
Risk-Sensitive RL Using Sampling-Based Expectation-Maximization

Erfaun Noorani1, John S. Baras1, and Karl H. Johansson2

Abstract— There is a need for robust Reinforcement Learning
(RL) algorithms that can cope with model misspecification,
parameter uncertainty, disturbances, etc. Risk-sensitive methods
offer an approach to developing robust RL algorithms by
hedging against undesirable outcomes in a probabilistic manner.
The Probabilistic Graphical Model (PGM) framework offers
systematic exploration for risk-sensitive RL. In this paper, we
bridge the Markov Decision Process (MDP) and the PGM
frameworks. We exploit the equivalence of optimizing a certain
risk-sensitive criterion in the MDP formalism with optimizing a
log-likelihood objective in the PGM formalism. By utilizing this
equivalence, we offer an approach for developing risk-sensitive
algorithms by leveraging the PGM framework. We explore
the Expectation-Maximization (EM) algorithm under the PGM
formalism. We show that risk-sensitive policy gradient methods
can be obtained by applying sampling-based approaches to the
EM algorithm, e.g., Monte-Carlo EM, with the log-likelihood.
We show that Monte-Carlo EM leads to a risk-sensitive Monte-
Carlo policy gradient algorithm. Our simulations illustrate the
risk-sensitive nature of the resulting algorithm.

I. Introduction

Online learning for decision-making and control has
become critical due to the increasing complexity of systems,
which renders approaches based solely on models inadequate.
Furthermore, changing environments, unknown environments,
and incorrect task execution, also necessitate online learning.
Reinforcement Learning (RL) offers a promising response
to the need for online learning. RL studies the design and
implementation of optimal policies using interactions with
an (unknown or complex) environment [1]. Uncertainty in
stochastic environments leads to the stochastic performance of
policies. Risk-neutral RL algorithms aim to find a policy with
the highest expected performance. Risk-sensitive RL algo-
rithms consider a criterion beyond the expected performance,
e.g., mean-variance [2] and exponential criterion [3].

Though risk-neutral RL algorithms provide an effective
approach to data-driven control, it is well-known that risk-
neutral methods are brittle, i.e., non-robust, both in the context
of optimization and model-based control and more recently
in the context of RL and data-driven control [4]. The non-
robust performance of risk-neutral algorithms has led to a
surge of interest in robust RL algorithms that can cope with
model misspecification, parameter uncertainty, disturbances,
etc. The robust properties of risk-sensitive algorithms and

1E. Noorani and J. Baras are with the Department of Electri-
cal and Computer Engineering and the Institute for Systems Re-
search (ISR) at the University of Maryland, College Park, MD, USA.
{enoorani,baras}@umd.edu.

2Karl H. Johansson is with the Automatic Control Lab, Royal Institute of
Technology, Stockholm, Sweden. {kallej}@kth.se.

Research partially supported by ONR grant N00014-17-1-2622, by a grant
from the Army Research Lab, and by the Clark Foundation.

their practical advantage over robust (worst-case) control
algorithms [5] make risk-sensitive approaches particularly
suitable for real-world applications. For a recent research
monograph on risk-sensitive RL, see [6].

The Markov Decision Process (MDP) [7] has become
conventional for modeling RL and the de facto language in
developing both risk-neutral and risk-sensitive RL algorithms.
The tools and techniques for handling uncertainty within the
MDP framework have been instrumental in the success of
RL. The Probabilistic Graphical Model (PGM) provides an
alternative approach to modeling RL problems. PGMs offer a
rich set of tools and techniques for inference and learning, e.g.,
the Expectation-Maximization (EM) algorithm, its variants,
and alternatives. For a tutorial on EM algorithms, see [8], [9].
An elegant analysis of the EM algorithm and its convergence
can be found in [10], where its fundamental nature as gradient
descent in an appropriate space is established. A recent tutorial
on modeling RL using PGMs is given in [11].

The use of EM-inspired algorithms in RL has been
previously explored, e.g., see [12]. The survey in [13] presents
some results on the EM algorithms for policy search. These
results make no connection with risk-sensitive RL. Casting RL
as a PGM has allowed for establishing an equivalence between
the optimization of the exponential criterion in the MDP
framework and a certain log-likelihood in the PGM framework
[14]. These results focus on establishing the equivalence,
and it does not offer any algorithm or discussion on the
implications of this equivalence. This motivates us to ask:

"How can we capitalize on this equivalence to contribute to
algorithm design for risk-sensitive RL?"

Contributions. We discuss our contributions in detail here:
• We build upon our results in [14] and establish the

equivalence between the exponential criteria with a negative
risk parameter (risk-averse behavior) under the MDP
framework and a certain log-likelihood under the PGM
framework. The result in [14] establishes such equivalence
for the exponential criteria with a positive risk parameter
(risk-seeking behavior). We summarize these results in
Proposition 1.

• By leveraging this equivalence, we employ sampling-based
EM algorithms and stochastic gradient schemes to design
a risk-sensitive policy search algorithm. The risk-sensitive
nature of our algorithm stems from the log-likelihood
objective function that was derived from the mathematical
analysis of the risk-sensitive exponential criteria under the
PGM model. By doing this, we arrive at the update rule (8).
We find the risk-sensitive algorithm recently proposed in
[15] is naturally recovered out of the PGM framework.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7009

This shows that the algorithm in [15] is a Monte-Carlo
EM algorithm. This is significant in terms of algorithmic
analysis since the strong guarantees associated with EM
algorithms such as convergence and its weaknesses such
as slow convergence under certain conditions [16], can be
attributed to this update rule.

• We explain the robust performance of the update rule (8) by
showing that this update rule is an EM algorithm for solving
the risk-sensitive RL with exponential criteria. Our analysis
also shows that the postulated choice of exponential function
for transforming the trajectory rewards into probability
distributions in [13], [17], leads to the optimization of
the exponential criteria and suggests that different choices
for the transforming functions lead to the optimization of
different risk-measures.

Our contributions bridge the MDP and PGM, and provide
a systematic approach to the further development of risk-
sensitive RL using PGMs. Our analysis suggests that the
EM algorithm, its variants, and alternatives can be used to
design a host of risk-sensitive RL algorithms. An additional
advantage offered by the PGM framework is the hierarchical
decomposition of control and decision-making problems,
"divide and conquer" approaches and modularity, which are
often necessary for the increasing complexity of systems, and
problems, encountered. We point out an instance of "divide
and conquer" in Section VII.

II. Reinforcement Learning

MDPs are the conventional framework for modeling RL
[7]. Most risk-neutral RL algorithms and, to the best of our
knowledge, all risk-sensitive RL algorithms are developed
using the MDP framework. PGM is an alternative framework
for modeling RL problems. We model the RL problem, first,
using MDP, and then, using PGM. In doing so, we present
some background materials and set our notation.

A. MDP

An MDP is described by the tuple 𝑀 = (S,A, 𝑝1, 𝑃,𝑟),
where S is the state space and A is the action space, 𝑝1 is
the initial state distribution, 𝑃 is the transition kernel, and 𝑟

is the immediate reward function.
Under the MDP framework, the environment is modeled

as a discrete-time stochastic process. The process starts in
an initial state 𝑠1 given by the initial probability distribution
𝑝1. For a given action 𝑎 from the set of admissible actions
(action space), the environment transitions from the current
state 𝑠 to a successor state 𝑠′ with a probability given by
𝑝(𝑠′ |𝑠, 𝑎). A scalar reward 𝑟 (𝑠, 𝑎) is given when the action
is executed. Over time, the system goes through a sequence
of states and actions. This sequence is called a trajectory and
is denoted by 𝜏, i.e., 𝜏 := (𝑠1, 𝑎1, . . . , 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇), where
𝑇 is the system time horizon.

The behavior of the RL agent is characterized by its policy,
which could be deterministic or randomized. A (randomized)
policy 𝜋(·|𝑠) prescribes the probability of taking an action
when in a given state. The policy can be represented by

a differentiable parameterized function of the state 𝜋\ (·|𝑠)
where \ ∈ R𝑑 is a vector of 𝑑 parameters.

Under a given policy, each trajectory 𝜏 happens with a
probability induced by the agents’ policy and the system
transition probabilities, and is given by

𝑝\ (𝜏) = 𝑝1

𝑇∏
𝑡=1

𝜋\ (𝑎𝑡 |𝑠𝑡)𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). (1)

The agent aims to optimize some desired measure of
performance. In classical (risk-neutral) RL, the desired
performance criterion is the expected performance. A common
example of a risk-neutral objective in the RL literature is the
expected (discounted) cumulative reward,

𝐽 (\) := E
[
𝑅

]
, (2)

where the expectation is taken under policy’s trajectory
distribution, i.e., 𝑠1 ∼ 𝑝1, 𝑎𝑡 ∼ 𝜋\ (·|𝑠𝑡) and 𝑠𝑡+1 ∼ 𝑝(·|𝑠𝑡 , 𝑎𝑡),
and the discounted cumulative reward 𝑅 :=

∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡 , where
𝑟𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡), is the discounted sum of all per-stage rewards
during an episode. The discount factor is 𝛾 ∈ (0,1].

Risk-sensitive algorithms use a criterion beyond the expec-
tation. We will discuss the risk-sensitive RL in more detail
in Section III. It is important to emphasize that the per-stage
reward and the performance criterion should be designed to
reflect the task at hand.

B. PGM
A PGM consists of an acyclic directed graph 𝐺=(𝑉,𝐸)

and a set of properties that determine a family of probability
distributions. The sets 𝑉 and 𝐸 denote the set of nodes
and edges of the graph, respectively. Each node represents a
random variable. The edges represent conditional dependence
assumptions, e.g., an edge from the random variable 𝑠1 to
𝑠2 indicates the dependence of the random variable 𝑠2 on
𝑠1 (see Fig. 1). For nodes 𝑎 and 𝑠 in the set 𝑉 , node 𝑎 is
a parent of node 𝑠 if and only if there exists an edge from
node 𝑎 to node 𝑠, e.g., 𝑎𝑡 is a parent of 𝑠𝑡+1 for any 𝑡 in
Fig. 1. The dependence between a random variable and its
parents is typically defined as a conditional distribution of
the random variable represented by the node, e.g., factors of
the form 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) for the node 𝑠𝑡+1 in Fig. 1.

Fig. 1. RL in the PGM Framework.

PGM can be used as an alternative framework for modeling
RL problems, resulting in a PGM with factors of the form
𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). Any feedback system can be unrolled in time
and be represented by a graphical model, e.g., a Bayesian
Network. This models the relationship between state 𝑠𝑡 ,
action 𝑎𝑡 and successor-state 𝑠𝑡+1. Then by introducing a
fictitious binary optimality variable denoted by 𝑜𝑡 at each time

7010

step, one can model the notion of reward into the graphical
model; see Fig. 1 for a pictorial representation. Note that the
system trajectory, the sequence of states 𝑠𝑡 and actions 𝑎𝑡 ,
are observable variables and represented using white nodes.
The optimality variables are unobserved variables and are
represented by gray nodes. By conditioning on the optimality
variables to be true, one can infer the most probable policy.
See [11] for a recent tutorial on modeling RL using PGM.

The optimality variable is equal to one, 𝑜𝑡=1, if the optimal
action is taken at time step 𝑡 and is equal to zero, 𝑜𝑡=0, if a
non-optimal action is taken at time step 𝑡 (hence the name
optimality variable). For brevity, we use 𝑜𝑡 and 𝑜′𝑡 to denote
𝑜𝑡=1 and 𝑜𝑡=0, respectively. We use 𝑂1:𝑇 to denote the event
that the optimal action was taken at each time step during
an episode, i.e., 𝑂1:𝑇=(𝑜1,· · · , 𝑜𝑇), and 𝑂 ′

1:𝑇 to denote the
event that the optimal action was not taken at all time steps
during an episode, i.e., 𝑂 ′

1:𝑇=(𝑜
′
1,· · · , 𝑜

′
𝑇
). From (1), it follows

that the joint probability of observing a trajectory and being
optimal at all time steps 𝑝\ (𝑂1:𝑇 , 𝜏) is,

𝑝\ (𝑂1:𝑇 , 𝜏) = 𝑝1

𝑇∏
𝑡=1

𝑝(𝑎𝑡 |𝑠𝑡)𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)𝑝\ (𝑜𝑡 |𝑠𝑡 , 𝑎𝑡) (3)

and the joint probability of observing a trajectory and not
being optimal at all time steps is given by

𝑝\ (𝑂 ′
1:𝑇 , 𝜏) = 𝑝1

𝑇∏
𝑡=1

𝑝(𝑎𝑡 |𝑠𝑡)𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)𝑝\ (𝑜′𝑡 |𝑠𝑡 , 𝑎𝑡) (4)

where the action prior is denoted by 𝑝(𝑎𝑡 |𝑠𝑡). We assume
that the action prior 𝑝(𝑎𝑡 |𝑠𝑡) is a constant corresponding to
a uniform distribution over the action space. This assumption
does not introduce any loss of generality, because any non-
uniform prior 𝑝(𝑎𝑡 |𝑠𝑡) can be incorporated instead into
𝑝\ (𝑜𝑡 |𝑠𝑡 , 𝑎𝑡) (resp. 𝑝\ (𝑜′𝑡 |𝑠𝑡 , 𝑎𝑡)) via the reward function,
as we shall see. The choice of the probability distribution of
the optimality variable conditioned on the state-action pair
𝑝\ (𝑜𝑡 |𝑠𝑡 , 𝑎𝑡) = 𝑝(𝑜𝑡 = 1|𝑎𝑡 , 𝑠𝑡) and 𝑝\ (𝑜′𝑡 |𝑠𝑡 , 𝑎𝑡) = 𝑝(𝑜𝑡 =
0|𝑎𝑡 , 𝑠𝑡) defines the meaning of optimality and therefore the
objective function of the agent.

III. Risk-Sensitive RL
In this section, we briefly introduce the risk-sensitive

exponential criterion (under the MDP framework) and state its
connection with a certain log-likelihood objective under the
PGM framework. This connection enables the development
of risk-sensitive RL algorithms under the PGM framework.

Risk-sensitive RL algorithms use performance criteria that
consider some notion of risk, e.g., higher moments of return.
The exponential criterion is a particular example of such
criteria and is given by

𝐽𝛽 (\) := E
[
𝛽𝑒𝛽𝑅

]
, (5)

where the expectation is taken under policy’s trajectory dis-
tribution and 𝛽 ∈ R is a real-value constant design parameter
that controls the agent’s risk-attitude. The agent shows risk-
averse behavior for a negative risk-parameter 𝛽<0 and risk-
seeking behavior for a positive risk-parameter 𝛽>0 [3]. A

Taylor expansion of the exponential function shows that the
exponential criterion is a weighted infinite sum given by

E
[
𝛽𝑒𝛽𝑅

]
= 𝛽+ 𝛽2E

[
𝑅

]
+ 𝛽3

2
E
[
𝑅2

]
+

The risk-sensitive optimal policy converges to the risk-neutral
optimal policy in limit when the risk parameter 𝛽 approaches
zero [3]. This can be discerned by the Taylor expansion
of the exponential function and the fact that the optimal
solution doesn’t change when the objective function shifted
by a constant (e.g. 𝛽) or when scaled by a positive scalar
(e.g. a factor of 1/𝛽2).

The results in [14] give a probabilistic interpretation of
maximizing the exponential criterion (5) by casting the risk-
sensitive RL problem into the PGM framework, and establish
that, under a bounded reward structure 𝑟∈[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], the
maximization of the exponential criterion is equivalent to
maximizing the probability of taking an optimal action at all
time steps during an episode for a factored form of

𝑝\ (𝑜𝑡 | 𝑠𝑡 , 𝑎𝑡) := 𝜋(𝑎𝑡 | 𝑠𝑡 ;\)𝑒𝛽𝑟𝑡 .

That is, the specific choice of 𝑝\ (𝑜𝑡 | 𝑠𝑡 , 𝑎𝑡) := 𝜋(𝑎𝑡 |𝑠𝑡 ;\)𝑒𝛽𝑟𝑡
maps back to a specific objective function in the MDP
framework, namely, the exponential criterion with a positive
risk parameter 𝛽 > 0 (risk-seeking behavior). [14] does not
leverage this equivalence and offers no algorithm. To leverage
this equivalence and design a risk-sensitive RL algorithm, we
first extend the results in [14] to characterize both positive
(risk-seeking behavior) and negative (risk-averse behavior) risk
parameters and formally state this connection in Proposition 1.
We then use this equivalence to leverage EM algorithms for
developing risk-sensitive RL in the proceeding section.

Proposition 1: Under the assumption of bounded reward
structure, for the choice of 𝑝(𝑜𝑡 |𝑠𝑡 , 𝑎𝑡) = 𝜋\ (𝑎𝑡 |𝑠𝑡)𝑒𝛽𝑟𝑡 with
the temperature parameter 1/𝛽 > 0, we have

argmax
\

𝐽𝛽 (\) = argmax
\

log 𝑝\ (𝑂1:𝑇), ∀𝛽 > 0

and for the choice of 𝑝(𝑜′𝑡 |𝑠𝑡 , 𝑎𝑡) = 𝜋\ (𝑎𝑡 |𝑠𝑡)𝑒𝛽𝑟𝑡 with the
temperature parameter 1/𝛽 < 0, we have

argmax
\

𝐽𝛽 (\) = argmin
\

log 𝑝\ (𝑂 ′
1:𝑇), ∀𝛽 < 0.

Proof: For the 𝛽<0 case, from the premise of the
theorem, we have 𝑝(𝑜′𝑡 | 𝑠𝑡 , 𝑎𝑡)=𝜋(𝑎𝑡 | 𝑠𝑡 ;\)𝑒𝛽𝑟𝑡 where
𝛽 is a negative constant. Also, recall that 𝑝(𝑂 ′

1:𝑇 , 𝜏) =
𝑝1

∏𝑇
𝑡=1 𝑝(𝑎𝑡 | 𝑠𝑡)𝑝(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡)𝑝(𝑜′𝑡 |𝑠𝑡 , 𝑎𝑡) (cf. Eq. (4)), and

𝑝\ (𝜏)=𝑝1
∏𝑇
𝑡=1 𝜋(𝑎𝑡 |𝑠𝑡 ;\)𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) (cf. Eq. (1)). Thus,

using the property of exponential, we have

𝑝(𝑂 ′
1:𝑇) =

∫
𝜏

𝑝(𝑂 ′
1:𝑇 , 𝜏)𝑑𝜏 ∝

∫
𝜏

𝑝\ (𝜏)𝑒𝛽𝑅 (𝜏)𝑑𝜏

∝ −E𝜏∼𝑝\
[
𝛽𝑒𝛽𝑅 (𝜏)

]
The equality follows from the definition of the marginal
distribution. The first proportionality follows from Eq. (4) and
the constant action priors. The last line follows immediately
from the definition of expectation and the negativity of 𝛽.

7011

The 𝛽>0 case has been proven in [14] and follows a similar
logic as shown here.

Remark 1: Proposition 1 suggests that maximizing the
joint probability of taking an optimal action at all time steps
during an episode, i.e.,

argmax
\

log 𝑝\ (𝑂1:𝑇), (6)

results in risk-seeking behavior, and minimizing the joint
probability of not taking an optimal action at all time steps
during an episode, i.e.,

argmin
\

log 𝑝\ (𝑂 ′
1:𝑇), (7)

results in risk-averse behavior. This offers a probabilistic
perspective on risk-sensitive RL and justifies the choice of
exponential criterion in RL.

The equivalence stated in Proposition 1 suggests an avenue
for developing risk-sensitive RL algorithms by leveraging
numerous existing methods for optimizing log probabilities.
A wealth of tools and algorithms for inference and learning
on graphical models, e.g. the EM algorithm, have been
developed over the years [8], [9]. These tools can be
used to (approximately) solve the risk-sensitive RL problem.
The objective functions in (6) and (7) are derived from
the mathematical analysis of the risk-sensitive exponential
criterion under the PGM framework and are different from
the objective functions used in methods described in [13].

IV. Monte-Carlo EM and Risk-Sensitive RL

We focus on the EM algorithm and its sampling-based
variant, Monte-Carlo EM. We will explore other EM variants
and alternatives for developing risk-sensitive RL algorithms
in our future work. We formally state our result in Theorem
1. The proof of Theorem 1 is presented in Section V.

Theorem 1: Let 𝑅𝑡 :=
∑𝑇−1
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑟𝑡′ denote the reward-to-
go at time 𝑡 and let 𝛼 be the step size. Then, the iteration

\𝑘+1 = \𝑘 +𝛼𝑒𝛽𝑅𝑡∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡) (8)

constitutes a Monte-Carlo EM algorithm designed for solving
risk-sensitive exponential criteria (5).

Proof: The proof uses the sampling-based Monte-Carlo
EM and gradient descent algorithms. See Section V for a
step-by-step proof.

Remark 2: The update rule in Theorem 1 is the risk-
sensitive policy gradient algorithm proposed in [15] that has
been derived using the MDP framework. This suggests that
risk-sensitive policy gradient algorithms can be thought of
as sample- and gradient-based EM algorithms.

V. Proof of Theorem 1

Here, we provide a step-by-step proof of the theorem. The
proof is the application of the EM algorithm to the RL
problem under the PGM framework. We first state a lemma.
The lemma is later used to construct a lower bound on the
posterior distribution for the EM algorithm. We write the
proof for the risk-seeking 𝛽 > 0. The proof for the risk-averse

𝛽 < 0 is analogous by substitution of 𝑂 ′
1:𝑇 for 𝑂1:𝑇 and noting

the negativity of 𝛽.
Lemma 1: [14] The log-likelihood in Eq. (6) can be

decomposed as the sum of the Evidence lower-bound on
the probability of being optimal at all time steps and a KL-
divergence term, given by

log 𝑝\ (𝑂1:𝑇) = 𝐿 (\) +𝐷 (\)

where

𝐿 (\) := E𝜏∼𝑝\
[
log 𝑝(𝑂1:𝑇 |𝜏)

]
𝐷 (\) := 𝐷𝐾𝐿

(
𝑝\ (𝜏)∥𝑝\ (𝜏 |𝑂1:𝑇)

)
𝐷𝐾𝐿 (𝑄,𝑃) is the KL-divergence between the probability
distributions 𝑄 and 𝑃.

Remark 3: It should be noted that the optimality of a
trajectory is not dependent on the policy, that is to say,
𝑝(𝑂1:𝑇 |𝜏) is independent of the policy, and thus, does not
depend on the policy parameters \.

Remark 4: It is immediate from Lemma 1 and the non-
negativity of KL divergence that 𝐿 (\) is a lower bound on
the log probability.

We now present a step-by-step derivation and discussion
of the theorem. Recall that in the EM algorithm, the E-step
constructs a tractable lower bound 𝐵(\, \𝑡) and the M-step
maximizes the constructed bound. The E-step constructs a
posterior distribution lower bound, see Lemma 1. The E-step
updates the trajectory distribution 𝑝\ (𝜏) by minimizing the
KL divergence term 𝐷𝐾𝐿 (𝑝\ (𝜏)∥𝑝\𝑘 (𝜏 |𝑂1:𝑇)), i.e.,

\∗𝑒 := argmin
\

𝐷𝐾𝐿

(
𝑝\ (𝜏)∥𝑝\𝑘 (𝜏 |𝑂1:𝑇)

)
.

The KL divergence is non-negative and is minimized when
the parameters are chosen such that 𝑝\∗𝑒 (𝜏) = 𝑝\𝑘 (𝜏 |𝑂1:𝑇).
This lower bound is tight after each E-step. Thus, the M-step
maximizes the constructed lower bound, i.e.,

\𝑘+1 = argmax
\

𝐵(\, \𝑘)

where 𝐵 is a lower bound and is given by

𝐵(\, \𝑘) := E𝑝
\𝑘

(𝜏 |𝑂1:𝑇)
[
log 𝑝\ (𝑂1:𝑇 , 𝜏)

]
.

By noting that 𝑝(𝑂1:𝑇 |𝜏) is independent of the policy
parameters \, we have

𝑝\ (𝑂1:𝑇 , 𝜏) = 𝑝(𝑂1:𝑇 |𝜏)𝑝\ (𝜏)

and by Bayes’ rule, we have

𝑝\𝑘 (𝜏 |𝑂1:𝑇) =
𝑝(𝑂1:𝑇 |𝜏)𝑝\𝑘 (𝜏)

𝑝\𝑘 (𝑂1:𝑇)
.

Thus,

𝐵(\, \𝑘) = E𝜏∼𝑝
\𝑘

[𝑝(𝑂1:𝑇 |𝜏)
𝑝\𝑘 (𝑂1:𝑇)

log 𝑝\ (𝑂1:𝑇 , 𝜏)
]

= E𝜏∼𝑝
\𝑘

[𝑝(𝑂1:𝑇 |𝜏)
𝑝\𝑘 (𝑂1:𝑇)

log 𝑝\ (𝜏)
]

+E𝜏∼𝑝
\𝑘

[𝑝(𝑂1:𝑇 |𝜏)
𝑝\𝑘 (𝑂1:𝑇)

log 𝑝(𝑂1:𝑇 |𝜏)
]
.

7012

The second term is not a function of the decision variable \,
thus, we have

\𝑘+1 = argmax
\

E𝜏∼𝑝
\𝑘

[𝑝(𝑂1:𝑇 |𝜏)
𝑝\𝑘 (𝑂1:𝑇)

log 𝑝\ (𝜏)
]
.

By noting 𝑝\𝑘 (𝑂1:𝑇) is constant with respect to 𝜏 and not a
function of \ (it is a function of \𝑘), we have

\𝑘+1 = argmax
\

E𝜏∼𝑝
\𝑘

[
𝑝(𝑂1:𝑇 |𝜏) log 𝑝\ (𝜏)

]
.

Now recall that

𝑝(𝑂1:𝑇 |𝜏) =
𝑇∏
𝑡=1

𝑝(𝑜𝑡 |𝑠𝑡 , 𝑎𝑡) =
𝑇∏
𝑡=1

𝑒𝛽𝑟𝑡 = 𝑒𝛽𝑅 .

Thus,

\𝑘+1 = argmax
\

E𝜏∼𝑝
\𝑘

[
𝑒𝛽𝑅 log 𝑝\ (𝜏)

]
.

By noting that log 𝑝\ (𝜏)
𝑐
=
∑𝑇
𝑡=1 log𝜋\ (𝑎𝑡 |𝑠𝑡) up to a constant

term (constant with respect to the policy parameters), we
arrive at the following update rule:

\𝑘+1 = argmax
\

E𝜏∼𝑝
\𝑘

[
𝑒𝛽𝑅

𝑇∑︁
𝑡=1

log𝜋\ (𝑎𝑡 |𝑠𝑡)
]
. (9)

Remark 5: The update rule (9) is used in [17] and [13],
but the connection with risk-sensitive RL has not been made.

Remark 6 (MM Principle): It is well known that EM
algorithms can be thought of as an instance of Majorization-
Minimization (MM) algorithms. The bound 𝐵(\, \𝑘) mi-
norizes the log-likelihood log 𝑝\ (𝑂1:𝑇), that is, it is tangent
to the log-likelihood at a given policy parameter \𝑘 and it is
dominated by it at all points, i.e.,

𝐵(\𝑘 , \𝑘) = log 𝑝\𝑘 (𝑂1:𝑇), 𝐵(\, \𝑘) ≤ log 𝑝\ (𝑂1:𝑇)

for all \ ∈ R𝑑 . This suggests one could use alternative MM-
type algorithms to develop risk-sensitive RL agents.

The iteration (9) is an EM algorithm to solve the risk-
sensitive exponential criteria (5). To adapt the update rule of
(9) to use the interactions with the environment, one can use
sampling-based EM algorithms, such as Monte-Carlo EM.
This optimization may be attempted by a variety of methods.
One particularly easy-to-implement approach is using a first-
order (gradient-based) method. The expectation in iteration
(9) is with respect 𝑝\𝑘 and independent of \. This simplifies
the gradient computation. The gradient ascent iteration can
be written as

\𝑘+1
𝑡+1 = \𝑘+1

𝑡 +𝛼E𝜏∼𝑝
\𝑘

[
𝑒𝛽𝑅

𝑇∑︁
𝑡=1

∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)
]
.

where \𝑘+1
0 = \𝑘 . The step size 𝛼 is called the learning rate.

Special consideration needs to be given to the step size 𝛼 as
its choice affects the learning process, as is the case for any
stochastic approximation scheme [18]. This iteration could
be further modified and written in terms of reward-to-go

\𝑘+1
𝑡+1 = \𝑘+1

𝑡 +𝛼E𝜏∼𝑝
\𝑘

[
𝑒𝛽𝑅𝑡

𝑇∑︁
𝑡=1

∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)
]
.

To see this, from the iteration above and the property of
exponential functions, we have

\𝑘+1 = \𝑘 +𝛼E𝜏∼𝑝
\𝑘

[
𝑒𝛽𝑅

−
𝑡 𝑒𝛽𝑅𝑡

𝑇∑︁
𝑡=1

∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)
]

= \𝑘 +𝛼
(
E𝜏∼𝑝

\𝑘

[
𝑒𝛽𝑅

−
𝑡

]
E𝜏∼𝑝

\𝑘

[
𝑒𝛽𝑅𝑡

𝑇∑︁
𝑡=1

∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)
])

where 𝑅𝑡 is the reward-to-go and 𝑅−
𝑡 is the accumulated

reward up to time 𝑡, i.e., 𝑅=𝑅𝑡+𝑅−
𝑡 . The last line is due to

the temporal structure that leads to the decorrelation between
the random variables. Then one can attempt to estimate
this expectation with temporal-difference or Monte Carlo
methods. Since both the EM and the gradient-based methods
are iterative methods, the computation can be reduced by
taking a limited number of gradient steps at each iteration of
the overall algorithm.

Using the full trajectory samples for estimating the reward-
to-go 𝑅𝑡 leads to a risk-sensitive Monte-Carlo algorithm–
such an algorithm has been developed in [15] using the MDP
framework. A stochastic approximation approach results in
the update rule given by

\𝑡+1 = \𝑡 +𝛼𝑒𝛽𝑅𝑡∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)

where an entire trajectory is generated and then samples
of the reward-to-go 𝑅𝑡 are used to make an update. This
algorithm, as with all Monte Carlo methods, suffers from
high variance. Several variance reduction techniques have
been introduced for risk-neutral Monte-Carlo methods, yet
there is currently a gap in the application of such techniques
to our risk-sensitive method. It’s worth highlighting that
our method already exhibits superior variance characteristics
when compared to risk-neutral approaches. As we advance
our research agenda, we anticipate embracing sample-based
methodologies and batch learning as promising avenues for
further variance reduction.

Note that, by the equivalence stated in Proposition 1, the
log-likelihood optimization of (6) when 𝛽 > 0 and of (7) when
𝛽 < 0 is equivalent to the optimization of the risk-sensitive
exponential criteria (5). This concludes the proof.

VI. Numerical Example
The fact that the update rule in Theorem 1 is indeed

risk-sensitive, in the sense that it considers the tail of the
distribution, can be understood from the relation between
the log-likelihood and the exponential criteria. To illustrate
the risk-sensitivity of the update rule of Theorem 1, we
compare the performance of the risk-neutral Monte Carlo
policy gradient algorithm, REINFORCE [19], with the risk-
sensitive update rule of Theorem 1 on the well-known RL
benchmark of Cart-pole (inverted pendulum).

The agent’s goal is to balance a pole mounted on a moving
cart with an unactuated joint by pushing the cart to the
left and right. The state variable consists of the position and
velocity of the cart and the angle with the vertical and angular

7013

Fig. 2. The behavior of a trained risk-neutral agent, risk-seeking agent
𝛽 = 0.01 and risk-averse agent 𝛽 = −0.01 during testing in the cart-pole
problem. The 0.05-quantile of the trajectory returns, calculated using a
moving window of length 20, for 500 independent test runs are plotted.

velocity of the pole. The admissible actions are a “left” or
“right” force of fixed magnitude. A reward of +1 is given
for each time step that the pole is kept upright. The agent is
successful if it manages to keep the pole upright for 200 time
steps and it fails when the pole deviates from the vertical
for more than 12 degrees or when the position of the cart is
more than 2.4 meters away from the starting point.

The policy is parameterized by a neural network with
one hidden layer of 16 neurons and a ‘ReLU’ activation
function. The learning rate is set to 𝛼=0.01 and the discount
factor to 𝛾=0.99. The optimizer ‘Adam’ is used with decaying
step sizes. We train the agent for 1000 episodes and run an
additional 500 test runs.

Both risk-neutral and risk-sensitive methods achieve poli-
cies with an average training reward near 200. However,
the advantage of risk-sensitive algorithms becomes apparent
when examining the tail of the trajectory return distribution
during test runs. For instance, consider selecting a point on
the right tail of the return distribution. Let’s say 150 time
steps. Out of 500 test runs, the risk-neutral algorithm failed
to balance the pole for more than 150 steps in 10 runs, while
the risk-averse and risk-seeking algorithms failed to reach the
150-step threshold in only 1 and 2 runs, respectively. To better
illustrate this point, we use the 𝜎-quantile of the trajectory
return defined as: inf{𝑥 ∈ R : 𝑃(𝑅 ≤ 𝑥) > 𝜎}.

Fig.2 shows the plots of 0.05-quantile of returns. The
figure illustrates that the risk-sensitive algorithm (𝛽 =

{+0.01,−0.01}) achieves higher 𝜎-quantile (for 𝜎 = 0.05)
than the risk-neutral algorithm. The quantile in the figure
is calculated using a moving window of length 20 over the
returns of the test runs. We observe that the risk-sensitive
approach has a noticeable effect on the tail of the distribution.

VII. Conclusion
We have shown that risk-sensitive algorithms can be derived

using the PGM formalism of RL. In this paper, we explore the
utility of EM algorithms for such problems. EM algorithms
have well-known advantages and disadvantages. For example,
it is known that EM algorithms converge to the local optimum

and have no guaranteed convergence rate. However, their
simple and intuitive mechanism is the appeal of the EM
algorithm . The separation of the E-Step and M-Step in
the algorithm results in straightforward and interpretable
procedures. For example, in the E-step, the expectation is
computed with respect to the current parameters, rendering it
constant during the subsequent M-step. This property greatly
simplifies the mathematical aspects of the algorithm through
a "divide and conquer" approach. In our future work, we will
explore sampling-based EM algorithms that rely on step-wise
samples. These algorithms may lead to RL algorithms with
per-sample updates. We will also further explore the variants
and alternatives to EM algorithms for developing risk-sensitive
RL using the PGM modeling framework. Our main objective
here was to provide a framework and a systematic approach
to leverage PGM formalism for risk-sensitive RL, and also
illustrate the approach and results in simple examples.

References
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press, 2018.
[2] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7,

no. 1, pp. 77–91, 1952.
[3] R. A. Howard and J. E. Matheson, “Risk-Sensitive Markov Decision

Processes,” Management Science, vol. 18, no. 7, pp. 356–369, 1972.
[4] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,

and D. Mané, “Concrete Problems in AI Safety,” arXiv preprint
arXiv:1606.06565, 2016.

[5] A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision
Processes with Uncertain Transition Matrices,” Operations Research,
vol. 53, no. 5, pp. 780–798, 2005.

[6] L. Prashanth, M. C. Fu et al., “Risk-Sensitive Reinforcement Learning
via Policy Gradient Search,” Foundations and Trends® in Machine
Learning, vol. 15, no. 5, pp. 537–693, 2022.

[7] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, 2014.

[8] R. M. Neal and G. E. Hinton, “A View of The EM Algorithm that
Justifies Incremental, Sparse, and Other variants,” in Learning in
graphical models. Springer, 1998, pp. 355–368.

[9] F. Dellaert, “The Expectation Maximization Algorithm,” Georgia
Institute of Technology, Tech. Rep., 2002.

[10] L. Xu and M. I. Jordan, “On Convergence Properties of the EM
Algorithm for Gaussian Mixtures,” Neural computation, vol. 8, no. 1,
pp. 129–151, 1996.

[11] S. Levine, “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review,” arXiv:1805.00909, 2018.

[12] J. Kober and J. Peters, “Policy Search for Motor Primitives in Robotics,”
Advances in Neural Information Processing Systems, vol. 21, 2008.

[13] M. P. Deisenroth, G. Neumann, J. Peters et al., “A Survey on Policy
Search for Robotics,” Foundations and trends in Robotics, vol. 2, no.
1-2, pp. 388–403, 2013.

[14] E. Noorani and J. S. Baras, “A Probabilistic Perspective on Risk-
sensitive Reinforcement Learning,” in 2022 American Control Confer-
ence (ACC), 2022, pp. 2697–2702.

[15] ——, “Risk-sensitive REINFORCE: A Monte Carlo Policy Gradient
Algorithm for Exponential Performance Criteria,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 1522–
1527.

[16] R. Salakhutdinov, S. Roweis, and Z. Ghahramani, “Expectation-
conjugate gradient: An alternative to EM,” IEEE Signal Processing
Letters, vol. 11, no. 7, 2004.

[17] Y. Song and D. Scaramuzza, “Policy Search for Model Predictive
Control With Application to Agile Drone Flight,” IEEE Transactions
on Robotics, 2022.

[18] V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point. Springer, 2009, vol. 48.

[19] R. J. Williams and J. Peng, “Function Optimization using Connectionist
Reinforcement Learning Algorithms,” Connection Science, vol. 3, no. 3,
pp. 241–268, 1991.

7014

