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Abstract— This paper deals with distributed Nash equilib-
rium seeking in n-cluster games with zero-order information. In
such games agents have an access only to the values of their own
cost functions and can communicate with their neighbors in the
same cluster. The agents within each cluster are cooperative and
intend to minimize the overall cluster’s cost. This cost depends,
however, on actions of agents from other clusters. Thus, there
is a game between the clusters. We present a fully distributed
gradient play algorithm to solve this game. The algorithm does
not require agents to have any knowledge about action sets,
actions or cost functions of others and is based on the zero-
order information in the system. We prove convergence of the
proposed procedure and estimate its convergence rate which
turns out to be optimal up to a logarithmic term in the class
of problems under consideration.

I. INTRODUCTION

In our technical world with its increasing complexity
there are a lot of systems consisting of many individuals,
which can be considered independently operating subsys-
tems. Such so-called multi-agent systems are, for example,
robot swarms, wireless networks, transportation networks,
and energy systems [9], [14], [15]. Formally, any multi-agent
system consists of several agents with definite objectives
to be reached by appropriately chosen local actions. These
objectives can be expressed either by a common goal to be
achieved in the system or by individual cost minimization.
To achieve the objectives cooperative or game-theoretic
optimization need to be solved respectively.

On the other hand, cooperative and individual goals may
coexist in many practical situations, such as cloud comput-
ing, hierarchical optimization in Smart Grid, and adversarial
networks [6], [11]. Recently, such hybrid problems have
gained attention as they can be analyzed in terms of a single
model called n-cluster game. In such an n-cluster game, each
cluster corresponds to a player whose goal is to minimize
its own cost function. However, the clusters in this game
have some structure and consist of agents who are decision-
makers. Each agent in every cluster possesses its local cost
function and have no access to the cost functions of others.
The objective of agents in each cluster is to minimize the
sum of their local cost functions. However, the local costs
and, thus, the clusters’ cost functions, depend on the joint
action of all agents in the system. Therefore, in such models,
agents aim to achieve a Nash equilibrium in the resulting
game between clusters.

Some solution approaches based on discrete-time opti-
mization algorithms can be found in the works [4], [8],
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[20], [23]. The papers [4], [8] prove linear convergence in
games with strongly monotone mappings under the first-
order information, where agents can calculate gradients of
their cost functions at any point and use this information to
update their states. However, in many practical situations the
agents do not know the functional form of their objectives
and, thus, cannot access to their gradients. The only piece
of information available to each agent is the current value of
her objective function at some query point. Such situations
arise, for example, in electricity markets with unknown price
functions [21]. In such cases, the information structure is
referred to as zero-order one. Due to relevancy and non-
restrictiveness of the zero-order information, the further dis-
cussion is focused on the corresponding information setting.
The works [20], [23] deal with n-cluster games endowed
with the zero-order information. The gradient estimations
in [23] are constructed in such a way that only convergence
to a neighborhood of the equilibrium can be guaranteed. The
paper [20] rectifies this issue and presents a procedure which
converges to a Nash equilibrium. However, the algorithm
proposed by [20] is not fully distributed as agents are
assumed to exchange their estimations of the joint action
within their clusters and, thus, need to know action sets of
all other agents from the cluster they belong to in order to
update the estimations.

In contrast to the mentioned works, we present a fully
distributed algorithm requiring each agent to use information
regarding her cost value and local action set. We assume
agents to communicate with their direct neighbors within the
corresponding cluster over some graph. However, we assume
gents to have no access to the analytical form of their cost
functions and gradients. Our contribution is as follows.

• Unlike the approach in [20], agents exchange not their
estimations of joint actions but merely the experienced
values of their cost functions with their neighbors in the
local cluster. This information exchange takes place at
the inner-loop of the optimization procedure. It allows
for an efficient estimation of the cluster’s gradient. Thus,
each agent can perform her local update without any
access to action sets of other agents. Moreover, agents
exchange the scalar values of actual costs and not
the vectors of joint action estimations, which reduces
communication costs for problems of large dimensions.
Finally, we note that it is reasonable to assume agents
within each cluster to share the experienced costs with
their neighbors, since a cooperative task in the cluster
is to minimize its overall cost.
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• We prove convergence of the proposed algorithm and
investigate its convergence rate in the case of strongly
monotone games. We use two-point estimations for
gradients, which significantly speed up the procedure
in [20] based on a one-point estimation approach.
We demonstrate that the iteration complexity of the
proposed two-time-scale algorithm required to achieve
the target accuracy ε > 0 is O

(
1
ε ln

1
ε

)
. This rate is

optimal up to the logarithmic factor ln 1
ε , given a class

of strongly convex stochastic optimization problems
(see Theorem 2 in [1]).

Notations. The set {1, . . . , n} is denoted by [n]. For any
function f : K → R, K ⊆ Rn, ∇if(x) = ∂f(x)

∂xi
is the

partial derivative taken in respect to the ith coordinate of the
vector variable x ∈ Rn. We consider real normed space E,
which is the space of real vectors, i.e. E = Rn. We use (u, v)
to denote the inner product in Rn. We use ∥·∥ to denote the
Euclidean norm induced by the standard dot product in Rn.
Any mapping g : Rn → Rn is said to be strongly monotone
on Q ⊆ Rn, if (g(u) − g(v), u − v) > ν∥u − v∥ for some
ν > 0 any u, v ∈ Q, where u ̸= v. For x ∈ Rd and a convex
closed set Y ⊂ Rd, PY {x} denotes the projection of x onto
Y . The set of points within ρ distance of the boundary is
denoted by (1 − ρ)Y := {x ∈ Y : dist(x, ∂Y ) ≥ ρ} with
0 < ρ < 1. The mathematical expectation of a random value
ξ is denoted by E{ξ}. We use the big-O notation, that is,
the function f(x) : R → R is O(g(x)) as x → a, f(x) =
O(g(x)) as x → a, if limx→a

|f(x)|
|g(x)| ≤ K for some positive

constant K.

II. NASH EQUILIBRIUM SEEKING PROBLEM

We consider a non-cooperative game between n clusters.
Each cluster i ∈ [n] itself consists of ni agents. Let Jj

i

and Ωj
i ⊆ R1 denote respectively the cost function and

the feasible action set of the agent j in the cluster i. We
denote the joint action set of the agents in the cluster i by
Ωi = Ω1

i × . . . × Ωni
i . Each function Jj

i (xi, x−i), i ∈ [n],
depends on xi = (x1

i , . . . , x
ni
i ) ∈ Ωi, which represents

the joint action of the agents within the cluster i, and on
x−i ∈ Ω−i = Ω1 × . . . × Ωi−1 × Ωi+1 × Ωn, denoting the
joint action of the agents from all clusters except for the
cluster i. The cooperative cost function in the cluster i ∈ [n]
is, thus, Ji(xi, x−i) =

1
ni

∑ni

j=1 J
j
i (xi, x−i).

We assume agents within each cluster to interact over a
communication graph Gi([ni],Ai). Here the set of nodes is
equal to the set of agents [ni], whereas Ai is the set of
arcs over which agents can exchange their local peaces of
information. In our approach this information corresponds
to the experienced values of the local cost functions. We
associate a non-negative mixing matrix Wi = [wjl

i ] ∈
Rni×ni which defines the weights on the arcs such that
wkj

i > 0 if and only if (j, l) ∈ Ai and, thus, the agent j can
receive a message from the agent l weighted by the value wjl

i .

1All results below are applicable for games with different dimensions
{dji} of the action sets {Ωj

i}. The one-dimensional case is considered for
the sake of notation simplicity.

The matrix Wi is called ”mixing” as it allows for an efficient
information exchange leading agents to a required consensus
over their estimations of the cooperative cost function Ji
given some technical assumption (see Assumption 5 below).
However, there is no explicit communication between the
clusters. Instead, we consider the following zero-order in-
formation structure in the system: No agent has access
to the analytical form of any cost function and gradient,
including its own. Each agent can only observe the value
of its local cost function given any point from the joint
action set. Formally, given a query point x ∈ Ω, where
Ω = Ω1 × . . . × Ωn ⊆ RN with N =

∑n
i=1 ni, each agent

j ∈ [ni], i ∈ [n] gets the value Jj
i (x) from a so called zero-

order oracle, which she can communicate with her neighbors
over the communication graph Gi in her cluster i.

Let us denote the game between the clusters introduced
above by Γ(n, {Ji}, {Ωi}, {Gi}), where the goal is to find a
solution to the following coupled optimization problem:

Find x∗ = (x∗
1, . . . , x

∗
n) such that:

Ji(x
∗
i , x

∗
−i) = min

xi∈Ωi

Ji(x
∗
i , x

∗
−i) for all i ∈ [n].

The solution x∗ to the optimization problem above is called
a Nash equilibrium of the game Γ = Γ(n, {Ji}, {Ωi}, {Gi}).
We aim to solve this Nash equilibrium optimization problem
under the following assumptions regarding the game Γ:

Assumption 1. The n-cluster game- Γ under consideration
is strongly convex. Namely, for all i ∈ [n], the set Ωi is
convex, the cost function Ji(xi, x−i) is continuously differ-
entiable in xi for each fixed x−i. Moreover, the game pseudo-
gradient, which is defined as2

F(x) ≜ [∇1J1(x1, x−1), . . . ,∇nJn(xn, x−n)]
T
, (1)

is strongly monotone on Ω with some constant ν.

Assumption 2. For each cluster i ∈ [n], the action sets Ωj
i ,

j ∈ [ni], are compact.

Assumption 3. Each gradient function ∇iJi(xi, x−i) is
Lipschitz continuous on Ω.

Assumption 4. Each cost function Ji(x) = O(exp{∥x∥α})
as ∥x∥→ ∞, where α < 2.

Assumptions 1-2 above are standard in the literature on
both game-theoretic and zero-order optimization [2]. Note
that under Assumption 2 and given differentiable functions
∇iJ

j
i (xi, x−i), Assumption 3 holds. Since in our approach

we use gradient estimations based on sampling from the
Gaussian distribution with unbounded support, we need
Assumption 4 on the cost functions’ behavior at infinity. We
notice that Assumption 1 guarantees existence and unique-
ness of the Nash equilibrium x∗ in the game Γ which also
solves the following variational inequality (see [12]):

⟨F(x∗),x− x∗⟩ ≥ 0 for any x ∈ Ω. (2)

2∇iJi(xi, x−i) =
∂Ji(x)
∂xi

= (
∂Ji(x)

∂x1
i

, . . . ,
∂Ji(x)

∂x1
ni

) ∈ Rni , see

Notations.
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Finally, we make the following assumption on the com-
munication graph, which guarantees sufficient and fast in-
formation ”mixing” in the network within each cluster. To
formulate the assumption, let us assume the agent j in the
cluster i to have an initial estimation uj

i (0) ∈ R of some sys-
tem’s parameter. Under the communication protocol defined
by the graph Gi([ni],Ai) and the associated matrix Wi, these
estimations evolve as follows: uj

i (t + 1) =
∑ni

l=1 w
jl
i u

l
i(t),

t = 0, 1, 2, . . .. Thus, during the updates the agent j receives
the local estimations from its neighbors in the graph Gi

weighted by a positive value wjl
i for each neighbor l. We

say that the averaging consensus is achieved asymptotically
with a geometric rate, if there exists β ∈ (0, 1) such that∣∣∣∣∣uj

i (t)−
1

ni

ni∑
k=0

uk
i (0)

∣∣∣∣∣ = O(βt) as t → ∞. (3)

This rate we denote by O(βt).

Assumption 5. The underlying communication graph
Gi([ni],Ai) and the associated non-negative mixing matrix
Wi represent such a communication protocol under which
the averaging consensus is achieved asymptotically with a
geometric rate O(βt), β ∈ (0, 1).

Remark 1. Examples of such communication protocols
include undirected graphs with double stochastic mixing
matrices (see [10]) as well as push-sum protocols with
directed graphs and column stochastic mixing matrices [7],
[22].

Thus, in this work, we are interested in distributed seeking
of a Nash equilibrium in the game Γ(n, {Ji}, {Ωi}, {Gi})
which is endowed with the information structure described
above and for which Assumptions 1-5 hold.

III. ONLINE ZERO-ORDER GRADIENT PLAY BETWEEN
CLUSTERS

In this section we present a two-time-scale algorithm
solving the problem formulated above. The main idea of the
algorithm consists in introduction of an inner-loop intending
to achieve a consensus on the cooperative cost value esti-
mation at each cluster i. The outer-loop in its turn searches
for the Nash equilibrium in the n-cluster game by means
of efficient states’ updates using the appropriate gradient
estimations.

A. Algorithm Discussion
As it has been mentioned above, in the outer-loop, agents

adapt the procedure to achieve a Nash equilibrium in the n-
cluster game. Since this work considers strongly monotone
games satisfying Assumption 1, we focus on the standard
gradient play algorithm. To set up this algorithm, we intro-
duce an auxiliary variable µj

i ∈ R for each agent j ∈ [ni],
i ∈ [n], to be updated. We refer to the variable µj

i (t) as
to the state (in contrast to the action xj

i (t) ∈ R) of the jth
agent from the cluster i at time t. The outer-loop updates
these variables according to the gradient play iterations:

µj
i (t+ 1) = P(1−ρt)Ω

j
i

{
µj

i (t)− αtd
j
i (t)

}
, (4)

where ρt is a shrinking set parameter, whose role will be
clarified below (see Notations. for definition of the set
(1 − ρt)Ω

j
i ), αt is a time-step parameter, and dj

i (t) is an
estimation for the local gradient ∇i,jJi(µ(t)) = ∂Ji(µ(t))

∂xj
i

of the cooperative cost function at the point of the joint
state µ(t) = (µ1(t), . . . ,µn(t)) ∈ RN with µi(t) =
(µ1

i (t), . . . , µ
ni
i ) ∈ Rni being the joint state over the cluster

i. Thus, the vector-form update within each cluster i is as
follows:

µi(t+ 1) = P(1−ρt)Ωi
{µi(t)− αtdi(t)}, (5)

where di(t) = (d1
i (t), . . . ,d

ni
i (t)) is an estimation of the

gradient ∇iJi(µ(t)). We notice that, if di(t) = ∇iJi(µ(t))
and ρt = 0, the iterations (5) correspond to the standard
gradient play between the players i ∈ [n] proven to converge
to a unique Nash equilibrium in any strongly monotone game
[16]. Thus, our goal is to construct appropriate gradient
estimations di(t) for each i ∈ [n].

Since each agent has a direct access only to experienced
values of her own cost function, the inner-loop is introduced
to the algorithm to construct a sufficient estimation of the
cooperative cost function values in the clusters. Thus, within
the inner-loop, agents exchange values of their local costs
with their neighbors over the communication graph in the
cluster. To guarantee a constant variance of the estimations,
we aim to use two-point queries of the gradients as follows.
At each step t of the outer-loop every agent j from the cluster
i plays two feasible actions: µj

i (t) and xj
i (t) = PΩj

i

{
ξji (t)

}
,

where ξji (t) is sampled from the Gaussian distribution with
the mean µj

i (t) and the variance σt > 0 (independently on
the other agents’ samplings), i.e. ξji (t) ∼ N(µj

i (t), σt). Once
these actions are played the agent calculates the difference
U j
i (t) of the experienced local costs:

U j
i (t) = Jj

i (x(t))− Jj
i (µ(t)) (6)

and communicates it with the neighbors over the graph Gi

within the inner-loop k = 0, . . . ,mt − 1:

U j
i (t+ k + 1) =

ni∑
l=1

wi
jlU

l
i (t+ k). (7)

After mt iterations of this inner-loop, the gradient estimation
dji (t) is constructed:

dji (t) = U j
i (t+mt)

ξji (t)− µj
i (t)

σ2
t

. (8)

Next, the agent turns back to the outer-loop and performs
the iteration (4) to update µj

i (t).

B. Gradient Estimations

Given the iteration t of the outer-loop, the inner-loop of the
algorithm presented above performs mt communication steps
to construct the gradient estimation dji (t). Under Assump-
tion 5 these steps guarantee an approach of each difference
U j
i (t + mt), j ∈ [ni], to the average 1

ni

∑ni

j=1 U
j
i (t),
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implying that dji (t) = U j
i (t + mt)

ξji (t)−µj
i (t)

σ2
t

approaches

d̂ji (t), where

d̂ji (t) =

 1

ni

ni∑
j=1

U j
i (t)

 ξji (t)− µj
i (t)

σ2
t

= (Ji(x(t))− Ji(µ(t)))
ξji (t)− µj

i (t)

σ2
t

. (9)

In this section we focus on the properties d̂ji (t) for each j
and i. These properties have been previously stated in the
works [18], [19]. Here we just summarize the results from
these papers. First, we rewrite d̂ji (t) as follows:

d̂ji = (Ji(ξ(t))− Ji(µ(t)))
ξji (t)− µj

i (t)

σ2
t︸ ︷︷ ︸

Qj
i (t)

+ (Ji(x(t))− Ji(ξ(t)))
ξji (t)− µj

i (t)

σ2
t︸ ︷︷ ︸

P j
i (t)

, (10)

where ξ(t) = (ξ1(t), . . . , ξn(t)) with ξi(t) =
(ξ1i (t), . . . , ξ

ni
i (t)) is the joint sampling point and,

thus, x(t) = PΩ {ξ(t)}. We denote the first term on the
right hand side in (10) by Qj

i (t), whereas the second one is
denoted by P j

i (t) and can be interpreted as an error caused
by taking projection of the sampling point ξ(t) which
guarantees feasibility of the corresponding query points.

Let Ft the σ-algebra generated by the random variables
{µ(k), ξ(k)}k≤t. In the following discussion we assume ful-
fillment of Assumptions 1-4. We use the result of Proposition
1 in [19] to conclude that

E
{
Qj

i (t)|Ft

}
=

∂Ji(µ(t))

∂xj
i

+O(σt). (11)

Let Qi(t) = (Q1
i (t), . . . , Q

ni
i (t)). Thus, Qi is a biased

estimation of the cluster ith local gradient ∇iJi(µ(t)) at
the point µ(t). The bias is defined by the variance σt of the
Gaussian distribution used for the estimation construction.
Next, we use the result of Lemma 2 in [18] to estimate the
second moment of the random variable Qj

i (t) as follows:

E
{
|Qj

i (t)|
2|Ft

}
= O(1). (12)

The relation above upper bounds the second moment by a
constant value independent on t. This result is achieved due
to the proposed estimation approach using two query points
to sample the cost, namely Jj

i (x(t)) and Jj
i (µ(t)). Finally,

we estimate the projection-related term P j
i (t) as follows (see

again Proposition 1 in [19] for the proof):

E
{
|P j

i (t)||Ft

}
= O(σt), (13)

as limt→∞
ρt

σt
= ∞. The last relation demonstrates necessity

of taking projection to the shrinked set (1−ρt)Ω
j
i with ρt > 0

in the updates of the states µj
i . Without such projection one

cannot upper bound the term |P j
i (t)| in a sufficient way.

Combining the relations in (9)-(13), we obtain the follow-
ing lemma.

Lemma 1. Let Assumptions 1 - 4 hold and limt→∞ σt =
0, limt→∞

ρt

σt
= ∞. Then d̂i(t) = (d̂1i (t), . . . , d̂

ni
i (t)) =(

1
ni

∑ni

j=1 U
j
i (t)

)
ξi(t)−µi(t)

σ2
t

is a biased estimation of the
local gradient ∇iJi(µ(t)) at the point µ(t) satisfying the
following relations:

E
{
d̂i(t)|Ft

}
= ∇iJi(µ(t)) +O(σt),

E
{
∥d̂i(t)∥2|Ft

}
= O(1).

The iterate (4) of the outer-loop uses the gradient esti-
mations di(t). As it has been mentioned at the beginning
of this subsection, within the inner-loop of the procedure,
di(t) approaches the estimation d̂i(t). The properties of
d̂i(t) stated by the lemma above will be used in the proof
of the main result presented in the next subsection.

Remark 2. We emphasize that at each time t, the gradient
estimations in (8) are based on the difference between the
costs sampled at two points x(t) and µ(t) (see (6)). The
reason for it is that such two-point estimations allow for
a uniformly bounded second moment of the term ∥dji (t)∥
(see Lemma 1), which speeds up the rate of the algorithm in
comparison with the one-point estimations discussed in [20].
To avoid the requirement to estimate the cost at the joint state
µ(t), one can adapt an approach presented, for example,
in [3] and use the experienced value of the cost from the
previous iteration, namely Jj

i (x(t−1)), instead of the value
Jj
i (µ(t)) to construct the difference U j

i (t). A rigorous proof
of the same convergence rate guarantee under this approach
is one of the directions for future research.

C. Main Result

We are equipped to provide the main result of this work
consisting in the convergence proof of the fully distributed
procedure presented in Section III-A.

Theorem 1. Let the states µj
i (t), j ∈ [ni] i ∈ [n], evolve

according to the outer-loop iterates (4) with the mt inner-
loop iterates (7) . Let Assumptions 1–5 hold. Moreover,
let the parameters in the procedure be chosen as follows:
αt =

c
t with c > 1

2ν , σt = O
(

1
ts

)
, ρt = O

(
1
tr

)
, 2 ≤ r < s,

and mt = (1+s) log t
log(1/β) . Here ν is the strong monotonicity

constant (see Assumption 1) and β is the constant related
to the communication protocol (see Assumption 5).

Then the sequence of the outer-loop iterations {µ(t)}t
converges almost surely to the unique Nash equilibrium x∗

and satisfies E∥µ(t)−x∗∥2= O
(
1
t

)
. Moreover, the overall

number of O
(
1
ε ln

1
ε

)
iterations are required to achieve µ(t)

such that E∥µ(t) − x∗∥2< ε, where ε > 0 is the target
accuracy.

Proof. Let us consider the outer-loop t. At this time step,
the inner-loop consists of mt iterations. Taking into account
Assumption 5 (see equation (3)), we conclude that, as mt →
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∞, ∣∣∣∣∣U j
i (t+mt)−

1

ni

ni∑
k=1

U j
i (t)

∣∣∣∣∣ = O(βmt). (14)

We proceed with estimating the squared distance between the
joint state µi(t+ 1) within the cluster i evolving according
to (5) and the unique Nash equilibrium action x∗

i of this
cluster:

∥µi(t+ 1)− x∗
i ∥2

= ∥µi(t+ 1)− P(1−ρt)Ωi
{x∗

i }+ P(1−ρt)Ωi
{x∗

i } − x∗
i ∥2

≤ ∥µi(t+ 1)− P(1−ρt)Ωi
{x∗

i }∥2+∥P(1−ρt)Ωi
{x∗

i } − x∗
i ∥2

+ 2∥µi(t+ 1)− P(1−ρt)Ωi
{x∗

i }∥∥P(1−ρt)Ωi
{x∗

i } − x∗
i ∥

= ∥µi(t+ 1)− P(1−ρt)Ωi
{x∗

i }∥2+O(ρt)

≤ ∥µi(t)− αtdi(t)− x∗
i ∥2+O(ρt), (15)

where the inequality is due to the Cauchy-Schwarz one, the
second equality is due to the fact that ∥P(1−ρt)Ωi

{x∗
i } −

x∗
i ∥= O(ρt) (see Lemma 7 in Appendix D in [17] for an

analogous proof), and the last inequality uses non-expansion
of the projection operator. Next,

∥µi(t)− αtdi(t)− x∗
i ∥2= ∥µi(t)− x∗

i ∥2

− 2αt⟨di(t),µi(t)− x∗
i ⟩+ α2

t ∥di(t)∥2. (16)

Taking into account the relations di(t) = di(t)−d̂i(t)+d̂i(t)
and ∥di(t)∥2≤ 2∥di(t) − d̂i(t)∥2+2∥d̂i(t)∥2, we conclude
that

∥µi(t)− αtdi(t)− x∗
i ∥2≤ ∥µi(t)− x∗

i ∥2

− 2αt⟨d̂i(t),µi(t)− x∗
i ⟩

− 2αt⟨di(t)− d̂i(t),µi(t)− x∗
i ⟩

+ 2α2
t ∥di(t)− d̂i(t)∥2+2α2

t ∥d̂i(t)∥2

≤ ∥µi(t)− x∗
i ∥2−2αt⟨d̂i(t),µi(t)− x∗

i ⟩
+ 2αt∥di(t)− d̂i(t)∥∥µi(t)− x∗

i ∥
+ 2α2

t ∥di(t)− d̂i(t)∥2+2α2
t ∥d̂i(t)∥2. (17)

According to the definition of di(t) = (dji (t), . . . , d
ni
i (t))

(see (8)), d̂i(t) =
(

1
ni

∑ni

j=1 U
j
i (t)

)
ξi(t)−µi(t)

σ2
t

, and (14),
the following relations hold:

E{∥di(t)− d̂i(t)∥2|Ft} = O

(
1

σ2
t

β2mt

)
. (18)

We take the conditional expectation in respect to Ft of both
sides in the inequality (15) combined with (17). By taking
this expectation, we use the relations E{⟨d̂i(t),µi(t) −
x∗
i ⟩|Ft} = ⟨∇iJi(µ(t)),µi(t)− x∗

i ⟩ and E{∥d̂i(t)∥2Ft} =
O(1) (see Lemma 1) as well as (18) and, thus, obtain

E{∥µi(t+ 1)− x∗
i ∥2|Ft}

≤ ∥µi(t)− x∗
i ∥2−2αt⟨∇iJi(µ(t)),µi(t)− x∗

i ⟩

+O

(
α2
t +

αt

σt
βmt +

α2
t

σ2
t

β2mt + ρt

)
,

where we also used compactness of Ω (Assumption 2).
Summing up the inequalities above over i = 1, . . . , n, we
conclude that

E{∥µ(t+ 1)− x∗∥2|Ft} ≤ ∥µ(t)− x∗∥2

− 2αt⟨F (µ),µ(t)− x∗⟩

+O

(
α2
t +

αt

σt
βmt +

α2
t

σ2
t

β2mt + ρt

)
≤ ∥µ(t)− x∗∥2−2αt{⟨F(µ(t))− F(x∗),µ(t)− x∗⟩}

+O

(
αt

σt
βmt +

α2
t

σ2
t

β2mt + α2
t + ρt

)
≤ (1− 2αtν)∥µ(t)− x∗∥2

+O

(
αt

σt
βmt +

α2
t

σ2
t

β2mt + α2
t + ρt

)
, (19)

where the second inequality is due to the solution prop-
erty (2) and the last one is due to strong monotonicity of F
(see Assumption 1). Hence, the settings for the parameters
αt, mt, σt, and ρt imply that

E{∥µ(t+ 1)− x∗∥2|Ft}

≤
(
1− c′

t

)
∥µ(t)− x∗∥2+O

(
1

t2

)
. (20)

Thus, µ(t) converges almost surely to x∗ (see Lemma 10
in Chapter 2.2. [13]). Taking the full expectation of the both
sides in (20), we conclude that

E{∥µ(t+ 1)− x∗∥2}

≤
(
1− c′

t

)
E{∥µ(t)− x∗∥2}+O

(
1

t2

)
, (21)

with c′ > 1. Finally, applying the Chung’s lemma (see
Lemma 4 in Chapter 2.2. [13]), we conclude that for the
sequence of the outer-loop {µ(t)}t the following relation
holds: E{∥µ(t) − x∗∥2} = O

(
1
t

)
. Moreover, taking into

account the length of the inner-loop, i.e. mt = (1+s) log t
log(1/β) ,

we obtain the iteration complexity of the order O
(
1
ε ln

1
ε

)
required to achieve the target accuracy ε > 0.

Remark 3. The obtained iteration complexity O
(
1
ε ln

1
ε

)
is

optimal up to the term ln 1
ε in the class of strongly convex

optimization problems [1]. The logarithmic term appears due
to existence of the inner-loop of the corresponding length.
This rate is achieved as we apply a two feasible query point
approach for the gradient estimations, which guarantees
bounded variance of the estimations (see Lemma 1). We
notice that this rate is faster than the rate of the algorithm
in [20], as the latter procedure is based on a one-point
gradient estimation technique which provides an unbounded
variance and leads to the iteration complexity lower bounded
by O

(
1√
ε

)
[5]. Moreover, while the procedure presented

in [20] requires each agent to have access to the joint
action set of her local cluster, agents following Algorithm (4)
do not use this information in their updates. We compare
Algorithm (4) with the procedure from [20] numerically in
the next section.
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Fig. 1. Comparison of the presented fully distributed Algorithm 1 (FDA)
with the distributed method (DA) presented in [20].

IV. SIMULATIONS

We consider an n-cluster games with 3 clusters (n = 3)
and 5 agents in each of them (ni = 5, i = 1, 2, 3).
Each agent j’s in the cluster i aims to minimize the cost
function Jj

i (xi, x−i) = f j
i (xi)+ li(x−i)x

j
i , where f j

i (xi) =
0.5aji∥xi∥2+⟨bi, xi⟩ and li(x−i) =

∑
k ̸=i⟨cik, xk⟩. Thus, the

local cost function of each player (cluster) i in the game is
Ji(x) =

∑5
j=1 J

j
i (xi, x−i). The action set of each agent j

is chosen as a random closed interval on R. We assume the
communication protocol in each cluster is represented by a
strongly connected graph (a randomly generated tree graph)
with a double stochastic weight matrix Wi. We randomly
select aji > 0, bi ∈ R5, and cik ∈ R5 for all possible i,
k, and j to guarantee strong monotonicity of the pseudo-
gradient.

For this setting, we simulate the proposed fully dis-
tributed two-time-scale algorithm and the procedure pre-
sented in [20]3. Figure 1 contains the simulation results
and demonstrates dependence of the relative error, namely
∥tth iteration output−x∗∥

∥x∗∥ , on time t Note that the blue
graphics corresponds to the outer-loop iteration As it has
been mentioned in Remark 3, Algorithm (4) outperforms the
procedure presented in [20] in terms of the convergence rate.

V. CONCLUSION

In this paper we presented the fully distributed two-time-
scale gradient play algorithm solving n-cluster games under
a zero-order information setting. We prove the almost sure
convergence of this procedure to the unique Nash equilibria
and estimate the convergence rate, given a strongly mono-
tone pseudo-gradient. The future work will be devoted to
investigation of possible modification of Algorithm (4) to a
procedure with a single time-scale. Moreover, scalability of
the proposed algorithm and, thus, its application to systems
with a large number of agents should be investigated.

3All parameters for these procedures are set up according to the theoretic
results guaranteeing convergence to the unique Nash equilibrium.
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