
Efficient computation of Lipschitz constants for MPC with symmetries

Dieter Teichrib and Moritz Schulze Darup

Abstract— Lipschitz constants for linear MPC are useful for
certifying inherent robustness against unmodeled disturbances
or robustness for neural network-based approximations of the
control law. In both cases, knowing the minimum Lipschitz
constant leads to less conservative certifications. Computing
this minimum Lipschitz constant is trivial given the explicit
MPC. However, the computation of the explicit MPC may be in-
tractable for complex systems. The paper discusses a method for
efficiently computing the minimum Lipschitz constant without
using the explicit control law. The proposed method simplifies
a recently presented mixed-integer linear program (MILP) that
computes the minimum Lipschitz constant. The simplification is
obtained by exploiting saturation and symmetries of the control
law and irrelevant constraints of the optimal control problem.

Index Terms— Model Predictive Control, Optimization,
Mixed-Integer Programming, Computational methods

I. INTRODUCTION AND PROBLEM STATEMENT

Model predictive control (MPC) is an established method
for the performance-oriented control of dynamical sys-
tems subject to state and input constraints (see [1] for
an overview). For various applications or realizations of
MPC, knowing a Lipschitz constant of the control law is
beneficial. For instance, Lipschitz constants can be used
to certify inherent robustness of classical MPC against un-
modeled disturbances [2], [3]. Based on similar concepts,
Lipschitz constants can be used to certify robustness for
neural network-based approximations of MPC laws [4], [5].

As pointed out in [6], computing a Lipschitz constant for
linear MPC is trivial, if the (piecewise affine) control law is
explicitly known. However, the number of affine segments
may grow exponentially with the state dimension and the
number of constraints in the optimal control problem (OCP).
Thus, explicitly computing the control law often becomes
intractable for complex systems. This motivates the design
of methods that allow the computation of a Lipschitz constant
without explicitly computing the control law. Such methods
have been previously addressed, e.g, in [4], [6]. In [6],
a procedure enumerating potential active sets of the OCP
is proposed. However, the procedure is inefficient and, in
parts, based on an unproven conjecture (see [6, Conj. 4]). In
[4], the problem of finding the smallest Lipschitz constant
for MPC is formulated as a mixed-integer linear program
(MILP). The procedure is elegant and it can be applied in
case where the computation of the explicit control law is
numerically intractable (cf. [4, Tab. I]). Still, solving the
resulting MILP may be time-consuming since, typically,
many binary variables are involved.

D. Teichrib and M. Schulze Darup are with the Control and Cyber-
physical Systems Group, Department of Mechanical Engineering, TU
Dortmund University, Germany. E-mails: dieter.teichrib@tu-dortmund.de,
moritz.schulzedarup@tu-dortmund.de.

In this paper, we aim for a more efficient computation of
Lipschitz constants via MILP. To this end, we first slightly
improve the MILP formulation from [4] by reducing the
initial number of binary variables. Afterwards, we present
various preprocessing steps to further reduce the number
of binary variables in the MILP. In this context, the most
powerful reduction step builds on symmetries that often arise
in MPC (see, e.g., [7]). Furthermore, the observation that the
control law is constant in many regions for a large prediction
horizon also allows a significant reduction in the number of
binary variables.

The paper is organized as follows. The notation is given
in the remainder of this section. Section II is devoted to
the basics of MPC and presents a known representation
of the OCP in terms of an MILP, which can be used to
compute the minimum Lipschitz constant of the control law.
In Section III, we describe several methods for reducing the
number of binary variables needed to compute the minimum
Lipschitz constant via MILP. We illustrate the effectiveness
of the proposed method with some examples from the
literature in Section IV and give a conclusion in Section V.

Notation. For matrices K ∈ Rm×n, we denote its i-th row
by Ki,:, its j-th column by K :,j , and its elements by Ki,j ,
respectively. We further use the shorthand notation Ki for
Ki,: and we indicate different instances of a matrix K by a
superscript, e.g., K(i). The product

KX := {Kx ∈ Rm | x ∈ X}

is defined for a compact and convex set X . For a vector
v ∈ Rm we define diag(v) as a diagonal matrix with the
elements of v being the diagonal elements. Moreover, I
refers to the identity matrix and we denote column vectors
or matrices whose entries are all 0 respectively 1 by 0
respectively 1. Finally, all inequalities involving matrices or
vectors are understood element-wise.

II. PRELIMINARIES

A. Lipschitz constants of piecewise affine functions

In general a Lipschitz constant of a function f : Rn → Rm

on a domain F ⊆ Rn is a constant L satisfying

∥f(x)− f(x̃)∥ ≤ L∥x− x̃∥

for all x, x̃ ∈ F and some vector norm ∥ · ∥. We here focus
on p-norms and, in particular, the cases p ∈ {1,∞}. We
denote corresponding Lipschitz constants by Lp. Further, we
aim for as small as possible Lipschitz constants and denote
the smallest one by L∗

p. Now, under the assumption that f

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6679

is a continuous piecewise affine (PWA) function on F , i.e.,
of the form

f(x) =

K(1)x+ b(1) if x ∈ R(1),
...
K(s)x+ b(s) if x ∈ R(s),

(1)

with K(i)∈ Rm×n and b(i)∈ Rm, then it is well-known that

L∗
p = max

i∈{1,...,s}
∥K(i)∥p, (2)

where ∥ · ∥p here refers to the matrix norm induced by the
vector p-norm (see, e.g., [8, Prop. 3.4]). As pointed out in
[4, Lem. 5.1], the matrix norms ∥K∥1 and ∥K∥∞ can be
evaluated by solving a linear program (LP). In fact, one finds

∥K∥1 = min
l,v(1),...,v(n)

l (3)

s.t. 1⊤v(j) ≤ l, −v(j) ≤ K :,j ≤ v(j), ∀j ∈ {1, . . . , n}.

Due to ||K||∞ = ||K⊤||1, the LP for computing the ∞-
norm can be formulated in a similar way.

B. Linear MPC via MILP

MPC for linear discrete-time systems builds on solving an
OCP of the form

V (x) := min
x(0),...,x(N)

u(0),...,u(N−1)

φ(x(N)) +

N−1∑
k=0

ℓ(x(k),u(k)) (4)

s.t. x(0) = x,

x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., N − 1},
(x(k),u(k)) ∈ X × U , ∀k ∈ {0, ..., N − 1},

x(N) ∈ T

in every time step for the current state x. Here, N ∈ N refers
to the prediction horizon and

φ(x) := x⊤Px and ℓ(x,u) := x⊤Qx+ u⊤Ru

denote the terminal and stage cost, respectively, where we
assume that the weighting matrices P , Q, and R are positive
definite. The dynamics of the linear prediction model are
described by A ∈ Rn×n and B ∈ Rn×m. State and input
constraints can be incorporated via the polyhedral sets X
and U . Finally, a polyhedral terminal set T allows to enforce
closed-loop stability (see [9] for details). Condensing the
OCP (4) leads to a parametric quadratic program (QP) of
the form

U∗(x) := argmin
U

1

2
U⊤HU + x⊤F⊤U (5)

s.t. GU ≤ Ex+ d

with the decision variable U ∈ RmN reflecting the predicted
input sequence (i.e, the stacked vectors u(0), ...,u(N − 1))
and with H,F ,G,E,d denoting condensed matrices ob-
tained from A,B,P ,Q,R and the specifications of X ,U , T
(see [10, Chap. 3] for details). Now, MPC typically builds
on applying the first element of the optimal input sequence,
i.e., u∗(0), and repeating the procedure at the next sampling

instant. Hence, the resulting control law fMPC : FMPC → U
can be defined as

fMPC(x) := SU∗(x), (6)

where S := (I 0 . . . 0) ∈ Rm×mN serves as a selection
matrix and where the set FMPC contains all x ∈ Rn for which
(5) (or, equivalently, (4)) is feasible. Remarkably, fMPC is of
the form (1) with regions R(i) representing polyhedral sets
with pairwise disjoint interiors [11, Thm. 4].

Clearly, the solution of (5) can be characterized by the
Karush-Kuhn-Tucker (KKT) conditions

HU∗(x) + Fx+G⊤λ∗(x) = 0, (7a)
r∗(x) = Ex+ d−GU∗(x), (7b)
r∗(x) ≥ 0, (7c)
λ∗(x) ≥ 0, (7d)

diag(λ∗(x)) r∗(x) = 0 (7e)

where q ∈ N reflects the dimension of d, i.e., the number of
constraints. Now, let us assume upper bounds λ and r for the
dual optimizers λ∗(x) respectively the residuals r∗(x) are
known, i.e., λ∗(x) ≤ λ and r∗(x) ≤ r for all x ∈ FMPC.
Since (5) is feasible for all x ∈ FMPC by definition, such
upper bounds exist and are finite. Then, the conditions (7c)–
(7e) can be rewritten as

0 ≤ r∗(x) ≤ diag(r)(1− δ∗(x)), (8a)

0 ≤ λ∗(x) ≤ diag(λ) δ∗(x), (8b)
δ∗(x) ∈ {0, 1}q (8c)

[4, Eq. (13)]. Thus, the QP (5) can be solved by solving the
MI feasibility problem

find U∗, λ∗, r∗, and δ∗ s.t. (7a)–(7b) and (8), (9)

where we omit dependencies on x for brevity.

C. Local MPC gain via MILP

Given a solution to (9), it is easy to see that the set

A(x) := {i ∈ {1, . . . , q} | δ∗i (x) = 1}

reflects the active constraints for (5). In principle, A(x)
allows to compute the local MPC segment, i.e., K∗, b∗, and
R∗ such that x ∈ R∗ and

fMPC(x̃) = K∗x̃+ b∗ ∀ x̃ ∈ R∗.

However, performing the computation analogously to [11]
leads to nonlinear relations between K∗ and δ∗(x). Hence,
aiming for a combination of (2), (3) and (9) in one MILP,
we need to derive K∗ differently. A suitable approach has
been proposed in the proof of [4, Thm. 5.3]. The underlying
idea is to sample the MPC segment (potentially even outside
its domain R∗) and to use the samples to characterize K∗.
The sampling points are chosen as

x(j) := x+ e(j) ∀j ∈ {1, . . . , n},

where e(j) refers to the j-th canonical unit vector. One
then constructs corresponding U (j) from the MPC segment

6680

around x by introducing the additional variables U (j), λ(j),
and r(j) and by augmenting the constraints (7a)–(7b) and (8)
with

HU (j)+ F (x+ e(j)) +G⊤λ(j) = 0 (10a)

E(x+ e(j)) + d−GU (j) = r(j) (10b)

−M(1− δ∗(x)) ≤ r(j) ≤ M(1− δ∗(x)) (10c)

−Mδ∗(x) ≤ λ(j) ≤ Mδ∗(x) (10d)

for all j ∈ {1, . . . , n}, where M is a sufficiently large num-
ber such that feasible solutions satisfy r

(j)
i ,λ

(j)
i ∈ (−M,M).

Then, we obviously have S
(
U (j) −U∗(x)

)
= K∗e(j) and

consequently

K∗ = S
(
U (1) −U∗(x) . . . U (n) −U∗(x)

)
. (11)

We could now compute ∥K∗∥1 by solving (3) for K∗ as
in (11) subject to the additional constraints (7a)–(7b), (8),
and (10), which results in an MILP. However, including a
maximization analogously to (2) (here over x ∈ X) is non-
trivial since (3) calls for a minimization. To circumvent this
issue, one can consider the dual of (3) and observe that the
corresponding optimizer is binary [4, Lem. 5.1]. This finally
allows to compute the Lipschitz constant L∗

1 for an MPC
scheme based on an MILP with

q + (2m+ 1)n (12)

binary variables (or q + (2n+ 1)m for L∗
∞) [4].

III. REDUCING BINARY VARIABLES FOR EFFICIENCY

The numerical complexity for solving an MILP crucially
depends on the number of binary variables. Hence, in order
to enable more efficient Lipschitz constant computations for
MPC, we aim for a reduction of the number of binary
variables in the corresponding MILP. In this context, we first
stress that the number in (12) consists of two terms resulting
from the q constraints of the MPC-related QP in (5) and the
(2m+1)n constraints in (3). Hence, we have two immediate
options for reducing the number of binary variables: First,
reducing the number of constraints in (5) relevant for the
computation of Lipschitz constants and, second, implement-
ing the norm evaluation more efficiently. We investigate these
options in Sections III-A and III-B, respectively. Finally, we
show in Section III-C that exploiting symmetries, which are
often present in MPC, can be beneficial for the computation
of Lipschitz constants.

A. More efficient norm computation

Roughly speaking, the computation of Lipschitz constants
proposed in [4] builds on reformulations of the QP (5) and
the LP (3) in terms of MI feasibility problems. In [4], the
reformulation of (3) is realized based on the LP’s dual. Next,
we propose a direct reformulation based on the primal LP,
which is inspired by MI modeling techniques from, e.g., [12]
and which requires fewer binary variables than [4].

Lemma 1: Let K ∈ Rm×n and consider the conditions

K = K+ −K−, (13a)

0 ≤ K+ ≤ M
(
δ(1) . . . δ(m)

)⊤
, (13b)

0 ≤ K− ≤ M
(
1−

(
δ(1) . . . δ(m)

)⊤)
, (13c)

c⊤ = 1⊤(K+ +K−), (13d)

c ≤ 1l ≤ c+M(1− δ(m+1)), (13e)

1⊤δ(m+1) = 1, (13f)

δ(1), . . . , δ(m+1) ∈ {0, 1}n (13g)

for some M being larger than the largest absolute value of
the entries in K. Then, any solution to

find l, K+, K−, c, δ(1), . . . , δ(m+1) s.t. (13) (14)

is such that ∥K∥1 = l.
Proof: It is easy to see that the conditions (13a)–(13c)

together with δ(1), . . . , δ(m) ∈ {0, 1}n imply

(K+
i,j ,K

−
i,j) :=

{
(Ki,j , 0) if Ki,j ≥ 0,
(0,−Ki,j) otherwise.

As a consequence, the entries of c as in (13d) reflect
the absolute column sums of K. Due to (13e), (13f), and
δ(m+1) ∈ {0, 1}n, l equals the largest entry of c, which is,
by definition, identical to ∥K∥1.

Obviously, the MI feasibility problem (14) only requires
(m+ 1)n binary variables and thus mn less than the coun-
terpart in [4]. Again, a similar problem can easily be con-
structed to compute ∥K∥∞ using (n+1)m binary variables.
Likewise, the reduction compared to [4] amounts to mn.

B. Excluding MPC constraints

We propose two approaches to reduce the number of
constraints in (5) and consequently the number of binary
variables in (9). The approaches are conceptually decou-
pled but it will turn out that their implementation can
be efficiently coupled. The first approach builds on the
straightforward observation that the i-th constraint in (5)
(i.e., GiU ≤ Eix+ di) is irrelevant for the MPC scheme,
if there exists no x ∈ FMPC such that GiU

∗(x) = Eix+di.
According to the following lemma, such a situation can be
identified based on an MI feasibility problem similar to (9).

Lemma 2: Let i ∈ {1, . . . , q}. If the MI feasibility prob-
lem (9) with the additional decision variable x and with the
additional constraint δ∗i = 1 is infeasible, then

GiU
∗(x)−Eix < di for all x ∈ FMPC.

Proof: We first note that the unmodified problem (9)
has, by construction, the same feasible set FMPC as (5)
with respect to the parameter x. Now, the additional con-
straint δ∗i = 1 implies r∗i = 0 in (8a) and consequently
GiU

∗ = Eix + di in (7b). Hence, infeasibility of the MI
feasibility problem in the claim with x as a decision variable
immmediately implies that there exists no x ∈ FMPC such
that GiU

∗(x)−Eix = di. In other words, solving (5) for
any feasible x ∈ FMPC results in GiU

∗(x)−Eix < di.

6681

Clearly, with the help of Lemma 2, we can eliminate
irrelevant constraints by checking the corresponding MI
feasibility problem for every (or some) i ∈ {1, . . . , q}. At
this point, it might seem counterintuitive to consider multiple
MI problems in order to simply the overlaying MILP of
interest. However, our numerical benchmark in Section IV
clearly shows that this approach is meaningfull and that the
overall runtime can be (significantly) shortened compared to
a direct solution of the unmodified MILP for the computation
of Lipschitz constants. Remarkably, Lemma 2 could also be
used to simplify an MPC scheme offline in order to accelerate
the QP solutions online.

The second approach for reducing binary variables as-
sociated to constraints differs from the first one in that
it is tailored to the problem at hand. It is based on the
observation that the MPC law of the form (1) often con-
tains many segments with K(i) = 0 resulting in constant
inputs determined by the bias term b(i). In particular, this
situation often arises if box-shaped input constraints are
present. Clearly, due to ∥0∥p = 0, the constant segments are
irrelevant for the computation of Lipschitz constants (but they
obviously matter for the MPC scheme). Now, according to
the following theorem, our procedure to identify and exclude
some of these segments is similar to the first approach.

Theorem 3: Let i ∈ {1, . . . , q} and let FMPC be full-
dimensional. Consider the MILP

max
U∗,U(1),...,U(m),x,x(1),...,x(m),

λ∗,λ(1),...,λ(m),r∗,r(1),...,r(m),δ∗

m∑
j=1

U
(j)
j −U∗

j (15)

subject to (7a)–(7b), (8), δ∗i = 1, and

HU (j) + Fx(j) +G⊤λ(j) = 0, (16a)

Ex(j) + d−GU (j) = r(j), (16b)

0 ≤ r(j) ≤ diag(r)(1− δ∗), (16c)

0 ≤ λ(j) ≤ diag(λ) δ∗ (16d)

for every j ∈ {1, . . . ,m}. If the MILP is feasible and
returns 0 as the optimal objective function value, then the
i-th constraint can be omitted for the computation of the
Lipschitz constant.

Proof: We initially neglect the objective function in (15)
and investigate the corresponding MI feasibility problem.
We further assume feasibility since the theorem is irrelevant
otherwise. Now, we consider any feasible set of decision
variables and note that, based on the corresponding U∗, x,
λ∗, r∗, and δ∗, we can construct another set of feasible
variables by choosing U (j) := U∗, x(j) := x, λ(i) := λ∗,
and r(j) := r∗ for every j ∈ {1, . . . ,m} (and keeping the
other variables). Clearly, the associated objective function
value is 0. In other words, given feasibility, the optimal value
of the MILP is always non-negative. We next show that the
optimal value is always positive if a feasible x exists, for
which the corresponding A(x) (containing i by construction)
leads to K∗ ̸= 0 and a full-dimensional R∗. To this end, we
recall that A(x) is determined by δ∗. We further note that
the additional constraints (16) imply x(1), . . . ,x(m) ∈ R∗

(analogously to x ∈ R∗). Hence, we find

U
(j)
j −U∗

j = K∗
jx

(j) + b∗j −K∗
jx− b∗j = K∗

j (x
(j) − x)

for every j ∈ {1, . . . ,m}. Now, K∗ ̸= 0 implies K∗
j ̸= 0

for at least one j. Due to R∗ being full-dimensional, there
exist x(j),x ∈ R∗ yielding a positive U

(j)
j − U∗

j . As
a consequence, the optimal value in (15) will be positive
since the other terms in the cost function have already been
shown to be non-negative (due to the m independent x(j))).
Conversely, if the MILP returns 0 as an optimal value, the
active sets A(x) associated with feasible x either correspond
to K∗ = 0, lower dimensional R∗, or both. Now, the
former and the latter case are clearly irrelevant for computing
the Lipschitz constant. However, also the remaining case
K∗ ̸= 0 on some lower dimensional domain R∗ is irrelevant
if FMPC is full-dimensional (as assumed). In fact, due to
continuity of fMPC [11, Thm. 4], the relevant gain K∗ will
then be captured by some neighboring segment on a full-
dimensional domain.

Theorem 3 provides another condition to potentially ex-
clude the i-th constraint. Remarkably, the two conditions
in the previous theorem and Lemma 2, while conceptually
different, are methodically closely related. To see this, note
that the constraints of the corresponding MI problems only
differ in terms of (16). Now, it is easy to see that the
constraints (16) are feasible whenever the corresponding
constraints (7a)–(7b) and (8) are feasible for x. Hence, we
immediately find the following relation.

Corollary 4: The MI feasibilty problem in Lemma 2 is
feasible if and only if the MILP in Theorem 3 is feasible.

As a consequence, one can only investigate the MILP in
Theorem 3 and exclude the i-th constraint if the MILP is
either infeasible or returns 0.

C. Exploiting symmetries in MPC

Due to common symmetries in the constraints or the cost
function, MPC often results in control laws, which likewise
offer symmetries. Formalizing these symmetries can, e.g., be
carried out analogously to [7, Def. 1]. There, a symmetry is
expressed in terms of invertible matrices (Θ,Ω) satisfying

ΩfMPC(x) = fMPC(Θx) (17)

for every x ∈ FMPC. Exploiting symmetries is, e.g., useful in
the framework of explicit MPC [11] since it allows to reduce
the domain for which the explicit control law has to be com-
puted (and stored). To specify this, we first note that multiple
symmetries in terms of tuples (Θ(1),Ω(1)), . . . , (Θ(σ),Ω(σ))
can apply simultaneously with the canonical tuple (Im, In)
being one of those. Then, we can substitute the constraint
x(0) ∈ X in (4) with x(0) ∈ Xfun for any choice of (the
so-called fundamental domain) Xfun ⊆ X satisfying

FMPC ⊆
σ⋃

i=1

Θ(i)Xfun.

Clearly, in order to still enable the condensation to (5), it
additionally makes sense to restrict ourselves to polyhedral

6682

sets Xfun. Now, assuming for a moment that X and Xfun are
characterized by the same number of hyperplanes. Then, it
is easy to see that the substitution above does not alter the
number of constraints in (5). Hence, it is not immediately
clear how exploiting symmetries can be beneficial for our
purposes. In this context, we first note that substituting
X with a significantly smaller set Xfun (for the constraint
associated with x(0)) often results in significantly more
excluded constraints by the procedures related to Lemma 2
and Theorem 3 (see our benchmark in Sect. IV). More-
over, symmetries often yield relations like K(i) = −K(j)

implying ∥K(i)∥p = ∥K(j)∥p. However, symmetries do not
always result in such trivial relations, in particular, in light
of norms. To see this, note that (17) in combination with the
structure (1) provides relations like

K(i)x+ b(i) = Ω−1K(j)Θx+Ω−1b(j).

Hence, instead of evaluating fMPC for some x ∈ R(i), we
could also make use of segment j containing Θx. This would
allow us to skip segment i in the context of the Lipschitz con-
stant computation and to consider ∥Ω−1K(j)Θ∥p instead.
This observation can be exploited in two ways. First, we
could simply evaluate σ instances of the final MILP resulting
for the tightened constraint x(0) ∈ Xfun in order to capture
all transformed segments via ∥Ω−1K(j)Θ∥p for every of the
σ tuples (Θ(i),Ω(i)). Second and more efficiently, we can
evaluate the final MILP only once and consider only those
transformations resulting in invariant norms, i.e.,

∥Ω−1KΘ∥p = ∥K∥p for every K ∈ Rm×n. (18)

A sufficient condition for such transformations is as follows.
Lemma 5: Let ∥Ω∥p = 1 and ∥Θ∥p = 1, then (18) holds.

Proof: We first note that invertability of Ω and Θ
implies ∥Ω−1∥p = ∥Ω∥−1

p = 1 and ∥Θ−1∥p = 1. Hence,

∥Ω−1KΘ∥p ≤ ∥Ω−1∥p∥K∥p∥Θ∥p = ∥K∥p

due to sub-multiplicativity. On the other hand,

∥K∥p = ∥ΩΩ−1KΘΘ−1∥p
≤ ∥Ω∥p∥Ω−1KΘ∥p∥Θ−1∥p = ∥Ω−1KΘ∥p.

In combination, an inclusion results, which proves (18).

While restrictive, common symmetries in MPC often sat-
isfy the conditions in Lemma 5 (see, e.g., the examples in
Sect. IV). It remains to comment on the identification of
symmetries. In this context, we refer to the methods from [7],
which allow to identify tuples (Θ,Ω) that reflect a symmetry
purely based on A, B, P , Q, R, X , and U , i.e., without
computing the explicit control law.

D. Combined approaches

We are ready to combine our approaches for a more
efficient computation of Lipschitz constants. As already
indicated, various combinations of the proposed tools can be
considered. We specify two variants that will be used for the
numerical benchmark in Section IV. The variants differ in
whether symmetries are exploited (according to the previous

section) or not. Hence, slightly neglecting the additional
effort for the identification of symmetries and a fundamental
domain Xfun, the crucial difference is that either x(0) ∈ X
or x(0) ∈ Xfun is considered as a constraint for the initial
state in (4). Apart from this difference, all following steps
are identical. In fact, we first condense the OCP to a QP of
the form (5). We then use the MILP in Theorem 3 to reduce
the number of constraints. More precisely, we investigate for
each constraint i whether the MILP is infeasible or offers
the optimal objective value 0. In any of these cases, the i-th
constraint is deleted. For simplicity of notation, we do not
introduce different instances of the QP parameters for the
two variants or during the constraint reduction. In fact, we
simply assume that the previous instances are overwritten.
Once the reduced QP is obtained, we solve the following
MILP in order to compute the Lipschitz constant L∗

1 = l∗:

max
x,l,K∗,K+,K−, c,U∗,U(1),...,U(n),

δ∗,δ(1),...,δ(m+1),λ∗,λ(1),...,λ(n),r∗,r(1),...,r(n)

l (19)

subject to (7a)–(7b), (8), (10), (11), and (13). Despite the
MILP formulation of the reduced QP, a central element is
the novel norm computation according to Lemma 1. Again,
L∗
∞ can be computed analogously.

IV. NUMERICAL BENCHMARK

We demonstrate the effectiveness of the proposed pro-
cedures by applying them to examples from the literature
summarized in Table I. All MILP in this section are solved
using the mixed-integer solver from [16] with constants set
to λ = r = M = 104. For every example, we first compute
the minimum Lipschitz constants L∗

1 and L∗
∞ according to

the method in [4, Thm. 5.3], which also served as the starting
point for our investigations. The required computation time is
listed in the sixth and eighth column of Table II, respectively.

Next, we follow the two variants in Section III-D in
order to apply our novel procedures. Regarding the variant
exploiting symmetries, we note that all examples in Table I
offer rotational symmetries. More precisely, the matrices Θ
and Ω are of the form

Θ =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
,

with φ ∈ {π, 2π} and Ω ∈ {−1, 1} for Systems 1 and 2.
For the two following systems, we have Θ as before and

Ω =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
= Θ⊤

with φ ∈ {π, 2π} for System 3 and φ ∈ {π/2, π, 3π/2, 2π} for
System 4. For System 5, Θ likewise reflects rotation matrices
(which we omit for brevity) and Ω ∈ {−1, 1}. In all cases,
we easily verify that the condition in Lemma 5 (i.e., ||Ω||p =
||Θ||p = 1) holds. Hence, we can restrict our analysis to the
fundamental domains in the ninth column of Table I without
the need to consider multiple instances of the MILP (19).
Before analyzing the performance of our procedures, we note
that we consider two different choices for the terminal set T
for each example. First, we simply choose T = X (i.e., no

6683

TABLE I: Example systems from the literature.

No. A B X U Q R N Xfun Reference

1.
(
1 1
0 1

) (
0.5
1

)
|x1| ≤ 25
|x2| ≤ 5

|u| ≤ 1 I 0.1 10
|x1| ≤ 25

0 ≤ x2 ≤ 5
[13, Eqs. (2.8)–(2.9)]

2.
(
0 1
1 0

) (
2
4

)
|x1| ≤ 5
|x2| ≤ 5

|u| ≤ 1 I 4.5 8
|x1| ≤ 5

0 ≤ x2 ≤ 5
[14, Ex. 3]

3.
(

1.1 0.2
−0.2 1.1

) (
0.5 0
0 0.4

)
|x1| ≤ 5
|x2| ≤ 5

|u1| ≤ 1
|u2| ≤ 1

I 0.1I 3
|x1| ≤ 5

0 ≤ x2 ≤ 5
[15, Ex. 2.26]

4.
(
2 0
0 2

) (
1 1
1 −1

)
|x1| ≤ 5
|x2| ≤ 5

|u1| ≤ 1
|u2| ≤ 1

I I 10
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5

[7, Ex. 1]

5.

1 0.5 0.125
0 1 0.5
0 0 1

 0.02
0.125
0.5

 |x1| ≤ 20
|x2| ≤ 3
|x3| ≤ 1

|u| ≤ 0.5 I 1 3
|x1| ≤ 20
|x2| ≤ 3

0 ≤ x3 ≤ 1
[13, Rem. 4.8]

TABLE II: Computation of Lipschitz constants for different systems.

MILP from [4, Thm. 5.3] MILP (19) using Lemma 1, Theorem 3, and symmetries

No. T #R #δ L∗
1 Time [s] L∗

∞ Time [s] #
(1)
δ #

(2)
δ Time for L∗

1 [s] Time for L∗
∞ [s] Preprocessing [s]

1. X 211 64 1.89 103.72 1.27 55.51 22 12 0.1735 0.2481 0.0115

1. S 195 70 1.89 9.98 1.27 43.90 22 12 0.1453 0.2289 0.0156

2. X 35 52 0.50 15.24 0.50 32.44 32 17 0.6331 0.4759 0.0143

2. S 35 58 0.50 19.05 0.50 43.24 32 17 0.3275 0.5374 0.0136

3. X 79 28 16.10 2.59 11.70 3.37 18 15 0.3079 0.5262 0.0587

3. S 93 32 20.13 1.75 14.63 1.40 16 16 1.2126 1.6429 0.0863

4. X 491 84 1.69 71.36 1.69 242.74 36 12 0.2590 0.2520 0.0145

4. S 441 88 1.69 66.14 1.69 85.64 36 12 1.6266 0.1910 0.0248

5. X 117 30 12.00 2.11 8.00 3.49 28 22 0.3966 0.9440 0.0434

5. S 107 46 12.00 9.69 8.00 22.87 28 22 1.1988 2.4368 0.0539

terminal constraints). Second, we consider T = S with S
denoting the largest positively invariant set, where the linear
quadratic regulator (LQR) can be applied without violating
constraints. The computation has been carried out according
to [17].

Now, in Table II, we list the number of binary variables of
the MILP in [4, Thm. 5.3] in the column #δ . Further, we also
list the number of regions R(i) of the explicit control law,
computed using the multi-parametric toolbox (MPT, [18]),
under #R as an orientation. Key performance indicators of
our procedures are listed in columns nine to 13. First, #(1)

δ̂
is the number of binary variables for the simplified MILP
without considering symmetries. Second, #

(2)

δ̂
reflects the

same figure with symmetries. Next, the total computation
times for evaluating L∗

1 and L∗
∞ are listed, respectively.

These include the times for all preprocessing steps (such
as constraint elimination), which are exclusively listed in the
last column for completeness.

As apparent from Table II, the time required to compute
the Lipschitz constants can be significantly reduced for all
examples. Moreover, one can observe that the computation
time for the preprocessing is negligible compared to the time
required to compute L∗

p. In fact, although MILP are solved
during the preprocessing, the overall time can be reduced in
all cases. Furthermore, for the proposed method, the variation
of the computation times between the examples is lower. This
may indicate, that the proposed method scales better with the
model complexity.

Finally, Figure 1 highlights in purple the regions that are
considered by the MILP (19) for computing the Lipschitz
constant after reducing the number of binary variables ac-
cording to Lemma 2 and Theorem 3 under consideration of
symmetries. As apparent from Figure 2, Theorem 3 allows
to identify all regions with a local gain of zero. Moreover,
all regions that have the same local gain due to symmetries
are also excluded from the computation. Thus only regions
that are relevant for computing a Lipschitz constant are
considered.

6684

Fig. 1: Sate space partition
of the control law.

Fig. 2: Optimal control law
for System 1 with T = X .

V. CONCLUSION

We presented an efficient set of methods to compute the
minimum Lipschitz constant of an MPC law. The method
adopts a known MILP for the computation of Lipschitz con-
stants and uses various procedures (see Lemma 1, Lemma 2
and Theorem 3) to reduce the number of binary variables
in the MILP and thus its complexity. The most powerful
reduction builds on exploiting saturation and symmetries
of the control law. However, the proposed reduction steps
can also be applied to systems without symmetries. This
allows an efficient computation of the minimum Lipschitz
constant even for complex systems of moderate size. For
future research it would be interesting to investigate if the
MILP (19) can be adopted for the computation of Lipschitz
constants of the piecewise quadratic optimal value function
V (x) of the OP (4).

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive
Control: Theory, Computation, and Design. Nob Hill Publishing, 2nd
edition edition, 2017.

[2] P.O.M. Scokaert, J.B. Rawlings, and E.S. Meadows. Discrete-time
stability with perturbations: application to model predictive control.
Automatica, 33(3):463–470, 1997.

[3] D. Limon Marruedo, T. Alamo, and E.F. Camacho. Stability analysis
of systems with bounded additive uncertainties based on invariant sets:
Stability and feasibility of mpc. In Proc. of the 2002 American Control
Conference, pages 364–369, 2002.

[4] F. Fabiani and P. J. Goulart. Reliably-stabilizing piecewise-affine
neural network controllers. IEEE Transactions on Automatic Control,
68(9):5201–5215, 2023.

[5] D. Teichrib and M. Schulze Darup. Error bounds for maxout neural
network approximations of model predictive control. In Proc. of the
2023 IFAC World Congress, pages 10853–10859, 2023.

[6] M. Schulze Darup, M. Jost, G. Pannocchia, and M. Mönnigmann.
On the maximal controller gain in linear MPC. IFAC-PapersOnLine,
50(1):9218–9223, 2017.

[7] C. Danielson and F. Borrelli. Symmetric linear model predictive
control. IEEE Transactions on Automatic Control, 60(5):1244–1259,
2015.

[8] V. V. Gorokhovik, O. I. Zorko, and G. Birkhoff. Piecewise affine
functions and polyhedral sets. Optimization, 31(3):209–221, 1994.

[9] D. Q. Mayne, J. B. Rawlings, C.V. Rao, and P. O. M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36:789–814, 2000.

[10] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall,
2002.

[11] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[12] M. Fischetti and J. Jo. Deep neural networks and mixed-integer linear
optimization. Constraints, 23(3):296–309, 2018.

[13] P.-O. Gutman and M. Cwikel. An algorithm to find maximal
state constraint sets for discrete-time linear dynamical systems with
bounded controls and states. IEEE Transactions on Automatic Control,
32(3):251–254, 1987.

[14] M. Schulze Darup and M. Cannon. Some observations on the activity
of terminal constraints in linear MPC. In Proc. of the 2016 European
Control Conference, pages 4977–4983, 2016.

[15] M. Schulze Darup. Numerical methods for the investigation of
stabilizability of constrained systems. PhD thesis, Ruhr-Universität
Bochum, Universitätsbibliothek, 2014.

[16] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual.
Version 10.0., 2022.

[17] E. G. Gilbert and K. T. Tan. Linear systems with state and control
constraints: The theory and application of maximal output admissible
sets. IEEE Trans. Autom. Control, 36(9):1008–1020, 1991.

[18] M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. Multi-Parametric
Toolbox 3.0. In Proc. of the 2013 European Control Conference, pages
502–510, 2013.

6685

