed in [2]. Sect. II describes
the neural networks used to solve the PDEs of interest, while
Sect. IV proposes simulation results validating the approach.
A brief conclusion is drawn in Sect. V.

II. OBSERVER DESIGN

Temperature measurements during hyperthermia treat-
ments are currently obtained through the use of invasive
probes inserted into the patient’s body at specific locations.
To enable real-time temperature control with a minimally
invasive approach, we propose to estimate the temperature
in the whole target volume using superficial measurements.
In this section, we detail the working conditions within which
the presented contribution has been developed. To cope with
the complexity of the hyperthermia treatment that involves
electromagnetic and heat transfer phenomena, the problem is
attacked in a modular way by first considering heat transfer
in human tissues, assuming the thermal flow at the boundary
as an input variable. The cooling effect of the water bolus [3]
used in hyperthermia treatments is out of the scope of the
current work, but our approach allows the extension of the
model and analysis to be included in future work.

The heating phenomenon in biological tissues is usually
modelled using Pennes’ equation [1]

ρc∂tT = keff∂xxT−ρbcbωb(T−Ta)+Q, x ∈ Ω, t ∈ [0, tf ],
(1)

where: ∂t = ∂
∂t , ∂xx = ∂2

∂2
xx

; T is the temperature and
it is a function of space x and time t; ρ and c are: the
density and specific heat of the tissue respectively; keff is its
thermal effective conductivity; ρb and cb are the density and
specific heat of blood; ωb is the blood perfusion rate, i.e.,
the volumetric blood flow rate per tissue volume [7]; Ta is
the arterial blood temperature, constant at 37 ◦C [22]. The
parameters ρ, c, ρb, cb and keff can be considered constant
for each individual, ωb is uncertain and can vary within a
certain range that is specific for each tissue.

The left-hand side of Eq. (1) expresses the variation of
the thermal energy storage. The first term on the right-hand
side is the net transfer of thermal energy due to temperature
gradients, the second is the blood perfusion term with its
uncertain coefficient ωb. The term Q is an internal heat
source comprehending the metabolic heat generation rate
and, in the case of hyperthermia treatments, the power due
to the radiating electric field [23].

Most of the existing methods for fast simulation of this
equation are based on conventional numerical methods (e.g.,
Finite-Difference Time-Domain method), forming a global
nonlinear system of equations for temperature solution.
These methods are mainly focused on numerical accuracy,

convergence, and stability rather than computation time, and
hence are only suitable for pre-treatment predictive analysis.

In this work, we propose a NN-based implementation
of the observer presented in [2] that requires the solution
of (1) in real-time. To achieve this objective we use a
system of deep neural networks trained to simulate the
system and the prediction models. Each prediction model
is characterized by a value of the perfusion coefficient ωb

varying in an admissible interval that includes also the value
of the perfusion coefficient of the system. The closer the
value of the perfusion coefficient of the prediction model
to that of the system, the smaller the prediction error. Once
trained, these networks are interrogated simultaneously to
generate the error that feeds the MM observer developed
in [2] and summarized in Sect. II-B.
A. Scaling of Pennes’ equation

To avoid numerical instability of PINNs it is useful to
determine a dimensionless, scaled version of the Eq. (1). To
this end, operate a temperature translation T ′ = T − Ta

and define a dimensionless temperature as θ = T ′

TM−Ta
,

where TM = 45 °C is assumed as the maximum tolerable
skin temperature [24]. Introduce also the characteristic length
L0 = 5 cm, which is the typical heating range of a superfi-
cial hyperthermia antenna applicator. Space coordinates are
transformed as X = x

L0
, yielding:

∂xxT
′ = ∂XXT ′ (∂xX)

2
= ∂XXT ′ 1

L2
0

. (2)

From the definition of θ one gets:

T ′ = θ(TM − Ta), (3)
∂tT

′ = ∂θT
′∂tθ = (TM − Ta)∂tθ. (4)

Likewise:

∂XT
′ = ∂θT

′∂Xθ = (TM − Ta)∂Xθ,

∂XXT ′ = (TM − Ta)∂XXθ. (5)

Substituting Eq. (5) in Eq. (2) and the result in Eq. (1)
together with Eq. (4) and Eq. (3), introducing thermal
diffusivity α = ρc

keff
and rearranging the equation we obtain:

∂tθ =
1

αL2
0

∂XXθ − L2
0

ρbcbωb

keff
θ +Q L2

0

keff(TM − Ta)
.

Introduce a change in the time variable τ = t
τf

, with
τf = 1800s, the typical time span of a treatment. Hence:
∂tθ = 1

τf
∂τθ. The adimensional bioheat equation reads as

∂τθ = a1∂XXθ − a2Wθ +Q L2
0

keff
, (6)

where a1 =
τf
αL2

0
, a2 =

cbL
2
0

keff
, and W = ρb ωb.

B. Multiple-model observer

Eq. (6) is a parabolic reaction-diffusion PDE that can be
written in the form

∂τθ = σ∂XXθ − ωθ +Ψ,
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where σ = a1 is a known constant, ω = a2W is an uncertain
perfusion coefficient, with a2 known constant and W an
uncertain perfusion rate, and Ψ = Q L2

0

keff
is a known heat

source.
In the companion paper [2], we have proved exponential

convergence of the L2-norm of the error ∥θ(·, τ)−θ̂(·, τ)∥L2 ,
where θ̂ is an estimate of θ provided by the observer

∂τ θ̂ = σ∂XX θ̂ − ωθ̂ +Ψ, (7)

defined for (X, τ) ∈ [0, 1]× [0, 1] with boundary conditions

θ̂(0, t) = C0,

∂X θ̂(1, τ) = v(τ) + α(y(τ)− θ̂(1, τ)),
(8)

where α > 0 is the output injection gain.
In particular, the error norm converges to zero if the per-

fusion coefficient ω is equal to that of the system, described
by Eq. (6), ωr = a2W , otherwise, it is ultimately bounded
by the square of the difference between ω in Eq. (7) and
the actual value ωr. This result has suggested the use of
a MM observer to reduce the uncertainty on the perfusion
coefficient ω so as to get better estimation results.

Considering that, although variable, the perfusion coeffi-
cient takes value in a bounded range, we can select a set of
fixed values ωj ≥ 0, j = 1, ..., N , for some N ∈ N, with:

ω1 < ω2 < · · · < ωN ,

ω1 ≤ ωmin, ωmax ≤ ωN .

Accordingly, we can define a family of observers θ̂(j)(X, τ)
with the structure (7) and with the choice ω = ωj , that is:

∂τ θ̂
(j) = σ∂XX θ̂(j) − ωj θ̂

(j) +Ψ,

θ̂(j)(0, τ) = 0,

∂XX θ̂(j)(1, τ) = v(τ) + α(y(τ)− θ̂(j)(1, τ)).

(9)

As proved in [2], for each observer within this family, the
corresponding estimation error can be bounded as follows

∥θ(·, τ)− θ̂(j)(·, τ)∥2L2 ≤ M |ωj − ω|2, (10)

where M depends on a maximum value of the temperature1,
on the system parameter a1 and on output injection gain α.

Following the approach proposed in [25], the idea is then
to introduce an overall estimator

θ̂†(X, τ) = p1(τ)θ̂
(1)(X, τ)+ · · ·+pN (τ)θ̂(N)(X, τ), (11)

obtained as dynamic convex combination of the observers
θ̂(j)(X, τ), with weights pj(τ) being updated according to

ṗj(τ) = −λ

(
1− e−µj(τ)∑N

ℓ=1 pℓ(τ)e
−µℓ(τ)

)
pj(τ) j = 1, ..., N,

(12)
where µj(τ) := |θ(1, τ)− θ̂(j)(1, τ)| is the (absolute) output
error and λ > 0 is the adaptive gain.
The overall observer (11) corresponds to a weighted average
of the individual observers, whose weights adapt based on the
size of the associated output errors. In particular, the weight

1For hyperthermia treatments this can be set equal to 45◦ C.

p⋆j associated with the observer θ̂(j
⋆) that asymptotically

shows a smaller error with respect to the others is expected
to tend to 1, while the remaining ones tend to zero [2]. This
means that the estimation (7) will tend to the prediction of
the best observer among the considered family, with respect
to the inherent output error function.

It is worth noticing that the finer the gridding of
[ωmin, ωmax] is (i.e., the larger the number N of models), the
smaller the error bound (10) associated with the best observer
θ̂(j

⋆). The number N of models, however, cannot be made
arbitrarily large without incurring numeric instabilities [2].
This practical limitation has motivated the computational
model presented in this work.

III. NN-BASED OBSERVER IMPLEMENTATION

This section presents the implementation of the observer
in [2] for a 1D spatial domain using a system of PINNs [20]
to solve Pennes’ Eq. (6) and the N observers Eqs. (9).

As described in Sect. II-B, the predictions of the observers
are used to provide the estimation of the temperature (11), in
the whole domain at each time instant τ , through a convex
combination of weights with the dynamics (12).

The novel application of PINNs to this setting enabled
the creation of a pipeline that is both effective in terms of
accuracy and efficient in terms of overall computational time.
All the PINNs used in our implementation share a similar
structure and hyperparameters: a 4-layer perceptron, with
each layer containing 20 hidden neurons; tanh activation
function and parameters initialization according to the Glorot
uniform method; training for 20000 epochs using stochastic
gradient descent and, in particular, the “Adam” variant with
a learning rate equal to 10−3.

A. PINN for solving Pennes’ equation
Fig. 1 (left) shows the Neural Bio-Heat System (NBHS)

used to solve the PDE associated with the system (6). It has
been trained with a specific value of the perfusion rate W
and boundary and initial conditions of the type

θ(0, τ) = 0,

∂Xθ(1, τ) = v(τ),

θ(X, 0) = θ0(X).

(13)

Coherently with [2], we have set the internal heat source to
zero, while the temperature on the left boundary of the 1D
domain is assumed to be constant and equal to Ta, which
corresponds to θ(0, τ) = 0.

The NBHS is implemented using the DeepXDE li-
brary [21]. A preliminary scaling of the input variables
(x, t) is operated as illustrated in the previous section, while
the differential constraints are represented by the PDE (6)
with boundary and initial conditions (13). The loss function
L measures the discrepancy between the neural network
solution θ and the constraints represented by the PDE and
the boundary conditions.

After the training, NBHS will take the two coordinates
(X, τ ) as input, and will return θ(X, τ). This value will be
then scaled and translated to obtain T (X, τ):

T (X, τ) = Ta + θ(X, τ)·(TM − Ta).
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Fig. 1: Left: a scheme of the computational model used to solve Eq. (6) (NBHS). Right: the observer (9) (NBHO).

Using a PINN, in this case, presents several advantages. In
fact, this approach allows probing the system in a continuous
manner and in real-time, meaning that the computation time
is that of a forward pass of a deep neural network, which
usually takes a few milliseconds on most hardware. More-
over, this approach can potentially scale to multiple input
dimensions seamlessly. Alternatively, the use of a solver for
each setting is necessary, with apparent drawbacks in terms
of computational time.

B. Implementing a multiple-model observer with PINNs
Each of the N observers of the form (9) is implemented

by means of a second PINN shown in Fig. 1 (right), which
we name Neural Bio-Heat Observer (NBHO), trained with
the same left boundary (i.e., X = 0) condition as NBHS.
Initial and right-side boundary conditions are different from
NBHS. In particular, the latter needs the PINN architecture to
be augmented with an extra input (see Fig. 1, right), that is
the solution of the system equation on the boundary (i.e.,
a measure of the temperature on the boundary): y(τ) =
θ(1, τ). This structure makes it possible to tackle control
problems. In particular, the right boundary condition can now
be expressed as:

∂X θ̂(1, τ) = v(τ) + α(y(τ)− θ̂(1, τ)),

i.e., on the right boundary, the system heat flux is corrected
with the (adimensional) temperature estimation error at the
same boundary. The choice of the output injection gain α
is the result of an optimization procedure. Different values
of α ∈ [0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have been used to train
several NBHO. The value α = 4 used in the simulations
minimizes the L2 estimation error norm at τ = 1.

In the MM estimator (11), each individual observer
NBHOj , described by Eq. (9), is implemented with a PINN
replicating the NBHO structure. The difference between the
N observers is in the different perfusion rate Wj ∈ [0.45, 4],
characterizing the muscle tissue2, used for their training.

In accordance with [2], the results presented in the next
section confirm that the adaptive weights tend to concentrate
on the observer trained with the perfusion rate Wj , which is
the closest to the actual value for the average perfusion.

IV. SIMULATIONS

In the following set of simulations, we first present the
solution of Eq. (6) for a given set of initial and boundary

2Note that ωj = a2Wj , with a2 constant.

conditions, then we validate the single observer trained with
the same value of the perfusion rate of the system. To validate
the MM observer, we first report the results comparable with
those obtained with the Matlab implementation in [2], then
a simulation showing convergence to the best estimator that
was impossible to achieve with the Matlab implementation
presented in [2].

Consider the adimensional bio-heat equation (6) for a
muscular tissue without an internal source, i.e. setting Q ≡ 0,
with coefficients taken accordingly to [22], as reported in the
following table:

TABLE I: Parameters of the bio-heat equation.

Par. ϱ, ϱb c, cb κeff Ta

Value 1050, 1043 3639, 3825 5 37
Units [kg/m3] [J/(kg ·K)] [W/(m·K)] ◦C

The perfusion rate of the system is W = 2.3 [kg/(m3·s)],
with an admissible range [Wmin,Wmax] = [0.45, 4]. Initial
and boundary conditions (IC and BC, respectively) have been
chosen as follows

θ(X, 0) = q0
(TM−Ta)

X4

4 + β
(TM−Ta)

X(X − 1)2

∀X ∈ [0, 1],

θ(0, τ) = 0 ∀τ ≥ 0,

∂Xθ(1, τ) = q0
(TM−Ta)

∀τ ≥ 0,

with q0 = 16 and β = 15. The rescaled solution of the
equation is depicted in Fig. 2 (Left). Fig. 2 (Right), shows
the difference between Matlab and PINNs prediction of the
temperature (in °C) in the considered domain for a treatment
duration of 1800 s.

It is worth noticing the difference in the initial temperature
value across the whole domain, even though the same IC
has been used in both the Matlab and PINNs computational
models. This is because while in Matlab the IC is numerically
imposed, the IC in PINNs acts as a soft constraint which is
included in an optimization process. The degree to which
this soft constraint is met can be adjusted based on network
hyperparameters, including the number of training epochs
and the weighting of the loss function. A similar discussion
applies to the BC at x = 1. Conversely, the BC at x = 0
has been treated as a hard constraint by transforming the
network’s output [21], ensuring an exact match with the
specified condition.

Example 4.1: We begin by considering the case of known
perfusion rate W . We consider an observer with output
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Fig. 2: Left: prediction of the solution of the bio-heat equation. Right: comparison between Matlab and PINNs prediction.

injection gain α = 4 and initial condition:

θ̂(X, 0) =
q0

(TM − Ta)

x4

4
. (14)

The observer θ̂(X, τ) successfully achieves the reconstruc-
tion of the temperature θ(X, τ) over the whole domain [0, 1].
The rescaled temperature profile T (x, tf ) along with the
rescaled estimated temperature profile T̂ (x, tf ) at the final
time tf = 1800s are shown in Fig. 3, while Fig. 6 (left)
shows the exponential decay of the L2-norm of the prediction
error T (x, t)− T̂ (x, t).

Fig. 3: Example 1: Solution vs. observer at t = tf .

Example 4.2: Let us now assume that W is only known to
belong to the interval [Wmin,Wmax], and consider the MM
approach synthesized in Sect. II-B, with N = 8 models com-
puted through a uniform gridding {W1,W2, . . . ,W8} of the
admissible variation interval of W , so that the closest value
to the actual perfusion rate is W5. Each model θ̂j(X, τ),
j = 1, 2, ..., 8, has been initialized as in (14). The results for
two different values of the parameter λ in (12) are given:
λ ∈ {5, 200}.

The comparison, after appropriate rescaling, of system
solution T (x, t), observers T̂ (j)(x, t) and MM adaptive ob-
server T̂ †(x, t) at the final time tf = 1800 s is given in Fig. 4,
along with an enlarged version for helping visualization of
results. As clearly visible, the actual system is quite accu-
rately reconstructed by the MM adaptive observer T̂ †(x, t).
The latter is built using the dynamic weights pj(x, t), whose
time evolution is reported in Fig. 5 for the two different
values of λ.

Finally, the evolution of the L2-norm of the estimation
error eT = T (x, t)− T̂ †(x, t) is depicted in Fig. 6 (right).
Concerning the results obtained with Matlab, reported in the
companion paper [2], the implementation based on PINNs
allows the convergence of the observer with the same output

Fig. 4: Example 2: Solution vs. observers at t = tf .

Fig. 5: Example 2: Dynamic weights, λ = 5 and λ = 200.
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Fig. 6: L2-norm of the estimation error. Left: Example 1.
Right: Example 2.

injection gain α = 4 (α = 32 for unscaled variables) for
both the cases of single and MM observer. With Matlab
implementation, it was necessary to raise it by at least three
orders of magnitude to avoid incurring numerical instability.
The use of a smaller α allowed the achievement of a faster
convergence of the dynamic weights in Python. Results ob-
tained with λ = 5 and α = 4 are similar to the ones obtained
in Matlab with λ = 200 and α = 3 ·104. Smaller values
of α in the Matlab implementation led to the progressive
reduction of the solver integration step until reaching the
minimum size and integration failure. With λ = 200 in
Python implementation, the convergence of the weight p5(t)
is practically reached after about 400 s. It is important to note
that this result was impossible to obtain in Matlab using the
same computer.

V. CONCLUSION

Adaptive estimation of the Pennes’ Bio-Heat equation via
Deep Neural Networks shows significant improvements with
respect to the implementation in [2] that relies on the 1D
PDE solver of Matlab. Results achieved in [2] are recovered
with this novel approach with increased numerical stability
which enabled convergence results that were impossible to
achieve for the Matlab solver. The accuracy of the NN-
based model also appears improved. Future work includes the
optimization of these preliminary results and the extension
to higher-dimensional domains.

REFERENCES

[1] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in
the resting human forearm,” Journal of Applied Physiology, vol. 1,
no. 2, pp. 93–122, 1948.

[2] A. Cristofaro, G. Cappellini, E. Staffetti, G. Trappolini, and M. Ven-
dittelli, “Adaptive estimation of the Pennes’ Bio-Heat equation - I:
Observer design,” in Proceedings of the 62nd IEEE Conference on
Decision and Control, Singapore, December 13-15, 2023.

[3] K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface
cooling and blood flow on the microwave heating of tissue,” IEEE
Transactions on Biomedical Engineering, vol. BME-25, no. 3, pp.
313–316, 1978.

[4] K. R. Foster, A. Lozano-Nieto, P. J. Riu, and T. S. Ely, “Heating
of tissues by microwaves: A model analysis,” Bioelectromagnetics,
vol. 19, no. 7, pp. 420–428, 1998.

[5] K. R. Foster, M. C. Ziskin, and Q. Balzano, “Thermal response of
human skin to microwave energy: A critical review,” Health Physics,
vol. 111, no. 6, pp. 528–541, 2016.

[6] P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution
and temperature increase in an anatomical model of the human eye
exposed to the field radiated by the user antenna in a wireless LAN,”
IEEE Transactions on Microwave Theory and Techniques, vol. 46,
no. 12, pp. 2074–2082, 1998.

[7] J. Zhang, G. A. Sandison, J. Y. Murthy, and L. X. Xu, “Numerical
simulation for heat transfer in prostate cancer cryosurgery,” Journal
of Biomechanical Engineering, vol. 127, no. 2, pp. 279–294, 2005.

[8] S. Tanwar, L. Famhawite, and P. R. Verma, “Numerical simulation of
bio-heat transfer for cryoablation of regularly shaped tumours in liver
tissue using multiprobes,” Journal of Thermal Biology, vol. 113, p.
103531, 2023.

[9] H. P. Kok, E. N. K. Cressman, W. Ceelen, C. L. Brace, R. Ivkov,
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