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Abstract— This paper proposes a novel approach for Predic-
tive Control utilizing Reinforcement Learning (RL) and Data-
Driven techniques to derive optimal control policies for real
systems. Using pure input-output multi-step predictors based
on Subspace Identification and RL techniques, the resulting
predictive control scheme can approximate the optimal control
policy of a system with high accuracy, even if the predictor
cannot accurately capture the true system dynamics. One of
the key contributions of the proposed approach is the extension
of the framework connecting Model Predictive Control (MPC)
and RL to one that does not require explicit state-space models,
nor to define a notion of state at all. The paper demonstrates
the efficacy of the proposed approach through an illustrative
example, highlighting the ability of our approach to provide an
optimal control policy for a real system without requiring any
prior knowledge about its internal dynamics.

I. INTRODUCTION

A. Motivation & Background

Model Predictive Control (MPC) is a widely-used optimal
control strategy for multi-variable systems subject to con-
straints [1], with applications in diverse fields such as power
system engineering, processing industry, autonomous vehicles,
energy management and robotics. Recent research in MPC
has sought to combine MPC with Machine Learning methods
to design schemes that can leverage the real system data
to enhance closed-loop performances amidst uncertainties,
viz. Bayesian Optimization for the derivative-free adaptation
of MPC parameters [2], Gaussian Processes for online
model refinement [3], [4], and Neural Networks (NNs) to
approximate complex MPC schemes via Deep Learning
approaches [5]. All these methods share the objective of
addressing uncertainties in learning-augmented MPC schemes.
A recent survey on this topic can be found in [6].

The authors of [7] have introduced the theory of learning-
based MPC schemes using Reinforcement Learning (RL) [8],
which we refer to as MPC-based RL framework in this
work. They propose an approach to modify MPC schemes to
achieve optimal closed-loop performance without depending
on the accuracy of the model and, in practice, employ
RL techniques to learn these modifications. In this context,
various MPC formulations have been explored in subsequent
studies. Specifically, robust MPC is detailed in [9], [10],
economic MPC in [7], [11], and tracking MPC in [12], [13].
Additionally, Mixed-integer MPC has been discussed in [14],
and output-based MPC can be found in [15].
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In the MPC-based RL framework, the theories and for-
mulations studied thus far employed classic MPC schemes.
These schemes rely on simulation-based predictions using
a state-space model of the actual system. However, for
some applications, modeling the systems in a state-space
form is challenging. This is often because defining a state
for the system is difficult, as seen in cases like modeling
energy utilization in buildings or problems in soft robotics.
In such cases, predictive control schemes that are based on
predictions in the input-output space of the underlying system
can offer a simpler solution compared to formulating its
state-space model. We refer to these schemes as data-driven
predictive control schemes in the following. Specifically,
input-output predictors leveraging Subspace Identification
(SI) [16] can deliver purely data-driven, reliable multi-step
predictors. These predictors can be directly embedded within
Subspace Predictive Control schemes (SPC) [17]. We use
the term model-free to describe these predictive control
schemes. Typically, a model refers to a dynamical system
representation that predicts the next state based on the current
state and action, continuously looping over for predicting
states throughout the optimization horizon. In contrast, for
SPC, the multi-step predictor is a static function that replaces
the model and works without any defined notion of state. SPC
tends to provide a more dependable method for developing
purely data-driven predictive control schemes compared to
other data-driven alternatives.

However, the performance of SPC relies on the accuracy of
the predictions delivered by the multi-step predictor. Due to
stochasticity or various uncertainties, it may deliver inaccurate
predictions of the real system trajectories. Consequently, the
resulting SPC scheme may often produce sub-optimal policies.

B. Contribution

In this paper, our objective is to extend the theory of the
MPC-based RL framework, as presented in [7], to predictive
control schemes that utilize purely data-driven linear multi-
step predictors. We will show that these predictive control
schemes can be tuned to deliver the optimal policy for the real
system, even with a possibly inaccurate multi-step predictor.
This central result facilitates the development of a purely data-
driven predictive control framework. The framework does
not require explicit knowledge of the physics governing the
system dynamics or an understanding of the system’s state
space. It achieves optimal closed-loop control performance
even with potential inaccuracies in the predictors. This result
presents a significant step forward compared to alternative
purely data-driven predictive control techniques.
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C. Structure of the paper

The paper is structured as follows. Section II-A provides
background material on Markov Decision Processes using
input-output information, Subspace Predictive Control and the
MPC-based RL framework. Section III presents the extension
of the learning-based MPC to SPC schemes while section IV
details the implementation of RL techniques for SPC. Section
V presents simulation results illustrating the functioning of the
proposed formulation and Section VI provides conclusions.

II. BACKGROUND

In this section, we detail the problem setup considered in
this work and provide a brief overview of SPC [17], and the
MPC-based RL framework presented in [7].

A. Markov Decision Process on Input-Output information

In this paper, we consider systems where the state is
unknown, but the actions (or inputs) a applied to the system
are available, as well as measurements (or outputs) y. We
will then consider stochastic output dynamics where at the
discrete time t, the next output yt+1 depends on the past
outputs observed in the system and the past actions of the
system in a probabilistic sense.

To define the system more formally, let us consider finite
sequences of past inputs and outputs at a given time t. These
sequences serve as initial conditions for modelling the output
dynamics of the system. Specifically, we define,

aini
t = [at−Tini

, . . . ,at−1 ]T (1)

yini
t = [yt−Tini

, . . . ,yt ]T (2)

for a given length of history Tini. We will then assume that the
next output yt+1 is stochastic, but that {aini

t ,y
ini
t } provide a

“complete statistics” to determine yt+1, in the formal sense
provided below.

Assumption 1. Tini is such that the conditional distribution
(or measure):

yt+1 ∼ %( . |aini
t ,y

ini
t ,at ) (3)

remains unaffected for any T ′ini > Tini.

Under assumption 1, the recent history {aini
t ,y

ini
t } of

length Tini is sufficient to determine the statistics of the
next output yt+1 for a given action at. We then consider
Markov Decision Processes based on {aini

t , yini
t } rather than

on the state information of the system. More specifically, let
us consider the problem of defining an optimal policy π?

minimizing

J(π) = E%

[ ∞∑
t=0

γtL (yt,at)

∣∣∣∣∣ at = π
(
aini
t ,y

ini
t

)]
, (4)

where L is a given stage cost that additionally captures any
penalty for constraint violation, γ ∈ (0, 1] a discount factor,
and the expected value E%[.] is taken over the closed-loop
trajectories stemming from (3).

We are interested in using deterministic input-output
predictive control techniques to provide policies approaching

π? using data obtained from the real system. We detail next
the predictive control methods investigated in this paper.
To simplify the discussion, we will make the additional
assumption that (3) is linear in expected value, i.e. that
E%
[
yt+1 |aini

t ,y
ini
t ,at

]
is linear in aini

t ,y
ini
t ,at, such that

dynamics (3) can arguably be modelled using linear tech-
niques. This assumption is in principle not crucial, but it will
avoid a more complex presentation.

B. Data-Driven Predictive Control

This paper explores a data-driven predictive control scheme
that originates from Subspace Identification [16], and Sub-
space Predictive Control (SPC) [17]. Our focus will be on
using a predictive control scheme that takes the following
form,

min
u,y

γNT (yt+N ) +

N−1∑
k=0

γkL(yt+k,ut+k) (5a)

s.t.

 yt+1
...

yt+N

 = Φ


aini
t

yini
t

ut
...

ut+N−1

 (5b)

where matrix Φ follows a specific structure and provides
a prediction of the output trajectories for a given set of
initial conditions, {aini

t , yini
t }, and a future input sequence

ut,...,t+N−1 with γ ∈ (0, 1]. Here, T represents a terminal
cost that compensates for the finite horizon N . The first
element of the control input sequence u? from the solution
of (5), i.e. u?t , is used as action on the real system. As a
result, the SPC scheme produces the following policy,

πSPC(aini
t ,y

ini
t ) = u?t . (6)

In a data-driven context, Φ is typically provided by re-
gression techniques applied to the input-output data available
from the system. A least-squares regression, for instance,
takes the form,

min
Φ

1

2

∑
t∈D

∥∥∥∥∥∥∥∥∥∥∥

 yt+1
...

yt+N

− Φ


aini
t

yini
t

ut
...

ut+N−1



∥∥∥∥∥∥∥∥∥∥∥

2

(7a)

s.t. Φ =
[

ΦP ΦF

]
(7b)

ΦF lower-block triangular (7c)

where ΦP,ΦF linearly maps history {aini
t , yini

t } and and a
future input sequence ut,...,t+N−1 to observed measurements
yt+1,...,t+N with ΦF as a lower-block triangular matrix to
preserve causality. Here, D is a set of time indices for which
data are available up to time t + N . Although alternative
regression techniques may be relevant for building Φ on
stochastic systems, we focuse on (7) to build the predictor
in the current work.

However, building the predictor Φ from (7) (or alternative
regressions) does not guarantee that the resulting SPC scheme
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(5) will deliver a good policy πSPC, especially in the presence
of stochasticity in the real system dynamics. In this paper, we
tackle this issue using the recent developments in learning-
based MPC using RL and extending them to the input-output
predictive control context. These recent developments are
tailored to state-space formulations, and require some careful
modifications to apply them in the SPC context. The following
section recalls the MPC-based RL formulation.

C. MPC-based Reinforcement Learning

A classic Markov Decision Process (MDP) operates over
a given state space S and an action space A. Similar to (3),
the state transitions occur according to,

st+1 ∼ ρ( · | st,at) , (8)

where the closed-loop performance is given by,

J(π) = Eρ

[ ∞∑
t=0

γtL (st,at)

∣∣∣∣∣ at = π (st)

]
, (9)

and the aim is to minimize it using a policy π? operating over
S . Finding an optimal policy for an MDP typically involves
computing the optimal value function V ? : S → R and the
optimal action-value function Q? : S ×A → R defined by
the Bellman equations,

V ?(st) = min
at

Q?(st,at) , (10a)

π?(st) = arg min
at

Q?(st,at) , (10b)

Q?(st,at) = L(st,at) + γEρ [V ?(st+1) | st,at ] . (10c)

Computing a solution to the Bellman equations (10) for
given L, ρ, and γ is notoriously difficult. When the transition
probability distribution ρ is unknown, RL methods seek
approximate solutions to (10) using data from the real system.
This is often done by using generic function approximators
for approximating V ?, Q? and π?, such as neural networks.

In contrast to seeking approximate solutions to (10) using
data, which can be challenging when ρ is unknown, an MPC
scheme can deliver V ?, Q?, and π? exactly, even when using
an inaccurate model of the system dynamics, as demonstrated
by [7]. To achieve this, modifications are made to the cost and
constraints forming the MPC scheme, which can be learned
using RL techniques. Specifically, the modified MPC scheme
for a given state st is formulated as,

min
x,u

γNTθ (xt+N ) +

N−1∑
k=0

γkLθ (xt+k,ut+k) (11a)

s.t. xt+k+1 = fθ (xt+k,ut+k) (11b)
xt = st (11c)

All elements in the MPC scheme (11) are parameterized by a
parameter vector θ. The model fθ is a representation of the
true system dynamics described in (8). Typically, fθ fails
to provide accurate predictions of the true system dynamics.
In such cases, the parameterized stage and terminal cost
functions Lθ and Tθ can be modified to compensate for the
model inaccuracy to deliver an optimal policy.

Similar to (5), the MPC scheme in (11) generates an
input sequence and a predicted state sequence. Only the
first element of the input sequence is applied, resulting in a
policy of the form,

πθ (st) = u?t . (12)

Additionally, (11) delivers an action-value function,

Qθ(st,at) = min
x,u

(11a), (13a)

s.t. (11b)− (11c), ut = at (13b)

as well as a value function,

Vθ(st) = min
at

Qθ(st,at) (14)

which equates with the cost of (11) at its solution. In [7], it
is shown that, under a mild assumption on fθ , if Tθ and Lθ
are richly parametrized then there exists a θ such that:

Vθ = V ?, Qθ = Q?, πθ = π?. (15)

Using these observations, [7] concluded that the MPC
formulation in (11), where the parameters θ are adjusted using
RL techniques, allows reaching high closed-loop performance
even if the MPC model (11b) cannot capture the true system
dynamics accurately. The next section extends this framework
to the SPC case, where the notion of state space is not used
explicitly.

III. OPTIMAL POLICIES FROM DATA DRIVEN PREDICTIVE
CONTROL

This section extends the framework summarized in Sec.
II-C to the SPC case (5). The most straightforward approach
to establish this extension is arguably to form a Markov state
for the real system based on input-output sequences, and
apply the framework summarized in Sec. II-C in that context.
In the following section, we define such a state and elaborate
on the background presented in Sec. II-A.

A. MDP with input-output information

Under assumption 1, forming a Markov state for a system
of input-output dynamics (3) is fairly straightforward. We
formalize that state in the following simple Lemma.

Lemma 1. Under Assumption 1,

st := [aini
t ,y

ini
t ]T (16)

is a Markov state.

Proof. State st is a Markov state if and only if

st+1 ∼ ρ( . | st,at ) = ρ( . | st,at, st−1,at−1, . . . ) , (17)

i.e. if st contains the required information to provide complete
statistics for the next state st+1. Using (16), st+1 reads as:

st+1 = [at−Tini+1, . . . ,at−1,at,yt−Tini+1, . . . ,yt,yt+1]T .
(18)

We then observe that the first part of st+1, i.e.

[at−Tini+1, . . . ,at−1,at,yt−Tini+1, . . . ,yt]
T . (19)
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is a trivial, deterministic function of st and an input at.
Moreover, we observe that under assumption 1, st provides
a complete statistics for the last element yt+1 of st+1 for
any input at. Then, it follows that st provides a complete
statistics for st+1, such that st is a Markov state. �

Using st, one can trivially define an MDP equivalent to
the input-output MDP defined in Sec. II-A, based on st as a
state, at as action, with a stage cost,

L(st,at) := L(yt,at) , (20)

and the state transition dynamics (17). Then the closed-
loop performance criterion (9) and the associated Bellman
equations (10) naturally apply. In particular, one can define
optimal value functions associated with (4) as,

V ?(aini
t ,y

ini
t ) = min

at

Q?(aini
t ,y

ini
t ,at), (21a)

π?(aini
t ,y

ini
t ) = arg min

at

Q?(aini
t ,y

ini
t ,at) (21b)

Q?(aini
t ,y

ini
t ,at) = L(yt,at) (21c)

+ γEρ
[
V ?(aini

t+1,y
ini
t+1) |aini

t ,y
ini
t ,at

]
where aini

t ,y
ini
t and st can be loosely interchanged.

Using these observations, the framework summarized in
Sec. II-C describing the use of RL for learning-based MPC
can be extended to the SPC formulation (5). The next section
elaborates more formally on this statement and points to some
important details where the SPC framework will differ from
the classic framework of Sec. II-C.

B. Optimal Policy using SPC
In this section we provide a modified SPC scheme capable

of capturing the optimal policy and value functions associated
with the input-output MDP introduced in Sec. II-A and further
detailed in Sec. III-A. This SPC scheme will have a structure
nearly similar to SPC (5), but use modifications of the stage
and terminal costs, along the lines of Sec. II-C. However,
unlike the MPC case (11), in the SPC case, the arguments of
the modified costs need to be different than the original SPC
(5). These observations are formally detailed in the following
proposition.

Proposition 1. Consider the SPC scheme

min
u,y

γNTθ(ŝt+N ) +

N−1∑
k=0

γkLθ(ŝt+k,ut+k) (22a)

s.t.

 yt+1
...

yt+N

 = Φ


aini
t

yini
t

ut
...

ut+N−1

 (22b)

where the predicted state ŝt,...,t+N is constructed from the
initial conditions aini

t ,y
ini
t , the future inputs ut,...,t+N−1 and

the predicted output yt,...,t+N as follows: ŝt = [aini
t ,y

ini
t ]T ,

for 0 < k < Tini

ŝt+k =[at−Tini+k, . . . ,at−1,ut, . . . ,ut+k−1,

yt−Tini+1, . . . ,yt−1,yt, . . . ,yt+k ]T (23)

while for k ≥ Tini

ŝt+k =[ut−Tini+k, . . . ,ut+k−1,yt−Tini+1, . . . ,yt+k ]T .
(24)

Consider the set Ω of initial conditions aini
t ,y

ini
t defined as:

Ω := {aini
t ,y

ini
t | |V ?(ŝt+k)|<∞, k = 0, . . . , N − 1} .

(25)

Then for Tθ, Lθ richly parametrized, there exist a θ and Φ
such that the following identities hold over Ω:

i. V SPC(aini
t ,y

ini
t ) = V ?(aini

t ,y
ini
t ) .

ii. πSPC(aini
t ,y

ini
t ) = π?(aini

t ,y
ini
t ) .

iii. QSPC(aini
t ,y

ini
t ,at) = Q?(aini

t ,y
ini
t ,at) for an input

at such that |V ?(ŝt+1)|<∞ .

Proof. Consider the set of Φ stemming from a state space
representation of the dynamics of ŝt, more specifically,
consider that Φ takes the form:

Φ =


τ1(0) 0 0 . . . 0
τ1(1) τ2(0) 0 . . . 0

...
...

. . . . . .
...

τ1(N − 1) τ2(N − 2) . . . . . . 0

 (26)

where τ1(k) = CAk and τ2(k) = CAkB for some matrices
A,B,C in the observable companion form associated with a
deterministic output predictor model of (3) in the form,

yt+1 = φ>ainia
ini
t + φ>yiniy

ini
t + φ>aat. (27)

for some vectors φaini , φyini , φa. Then SPC (22) is equivalent
to the MPC scheme:

min
u,ŝ

γNTθ(ŝt+N ) +

N−1∑
k=0

γkLθ(ŝt+k,ut+k) (28a)

s.t. ŝt+k+1 = Aŝt+k +But+k (28b)

ŝt = [aini
t ,y

ini
t ]T (28c)

Then [7, Theorem 1] applies to (28), i.e. for Tθ, Lθ richly
parametrized, there is a vector of parameters θ such that (28)
delivers the optimal value functions and policy Q?, V ?, π?

over Ω.
�

A few remarks are in order here regarding Preposition 1.
1) Matrix Φ in the SPC scheme (22) is arguably best

done via regression methods on existing data, e.g. using
(7) or alternative loss functions. However, a matrix Φ
obtained from (22) is unlikely to have the structure
(26) used in the proof of Proposition 1. We ought to
observe, though, that this is not an issue in the context
of the argumentation provided here. Indeed, Proposition
1 focuses on proving the existence of a θ, Φ such that
SPC (22) delivers the optimal policy and value functions.
Then the conclusions of Proposition 1 hold for an SPC
(22) having a less restrictive structure for Φ.
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2) The assumption that the parametrization of Tθ, Lθ is
rich typically does not hold in practice. Then in practice,
Proposition 1 holds in the sense that the richer the
parametrization of Tθ, Lθ, the closer SPC (22) can
approach the optimal policy and value functions.

3) A crucial difference between modified MPC (11) and
modified SPC (22) ought to be pointed out. Indeed, in
modified MPC (11) the cost modification Lθ operates
on the system state stage-wise, i.e. it does not mix the
states at different time instants. In contrast, because
the Markovian state (17) blends present and past input-
output information, the modified stage cost Lθ in (22)
combines input-output prediction across stages. Hence
modified SPC (22) is structurally different than (5).

4) Computing a θ, Φ such that SPC (22) comes as close
as possible to delivering the value function and policies
is very difficult. Following the arguments of [7], θ, Φ
are then best adjusted using RL techniques using data
obtained from the real system. In that context, an initial Φ
is computed from (7) and an initial vector of parameters
θ is selected such that the SPC scheme (22) corresponds
to SPC (5), typically yielding a reasonably good yet
sub-optimal closed-loop performance. RL is then used
to adjust θ, Φ for performance improvement.

In the next section, we detail the use RL techniques for tuning
SPC schemes.

IV. RL FOR DATA-DRIVEN PREDICTIVE CONTROL

Proposition 1 guarantees the existence of θ and Φ such
that the SPC scheme delivers an optimal policy and value
functions. However, computing such θ and Φ is difficult and
requires knowledge of the true system dynamics. Thus, fol-
lowing the suggestions in [7], we make use of RL techniques
to adjust them for better closed-loop performance. In the
following section, we present a discussion on integrating the
SPC scheme in (22) with classical RL techniques.

Consider the following parametric SPC scheme for approx-
imating the value function,

VΘ(aini
t ,y

ini
t ) = min

y,u
γNTθ(ŝt+N )

+

N−1∑
k=0

γkLθ(ŝt+k,ut+k) (29a)

s.t.

yt+1
...

yt+N

 = Φ


aini
t

yini
t

ut
...

ut+N−1

 (29b)

where the predicted state ŝt,...,t+N is constructed as in (23)
and (24), and the parameter Θ is a vector consisting of θ and
the parameterization in Φ. Then, similar to (5), the resulting
control policy is

πΘ(aini
t ,y

ini
t ) = u?t (30)

where u?t is the first input element from solution of (29). The
SPC-based action-value function is given as,

QΘ(aini
t ,y

ini
t ,at) = min

y,u
(29a), (31a)

s.t. (29b), ut = at (31b)

For learning the parameter Θ, RL techniques typically
require sensitivities of value functions and control policy. We
next discuss how to evaluate the gradients of VΘ, QΘ and
πΘ with respect to Θ. To that end, consider the Lagrange
function associated with SPC in (31),

LΘ(aini
t ,y

ini
t ,at, z) = γNTθ(ŝt+N ) + ζT (ut − at)

+

N−1∑
k=0

γkLθ(ŝt+k,ut+k)

+ µT


yt+1

...
yt+N

− Φ


aini
t

yini
t

ut
...

ut+N−1



 (32)

where µ, ζ are the multipliers for (29b) and (31b), re-
spectively, and z = (ut, . . . ,ut+N−1,yt+1, . . . ,yt+N ,µ, ζ)
represents all the primal-dual variables associated with (31).
Then, with [18], we observe that,

∇ΘQΘ(aini
t ,y

ini
t ,at) = ∇ΘLΘ(aini

t ,y
ini
t ,at, z

?) (33)

for z? as the primal-dual solution of (31). Similarly, the
gradient of the value function VΘ with respect to Θ is

∇ΘVΘ(aini
t ,y

ini
t ) = ∇ΘLΘ(aini

t ,y
ini
t ,u

?
t , z

?) (34)

where z? is the primal-dual solution of (29) (ζ = 0). Finally,
the gradient of πΘ with respect to parameters Θ is

∇ΘπΘ(aini
t ,y

ini
t ) = −∇ΘξΘ(aini

t ,y
ini
t , z

?)

· ∇zξΘ(aini
t ,y

ini
t , z

?)−1 ∂z

∂ut
(35)

where z? is the primal-dual solution of (29) (ζ = 0) and
ξΘ(aini

t ,y
ini
t , z

?) gathers the primal-dual KKT conditions
for (29). With the sensitivities of SPC-based value functions
and policy defined, we next discuss the use of classical RL
methods in learning Θ.

A. Q-learning for SPC

Q-learning [19] solves the following least square problem
in order to achieve the best parameters Θ? for describing the
optimal action-value function Q?,

min
Θ

E
[
(QΘ(st,at)−Q?(st,at))2

]
. (36)

Then the temporal difference learning update rule is,

δt = L(yt,at) + γVΘ(st+1)−QΘ(aini
t ,y

ini
t ,at) , (37a)

Θ← Θ + αδt∇ΘQΘ(aini
t ,y

ini
t ,at) , (37b)

where α > 0 is the learning rate.
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B. Deterministic Policy Gradient Methods for SPC
Policy gradient methods [20] directly optimize the closed-

loop performance (4). With the Deterministic Policy Gradient
(DPG) theorem [20], the parameter update rule is,

Θ← Θ− αE
[
∇ΘπΘ(aini

t ,y
ini
t )∇aQπΘ(aini

t ,y
ini
t ,at)

]
(38)

with the action-value function approximated separately.

V. SIMULATIONS

In this section, we illustrate the efficacy of the proposed
combination of SPC and RL using a Point Mass example.

A. Experimental Setup
1) Point Mass: We consider a Point Mass task to illustrate

our approach to learning-based SPC on input-output data.
The goal is to push a point mass to the origin of the state
space with its state vector as st = [x, y, ẋ, ẏ]T consisting
of position and velocities of the point mass and an action
vector at = [Fx, Fy]T as the applied forces along x and
y directions. The observation space is limited to position
information, yt = [x, y]T , for our setup. The true system
dynamics for the task is given by,

st+1 = A st +B at +N (0, 0.02) , (39)

A =


1 0 0.1 0
0 1 0 0.1
0 0 0.9 0
0 0 0 0.9

 , B =


0 0
0 0

0.1 0
0 0.1


while the stage cost is given as

L(yt,at) = 9‖yt‖2+0.01‖at‖2−100(x)− , (40)

where function (m)− equals m if m < 0 and zero otherwise
and it penalizes crossing to the negative half of the state
space. However, the true state dynamics in (39) and the state
space description are considered to be unknown, necessitating
formulating a predictive control scheme over the input-output
information. Note here, that for the output yt, the minimum
length of history for having complete statistics of the next
output yt+1 is 2. Finally, the discount factor γ is set to be
0.95, and the task length is 50.

2) SPC parameterization: For the illustrative example, we
parameterized (29) as follows:

Lθ(ŝk,uk) = yTkWWTyk + aTkRR
Tak (41)

Tθ(ŝk,uk) = 0 (42)

Φ =
[

ΦP ΦF

]
(43)

where ΦP and ΦF are defined as in (7) and are fully
parameterized while the stage cost weight matrices are

W =

[
θ1 0
θ2 θ3

]
, R =

[
θ4 0
θ5 θ6

]
. (44)

The parameters θ are initiated according to (40) and Φ is
initiated to the least squares solution of (7). Additionally,
history length Tini and horizon N are set to 5 and 10,
respectively. Note that the SPC scheme is built with a longer
length of history than required as the minimum required
length is usually unknown.

3) DPG with LSTDQ learning: For learning Θ, we use
a Temporal Difference actor-critic setup [21] based on DPG
theorem [20] with an SPC-based actor and a critic using
compatible function approximation. Specifically, the actor
π(aini

t ,y
ini
t ) is given by,

π(aini
t ,y

ini
t ) = πΘ(aini

t ,y
ini
t ) + U(−0.1, 0.1) , (45)

while the action-value function Q(aini
t ,y

ini
t ,at) and value

function V (aini
t ,y

ini
t ) are approximated as,

Qw(aini
t ,y

ini
t ,at) =V (aini

t ,y
ini
t ) + (at − πθ(aini

t ,y
ini
t ))T

· ∇θπθ(aini
t ,y

ini
t )Tw , (46)

V (aini
t ,y

ini
t ) =β(aini

t ,y
ini
t )Tv . (47)

The feature vector β(aini
t ,y

ini
t ) is chosen to be all monomials

of (aini
t ,y

ini
t ) with degrees ≤ 2. The vectors w,v are tuned

using temporal difference learning, such that Q approximates
the optimal action-value function Q?, as in (36). The least
squares solutions for w,v are,

v = E
[
β(aini

t ,y
ini
t )(β(aini

t ,y
ini
t )− γβ(st+1))T

]−1

E
[
β(aini

t ,y
ini
t )L(yt,at)

]
, (48)

w = E
[
ψ(aini

t ,y
ini
t ,at)ψ(aini

t ,y
ini
t ,at)

T
]−1

E
[
(L(aini

t ,y
ini
t ,at) + γVv(st+1)− Vv(aini

t ,y
ini
t ))

·ψ(aini
t ,y

ini
t ,at)

]
, (49)

where expectations are taken over on-policy data (20
episodes) and ψ(aini

t ,y
ini
t ,at) = ∇ΘπΘ(aini

t ,y
ini
t )(at −

πΘ(aini
t ,y

ini
t )). For (46), we have,

∇aQw(aini
t ,y

ini
t ,at) = ∇ΘπΘ(aini

t ,y
ini
t )Tw . (50)

Thus, the parameter update rule using (38) is,

Θ← Θ− α∇ΘπΘ(aini
t ,y

ini
t )∇ΘπΘ(aini

t ,y
ini
t )Tw (51)

where α > 0 is the small enough learning rate. We use
αθ = 1e− 5 and αΦ = 1e− 6 for the simulation study.

B. Results and Discussion

As the noise present in the true dynamics is Gaussian
in nature, the least squares solution in (7) is the best
fit to describe the transition dynamics. However, due to
the presence of stochasticity in the transition dynamics
and the stage cost (40) with the added penalty, the least
squares Φ will not deliver the best closed-loop performance.
With this experimental setup, we use RL to adjust Θ for
improving closed-loop performance and to illustrate the
proposed theoretical developments. We refer to the SPC
scheme with least squares Φ and initial θ as SPC0 while the
learning-based SPC with RL is simply referred to as SPC.

In figure 1, we show the performance of SPC against
that of SPC0 (averaged over 5 seeds). As expected, with RL
tuning, SPC improves closed-loop performance over SPC0.
Note that, the observed improvement was despite SPC being
defined over a longer history than required which resulted in
additional parameters in the learning process.
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Fig. 1: The performance of SPC scheme adjusted with RL

Figure 2 visualizes the trajectories resulting from SPC as
against from SPC, to further illustrate the parameter tuning
carried out using RL. The trajectories under the policy SPC0,
shown in figure 2a, settle around the origin incurring extra cost
due to added penalty. On the contrary, SPC yields trajectories
that settle at an offset from the origin, achieving better closed-
loop performance. Such a policy behaviour can only be
attributed to better-tuned Φ for closed-loop performance as
Lθ is purely quadratic centred around the origin.
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(a) SPC0
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(b) SPC

Fig. 2: Visualisation of trajectories under SPC0 and SPC

VI. CONCLUSIONS

In this work, we extend the MPC-based RL framework to
work without any explicit state-space models. The proposed
predictive control scheme effectively combines RL and pure
data-driven predictive control to deliver optimal closed-loop
performance. We show that, under some assumptions, the
data-driven predictive control scheme with an input-output
multi-step predictor can generate optimal policy and value
functions for the real system, even if the predictor underlying
the predictive control scheme is not accurate. We then present
the way to tune the data-driven predictive controller with
RL techniques in practice to achieve better closed-loop
performances. We illustrate the workings of the proposed
predictive control scheme on a linear task.

As data-driven predictive control schemes based on multi-
step predictors have a significantly larger parameter space
than classic one-step prediction models, we expect them to
be more generic and better suited to approximate complex
value functions, especially in combination with rich control
objective structures such as convex NNs [22]. With such
combinations, future work will propose improvements to
address applications wherein state-space model definition is
difficult, especially for complex transition dynamics.
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