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Abstract— We consider the problem of ensuring the safety
of nonlinear control systems under adversarial signals. Using
Lyapunov-based reachability analysis, we first give sufficient
conditions to assess safety, i.e., to guarantee that the states
of the control system, when starting from a given initial set,
always remain in a prescribed safe set. We consider polynomial
systems with semi-algebraic safe sets. Using the S-procedure
for polynomial functions, safety conditions can be formulated
as a Sum-Of-Squares (SOS) programme, which can be solved
efficiently. When safety cannot be guaranteed, we provide tools
via SOS to synthesize polynomial controllers that enforce safety
of the closed-loop system. The theoretical results are illustrated
through numerical simulations.

I. INTRODUCTION
In recent years, cyber-physical systems have gained in-

creasing attention by researchers due to their wide appli-
cability in modern industrial systems. In these systems,
computation of control laws and the physical behavior are
coupled via networked communications. One of the pertinent
vulnerabilities is when the network is compromised and
malicious data is injected into the system. In [1], many ex-
amples including the well-known StuxNet malware incident
were reported. Therefore, investigation on controller design
methods that ensure safety is of significant importance. We
aim to address one particular instance of the safety-ensuring
control problem, which is to keep the states of the control
system within a prescribed set, called a safe set, for an
infinite time horizon. In an earlier work [2], we considered
adding an output feedback dynamic secondary controller to
a linear system that has already been stabilized by a pre-
designed primary controller. In this work, we extend the
result to polynomial nonlinear systems with semi-algebraic
safe sets using static feedback.

There are many approaches to the safe stabilization prob-
lem in existing literature. Among them, reachability analysis
is one natural way of ensuring that states from a given initial
set are steered into the desired location without entering
an unsafe region. However, it is in general computation-
ally expensive to solve these problems exactly due to the
associated partial differential equations (PDEs) that need to
be dealt with [3], [4]. Another approach that bypasses the
difficulty of dealing with PDEs is via tools of set invariance
[5]. If there exists a subset of the safe set that is forward
invariant, then it is guaranteed that the states of the system
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always remain within the safe set. Sufficient conditions
for the forward invariance of autonomous systems can be
given by Lyapunov-like sufficient conditions on functions
called barrier certificates [6]. These conditions are later
extended in [7], where sufficient conditions on the control
barrier function (CBF) are given to guarantee robust forward
invariance of the safe sets for nonlinear systems driven by
control inputs. Based on these conditions, a control law that
guarantees safety can be synthesized by solving a quadratic
program online. Tools from dissipativity theory can also be
used to formulate a similar condition that verifies the safety
of interconnected systems [8].

In this work, we consider systems with polynomial
dynamics and take the approach of ensuring forward
invariance of a given set using tools from Sum-Of-Squares
(SOS) programming to address the safe control problem.
There has been successful applications of SOS approach
to the robustness analysis of control systems [9], [10].
An additional motivation to use SOS programming is
that, though some progress has been made recently
[11], [12], the synthesis of CBF for general nonlinear
systems is still a challenging problem. In the seminal
work [13], it is shown that a SOS program can be
reformulated as a hierarchy of semidefinite programming
by using SOS polynomials of increasing degree. Hence,
by restricting the class of Lyapunov-like functions to
be polynomial functions, we can efficiently translate the
complicated synthesis problem to a convex optimization
program. Similar ideas have been successfully applied
to various nonlinear control problems such as the search
of polynomial Lyapunov functions to check stability [14].

Our contributions are summarized below.
1) We consider the setup of using limited resources (in terms
of limited access to system outputs) to design a secondary
controller to ensure the safety of a nonlinear controlled
system under resource-limited adversaries. Sufficient condi-
tions in terms of SOS programmes are given to synthesise
polynomial state feedback controllers. This generalizes our
prior work [2] on linear systems to nonlinear systems with
polynomial dynamics.
2) We consider the case where control inputs and external
signals appear in the system dynamics. Unlike the previous
work [15], where it is assumed that the disturbance has finite
energy, we consider sensor and actuator attack signals that
are constrained by state-dependent upper bounds. This is to
capture the fact that intelligent cyber attackers, depending on
their available resources [16], are constrained in the class of
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signals they can inject to remain stealthy, such that they can
continue affecting the system without being detected.

II. PRELIMINARIES

A. Notations

Let R = (−∞,∞), R≥0 = [0,∞), R>0 = (0,∞) and
Rn denotes the n-dimensional Euclidean space. We use 0 to
denote the zero matrix with appropriate dimensions. For a
given square matrix R, Tr[R] denotes the trace of R. We
use A ≻ 0 (A ≺ 0) and A ⪰ 0 (A ⪯ 0) to denote
the matrix A is positive (negative) definite and positive
(negative) semidefinite, respectively. Given a polynomial
function p(x) : Rn → R, p is called SOS if there exist
polynomials pi : Rn → R such that p(x) =

∑k
i=1(pi(x))

2.
The set of SOS polynomials and set of polynomials with real
coefficients in x are denoted by Σ[x] and R[x], respectively.
A vector of dimension n composed of SOS (real) polynomial
functions of x is denoted by Σn[x] (Rn[x]).

B. Preliminaries on Polynomial Functions

A standard SOS program is a convex optimization problem
of the following form [17]

min
m

b⊤m such that pi(x,m) ∈ Σ[x], i = 1, 2, . . . , n, (1)

where pi(x,m) = ci0(x) +
∑k

j=1 cij(x)mj , cij(x) ∈ R[x],
and b is a given vector. It is shown in [17, p. 74] that (1) is
equivalent to a semidefinite program.

A useful tool that will be used extensively in this paper
is the generalization of the S-procedure [18] to polynomial
functions. This can be done via the Positivstellensatz certifi-
cates of set containment [19]. The proof of the following key
result can be found in [20, Chapter 2.2].

Lemma 1 Given p0, p1, · · · , pm ∈ R[x], if there exist λ1,
λ2, · · · , λm ∈ Σ[x] such that p0 −

∑m
i=1 λipi ∈ Σ[x], then

we have
m⋂
i=1

{x|pi(x) ≥ 0} ⊆ {x|p0(x) ≥ 0}.

III. PROBLEM FORMULATION

We consider the setup where the plant is modelled as a
nonlinear system taking the following form

ẋp = fp(xp) + gp(xp)u, y = hp(xp), (2)

where xp ∈ Rnp is the state vector of the plant, y ∈ Rny

is the measured output, u ∈ Rnu is the input of the plant,
function fp : Rnp → Rnp is continuous with fp(0) = 0
and function gp : Rnp → Rnp × Rnu is continuous. We
assume that system (2) is stabilizable, i.e., there exists a
control law up generated by the primary controller which
has already been designed to stabilize the plant (2) and takes
the following form

ẋc = fc(xc, y + ay), up = hc(xc) + au, (3)

with controller state xc ∈ Rnc . The functions fc and hc

are assumed to satisfy the regularity conditions such that
the primary controller (3) exists and the closed-loop is
well-posed. Controller (3) is pre-designed to stabilize (2)

with the input signal up : Rnc → Rnu and is subject to
potential adversarial attacks denoted by the attack vector
a = [a⊤u , a

⊤
y ]

⊤ ∈ Rnu+ny , where au(t) : R≥0 → Rnu

and ay(t) : R≥0 → Rny denote actuator and sensor attacks
respectively. Since the primary controller (3) is pre-designed
without being aware of the attacks, the safety of the closed-
loop may be compromised (precise definition is given later
in Definition 1). Therefore, we propose introducing a sec-
ondary controller, that runs in conjunction with the primary
controller (3). The secondary controller takes the form of a
static output feedback controller that uses measurements of a
subset of the plant outputs y which are either available locally
or known to be safeguarded against malicious manipulation
(e.g., via encryption or watermarking):

us = hs(xs), (4)

where xs = Csy = Cshp(xp) is a subset of the plant
measurements y that are available to the secondary controller
(4), and us ∈ Rns is the secondary control law. The overall
input for our safe primary-secondary control scheme is given
by

u = up + Euus, (5)

where Eu is a selection matrix we use to denote what
entries of the primary controller are affected by the secondary
controller. In this work, we assume Cs and Eu are given to
model the case where a fixed set of resources are locally
available. How to optimally choose Cs and Eu is left for
future work. Note that the secondary controller (4) uses
attack-free measurements only and it generates an input that
will be fed back to the plant reliably. Consequently, no attack
signal a appears in (4). The setup is illustrated in Fig. 1.
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Fig. 1. Ensuring safety with a secondary controller, yp and ys denote
the measurements used by the primary controller and secondary controller,
respectively.

It can be verified that the closed-loop system (2)-(5) can
be written in the following form

ẋ = f(x, a) + g(x)us, (6)

where x = [x⊤
p , x

⊤
c ]

⊤,

f(x, a) =

[
fp(xp) + gp(xp)(hc(xc) + au)

fc(xc, hp(xp) + ay)

]
g(x) =

[
gp(xp)Eu

0

]
.

(7)
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It is worth noting that the expression of the closed-loop
system (6) is also able to capture the case where static state
feedback is used for the primary controller. Suppose we have
up = hc(xp + ay) + au, then we have

f(x, a) = fp(xp) + gp(xp)(hc(xp + ay) + au)

g(x) = gp(xp)Eu.
(8)

Throughout the paper, we will make the following assump-
tion about the vector field of the closed-loop system (6).

Assumption 1 The closed-loop system (2)-(5) written com-
pactly in (6) is such that f(x, a) ∈ Rnp+nc [x, a] and g(x) ∈
R(np+nc)×ns [x].

Remark 1 Assumption 1 on the closed-loop system (6)
makes the analysis more computationally tractable via
SOS tools. This assumption can be satisfied if functions
fp, gp, hp, fc, hc are all polynomials of their respective ar-
guments, which may come from least square regression or
polynomial approximation of another nonlinear function.

The goal of the secondary controller (4) is to ensure that,
when the overall closed-loop system (2)-(5) is subject to
cyber attacks a, the safety of the closed-loop system (6) can
be ensured in the following sense.

Definition 1 The closed-loop system (6) is safe if its state
x(t) remains within a given safe set S for all t ≥ 0.

We describe the safe set by S := {x|s(x) ≥ 0}, where
s(x) ∈ R[x]. We solve the following problems in this paper.

1) Give sufficient conditions to check if the primary
controller (3) alone can render the plant (2) safe in
the presence of attacks.

2) Enhance safety of the closed-loop system (6) by syn-
thesizing the secondary controller (4) such that more
resources are needed to violate the safety condition.

IV. INVARIANT SET-BASED ANALYSIS

The first step of our analysis is to assess if the primary
controller can ensure the safety of the closed-loop system
in the presence of the attack signal a. In [2], it is assumed
that the attack signal a is norm bounded. This is to take
into account that intelligent adversaries often seek to remain
stealthy and undetected to be able to continuously send
malicious signals to the system. In this work, we impose
a more general condition on the attack signal:

a ∈ A := {a|A(x, a) ≥ 0}. (9)

where A(x, a) ∈ R[x, a]. The condition (9) covers the
situation where adversaries that have access to the states of
the system inject attack signals a to the system based on
their measurements of x. Although the requirement that A is
a polynomial in x and a might be restrictive in some cases,
it generalizes the condition used in [2] which is a special
case of (9) and can be used as an outer-approximation of the
real constraints on the attack signal.

Since we aim to first find the worst case attack signals that
ensures the safety of the plant in feedback with the primary

controller (3) only, we set Eu = 0 and g(x) = 0 for all
x ∈ Rnp+nc . Note that, when g(x) = 0, the closed-loop
system (6) is a system driven by the attack signal a,

ẋ = f(x, a). (10)

To this end, we define the reachable set of nonlinear systems
driven by external signals.

Definition 2 The (forward) reachable set Ra of the non-
linear system ẋ = f(x, a) from the initial set T driven by
a ∈ A is defined as the set of all trajectories ϕ(t, x(0), a)
for all t ≥ 0 and x(0) ∈ T where ϕ(t, x(0), a) is a solution
to ẋ = f(x, a) at time t with the initial condition x(0).

If we can guarantee that the reachable set of (10) is a
subset of the safe set S, then the safety of the system can
be ensured since system states can only reach a set that is
fully contained in the prescribed safe set. Exact computation
of the reachable set of a nonlinear system can be difficult
in general. In this work, we construct the set Ea as an outer
approximation of the reachable set such that Ra ⊆ Ea, where
Ra is the reachable set of (10) from the initial set T . If we
manage to find such an Ea such that Ea ⊆ S, then it is
sufficient to conclude that Ra ⊆ S. We will make use of
the following result which comes from Nagumo’s theorem
for autonomous systems and its extension to systems with
exogenous inputs by Aubin [21], see [5, Section 3.1].

Proposition 1 Given system (10), if there exists a contin-
uously differentiable function V : Rnp+nc → R such that
T ⊆ Ea := {x ∈ Rnp+nc |V (x) ≤ 1} and

∂V

∂x
f(x, a) ≤ 0, ∀x ∈ Rnp+nc , V (x) = 1, a ∈ A; (11)

then, we have Ra ⊆ Ea.

We will use the S-procedure for polynomial functions
given by Lemma 1 to certify the set containment conditions
in Proposition 1. Assuming that the initial set takes the form
T := {x ∈ Rnp+nc |T (x) ≥ 0} where T (x) ∈ R[x]. Our
first main result is stated below.

Theorem 1 Consider the closed-loop system (6) with only
the primary controller in feedback, i.e., Eu = 0 and Cs = 0.
Given (s(x), T (x)) ∈ R[x] × R[x] and A(x, a) ∈ R[x, a],
if there exist V (x) ∈ R[x], (λ1, λ2) ∈ Σ[x] × Σ[x], λ3 ∈
R[x, a], and λ4 ∈ Σ[x, a] such that

s(x)− λ1(1− V (x)) ∈ Σ[x],

1− V (x)− λ2T (x) ∈ Σ[x],

− ∂V

∂x
f(x, a)− λ3(V (x)− 1)− λ4A(x, a) ∈ Σ[x, a],

(12)

then we have Ra ⊆ S.

Proof: Applying the S-procedure for polynomial func-
tions, the first condition in (12) guarantees that, if 1−V (x) ≥
0, we have s(x) ≥ 0 which means that Ea ⊆ S . Similarly,
the second condition in (12) implies T ⊆ Ea. Lastly, the
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third condition guarantees (11). By Proposition 1, we have
Ra ⊆ Ea which together with Ea ⊆ S implies Ra ⊆ S.

Note that the condition (12) is a sufficient condition to
guarantee that when the initial state is in T , the state of
the closed-loop system never enters the unsafe region of the
state space in the presence of attack signals. Any forward
invariant set Ea that verifies (12) will suffice to guarantee the
safety of the system. It is also possible to optimize the safety
performance of the system by minimizing an appropriately
chosen objective function. One example is to minimize the
volume of the forward invariant set Ea. However, since V
is a polynomial function, finding the exact expression of the
volume of Ea might be intractable. However, we can find
an ellipsoid EP := {x ∈ Rnp+nc |x⊤Px ≤ 1}, P ⪰ 0 that
fully contains Ea and minimize the volume of the ellipsoid by
minimizing the convex function − log det(P ), where det(P )
is the determinant of the matrix P . See [18].

Corollary 1 Consider the closed-loop system (6) with only
the primary controller in feedback, i.e., Eu = 0 and Cs = 0.
Given s(x), T (x) ∈ R[x] and A(x, a) ∈ R[x, a], if there exist
P ≻ 0, V (x) ∈ R[x], λ1, λ2, λ5 ∈ Σ[x], λ3 ∈ R[x, a], and
λ4 ∈ Σ[x, a] such that

min
P,V,λ1−5

− log det(P )

s.t. (12) holds and x⊤Px− λ5(1− V (x)) ∈ Σ[x],
(13)

where λ1−5 denotes the set {λ1, λ2, λ3, λ4, λ5}, then we
have Ra ⊆ S . Moreover, EP is the ellipsoid with minimal
volume such that Ea ⊆ EP .

Proof: By the S-procedure for polynomial functions,
the last condition in (13) guarantees that Ea ⊆ EP . The rest
of the proof follows from the proof of Theorem 1.

It can be seen that the condition (12) contains bilinear SOS
constraints involving decision variables (λ1, V ) and (λ3, V )
rendering the optimization problem non-convex. However,
the constraints are linear in λ1 and λ3 when V is fixed and
linear in V if λ1 and λ3 are fixed. As a result, in practice we
can solve (12) and similarly (13) in an alternating fashion
between variables (λ1, λ3) and V as done in many existing
results, see [14], [22], [23] for example.

In this work, we adopt an approach similar to [23, Algo-
rithm 2] by introducing a positive slack variable ϵ to the last
condition in (12). The modified conditions takes the form:

s(x)− λ1(1− V (x)) ∈ Σ[x],

1− V (x)− λ2T (x) ∈ Σ[x],

− ∂V

∂x
f(x, a)+ϵ− λ3(V (x)− 1)− λ4A(x, a) ∈ Σ[x, a].

(14)

The role of ϵ is to relax the decreasing condition on V and
allow V̇ to be positive by the margin characterized by ϵ.
Then we alternately minimize ϵ over two bilinear groups of
decision variables and repeat until ϵ ≤ 0 is satisfied, which
can be done by the following steps.

1) Specify the orders of polynomials V and λ1−4 to be
found.

2) Start with an initial guess V̄ and minimize ϵ over λ1

and λ3 subject to (14).
3) Set λ1 and λ3 to the values found in the previous step

and minimize ϵ over V subject to (14).
4) Repeat the previous two steps until an ϵ ≤ 0 is found.

We will refer to Steps 1) − 4) as the alternating search
algorithm.

Remark 2 Given the specified orders of polynomials, the
alternating search algorithm guarantees that after each step,
ϵ is non-increasing. However, there is no guarantee that ϵ will
decrease to be non-positive. It is worth noting that finding a
V and λ1−4 that satisfy (12) is only a sufficient condition to
guarantee that the reachable set Ra is contained within the
safe set S . If the alternating algorithm fails to give a feasible
solution to (12), then one can try to increase the order of the
polynomials and start the algorithm again until a maximum
allowable order is reached, in which case (12) is claimed to
be infeasible (though it can be possibly feasible).

Remark 3 Once a valid V is found that verifies the safety
of (10), this V can be used as the initial value when solving
(13). A similar alternating algorithm can be constructed to
minimize the volume of EP . First, given V , − log det(P ) is
minimized with respect to λ1, λ3, and λ5. Then, the obtained
λ1, λ3, and λ5 are used to minimize − log det(P ) over V .
The process is repeated until the decrease in − log det(P )
is within a specified tolerance.

V. SECONDARY CONTROLLER SYNTHESIS

When the primary controller alone is insufficient to guar-
antee the safety of the overall closed-loop system (6), in-
troducing a secondary controller may achieve safety. To this
end, we aim to systematically design the secondary controller
in this section. To be able to employ the SOS programming
tools to computationally solve the synthesis problem, we
restrict our class of secondary controller (4) to polynomial
static feedback, i.e., hs(xs) ∈ R[xs]. With the secondary
controller (4) included, the closed-loop system takes the form

ẋ = f(x, a) + g(x)hs(xs) := f̃(x, a), (15)

where the expressions of f(x, a) and g(x) are given in (7).
Note that the new closed-loop system (15) with the secondary
controller included takes a form similar to (10). Therefore,
we can employ Proposition 1 again to conclude the following
result, whose proof follows from the proof of Theorem 1 by
replacing f by f̃ .

Theorem 2 Consider the closed-loop system (15). Given
(s(x), T (x)) ∈ R[x] × R[x] and A(x, a) ∈ R[x, a], if there
exist hs(xs) ∈ R[xs], V (x) ∈ R[x], (λ1, λ2) ∈ Σ[x]× Σ[x],
λ3 ∈ R[x, a], and λ4 ∈ Σ[x, a] such that

s(x)− λ1(1− V (x)) ∈ Σ[x],

1− V (x)− λ2T (x) ∈ Σ[x],

− ∂V

∂x
f̃(x, a)− λ3(V (x)− 1)− λ4A(x, a) ∈ Σ[x, a],

(16)
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where f̃(x, a) = f(x, a) + g(x)hs(xs) depends on hs(xs),
then we have R̃a ⊆ S, where R̃a is the reachable set of (15)
from the initial set T .

If condition (16) is satisfied by a set of decision variables
{hs, V, λ1, λ2, λ3, λ4}, then it is sufficient to conclude that
the state of the closed-loop system (15) never leaves the
safe set S when initialized in T . In the synthesis of the
secondary controller, we can also find an ellipsoidal outer-
approximation of Ea, EP := {x ∈ Rnp+nc |x⊤Px ≤ 1} for
some P ⪰ 0. Then we minimize the volume of the ellipsoid
by minimizing the convex function − log det(P ).

Corollary 2 Consider the closed-loop system (15). Given
(s(x), T (x)) ∈ R[x] × R[x] and A(x, a) ∈ R[x, a], if there
exist P ≻ 0, hs(xs) ∈ R[xs], V (x) ∈ R[x], (λ1, λ2, λ5) ∈
Σ[x]×Σ[x]×Σ[x], λ3 ∈ R[x, a], and λ4 ∈ Σ[x, a] such that

min
P,hs,V,λ1−5

− log det(P )

s.t. (16) holds and x⊤Px− λ5(1− V (x)) ∈ Σ[x],
(17)

where f̃(x, a) = f(x, a) + g(x)hs(xs) depends on hs(xs),
then we have R̃a ⊆ S , where R̃a is the reachable set of
(15) from the initial set T . Moreover, EP is the ellipsoid
with minimal volume such that R̃a ⊆ EP .

By introducing the secondary control term hs(xs), a new
bilinear term ∂V

∂x hs(xs) appears in (16) and (17). This,
together with other bilinear terms in (12) and (13), makes
(16) and (17) non-convex. Nevertheless, the constraints are
linear in λ1−5 and hs when V is fixed and linear in V if
λ1−5 and hs are fixed. There are no bilinear terms in (16)
and (17) involving products of λ1−5 and hs. Thus, there is
no need to perform an additional round of alternation. The
variables λ1−5 and hs can be solved simultaneously given
V . We again introduce the slack variable ϵ to (16) such that
the modified condition takes the form
s(x)− λ1(1− V (x)) ∈ Σ[x],

1− V (x)− λ2T (x) ∈ Σ[x],

− ∂V

∂x
f̃(x, a) + ϵ− λ3(V (x)− 1)− λ4A(x, a) ∈ Σ[x, a].

(18)

We alternately minimize ϵ over (λ1,3, hs) given V and over
V given (λ1,3, hs) and repeat until ϵ ≤ 0 is satisfied:

1) Specify the orders of polynomials V, hs, λ1−4.
2) Start with an initial guess of V̄ and minimize ϵ over

hs, λ1 and λ3 subject to (18).
3) Set hs, λ1 and λ3 to the values found in the last step

and minimize ϵ over V subject to (18).
4) Repeat the previous two steps until an ϵ ≤ 0 is found.

Remark 4 The initial guess of V can be taken from the
result of checking conditions (13) and (14). Specifically, if
there does not exist a V that satisfies (14) for a non-positive
ϵ, then the initial value of V can be the one that minimizes ϵ
subject to (14). Hopefully, with the additional term hs, ϵ can
be made negative after several iterations. If there does exist
a V that verifies the safety of the closed-loop system (10),

then the solution to (13) can be used. In such cases, (14)
will always be feasible since hs = 0 is a trivial secondary
controller that ensures the safety of the closed-loop system.

Remark 5 When the alternating algorithm does not find
a non-positive ϵ that satisfies (18), one can increase the
order of the variables including the new term hs. Moreover,
changing the values of Cs and Eu might also be helpful in
synthesizing a secondary controller that ensures the safety
of the closed-loop system.

Remark 6 Once valid V and hs are found to satisfy (16),
this V and hs can be used as the initial guess to solve (17)
following the discussion in Remark 3. However, it should
be noted that the conditions (16) in Theorem 2, though
being sufficient to guarantee the safety of the closed-loop
system, are not sufficient to guarantee that the origin is
asymptotically stable in the absence of the attack signal a.
This is in contrast to the linear counterpart shown in [2].
The design of a secondary controller aiming to recover the
performance of the primary controlled system while ensuring
safety will be left for future work.

VI. NUMERICAL SIMULATION

In this section, we illustrate our main results via numerical
simulations of a second order nonlinear system. Suppose a
primary controller has been designed such that the closed-
loop system (15) takes the following form

ẋ1 = −x1 + x2 + a1

ẋ2 = −x2 − x2
1x2 + a2 + hs(x2),

(19)

where a = [a1, a2]
⊤ is the attack vector and measure-

ment xs = x2 is used to design the secondary controller.
For simplicity, the attack signals are assumed to satisfy
A(x, a) = A(a) = 1 − a21 + a22 ≥ 0. Moreover, we assume
that the initial set T is the singleton containing the origin,
i.e., T (x) = −x2

1 − x2
2 ≥ 0. This captures the steady state

for a globally asymptotically stable system when there are
no attack signals. Under these conditions, we aim to keep
the state x = [x1, x2]

⊤ within the safe set S characterized
by s(x) = 1.3− x2

1 − x2
2 ≥ 0.

First, we set hs(xs) = 0 and test if the primary controller
alone can keep the states x inside the safe set S . We
alternately solve the condition (12) in Theorem 1 using
SOSTOOLS [24] with SeDuMi being the solver [25]. In this
example, we restrict our search of all polynomial variables
to polynomials of orders no higher than 4. It turns out that,
under these conditions, the condition (12) is infeasible. To
explore the limitations of the primary controller, instead
of insisting that the state stays in the safe set, we impose
the condition that the state x remains within the set {x ∈
R2|s(x) + γ ≥ 0} for some γ > 0. We then minimize
γ subject to condition (12), alternately over V and λ1, λ3.
After 8 alternating iterations, γ reaches the value of 0.19
with V = V1(x) = 0.67315x2

1 + 0.70356x2
2. Thus, we have

failed to find a V which certifies the safety of the closed-
loop system via Theorem 1. However, as discussed before,
this does not mean the primarily controlled system is unsafe
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since there might exist polynomials of higher orders that
satisfy (12). In the simulation, we have attempted to increase
the order of the function V (x) to 6 which, however, does not
result in significant decrease of the value of γ.

Next we check if a polynomial secondary controller
hs(x2) of order no higher than 4 can be found to keep the
states within the safe set. We again apply the alternating
algorithm to check if condition (16) is feasible with the
initial guess being V = V1(x). It turns out that, hs(x2) =
−0.31761x3

2−1.2534x2 can ensure safety of the closed-loop
system (19) with V = V2(x) = 0.8881x2

1 + 2.669x2
2.

Fig. 2. Plots of the safe set S and the ellipsoidal over-approximation Ea
of the reachable set Ra with the primary control only (left) and ellipsoidal
over-approximation Ẽa of the reachable set R̃a with primary and secondary
controls (right).

The plots of the ellipsoidal over-approximations Ea and
Ēa of the respective reachable sets Ra and R̃a found via
the corresponding alternating algorithms and the safe set are
given in Fig. 2. It can be seen that, after introducing the
secondary controller hs(x2) = −0.31761x3

2 − 1.2534x2 to
the closed-loop system, its state x always remains in a subset
of the safe set when initialized at the origin.

VII. CONCLUSIONS

In this work, based on invariant set analysis and SOS
programming, we provide sufficient conditions for safety
verification and control design of a class of polynomial
nonlinear systems in the presence of adversarial signals. The
conditions are computationally tractable via an alternating
algorithm. We show that it is possible to improve the safety
performance of a nonlinear system by using a subset of
sensors that are attack-free. A numerical simulation on a
second order nonlinear system verifies the theoretical result.

There are several possible future research directions to be
explored. First, it is interesting to investigate a secondary
controller design approach that recovers the performance
achieved by the primary controller at least locally while en-
suring safety. Another interesting topic would be the analysis
of how the choice of sensors characterized by the matrix Cs

impacts the performance of the secondary controller.
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