
Conflict-Free Node-to-Robot Scheduling for Lifelong Operation in
a Warehouse with Narrow-Corridor Environment

Sharad Kumar Singh∗, Hemantharaj M∗, Sayantani Bhattacharya, Manish Jha

Abstract— This paper presents a solution to lifelong
Multi-Agent Path Finding (MAPF) problems for long and
narrow-corridor environments. In this setting, robots need
to navigate conflict-free paths while adapting to new goals.
We propose an algorithm called Conflict-Free Node-To-
Robot Scheduling (CFNRS), which effectively coordinates
the paths of robots on a given graph in a constrained
environment. The algorithm assigns nodes of the graph,
ensuring no conflicts with other robots. In particular, we
introduce a Deadlock-Detection and Resolution mechanism
to find and resolve conflicts and ensure conflict-free paths.
We have introduced a problem-reduction technique for
improved efficiency. The proposed algorithms are evalu-
ated through simulations in narrow-corridor environments
and compared to existing state-of-the-art MAPF solvers,
demonstrating their validity and effectiveness in ensuring
that robots can navigate conflict-free paths.

Index Terms— Multi-agent Systems, Logistics, Multi-
Agent Path Finding.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is a well-

researched problem in the field of Artificial Intelligence

(AI) and robotics, with numerous real-world applica-

tions, including automated warehouses, service robots,

air traffic control, etc. [1], [2], [3]. The problem involves

finding a conflict-free path for multiple agents from

their starting locations to their desired goal locations

amidst known static obstacles in the environment [4].

MAPF is studied in two variants: classic MAPF and

lifelong MAPF. In classic MAPF, the robots are assigned

with single-source and single-destination; however, in a

lifelong variant of MAPF, robots receive new goals once

they reach the original goal location.

An exhaustive literature exists on MAPF problems,

with various methods proposed to solve them. Some of

the most popular ones are Conflict-Based Search (CBS)

[5], Explicit Estimation CBS (EECBS) [6], Priority-

Based Search (PBS) [7] and Pairwise Symmetry Reason-

ing [8] for the classic problem. An offline version of the

lifelong MAPF solver is introduced in [9]. In the online

setting, lifelong MAPF solvers are introduced in [2],

All the authors are with Addverb Technologies Ltd.,
Noida, India, sharad.singh@addverb.com,
hemantharaj.m@addverb.com,
sayantani.bhattacharya@addverb.com,
manish.jha@addverb.com .

∗Both authors contributed equally to this work.

[3], [10], and [11], where re-planning is performed to

complete multiple assigned tasks. Since MAPF is an NP-

hard problem, finding optimal solutions for large-scale

MAPF problems always requires a trade-off between

computation time and optimality [12].

The rise of e-commerce and online retail has led to

high demand for warehouse storage, prompting auto-

mated warehouses with narrow corridors to optimize

storage density and improve efficiency. These environ-

ments require robots to store and retrieve items from

shelves in the narrow corridors, as shown in Fig. 1,

but the obstacle clusters formed by the shelves pose

challenges in finding conflict-free paths for the fleet of

robots [13]. MAPF algorithms face two main challenges

in long and narrow corridors: congestion and deadlocks.

Congestion occurs when agents are stuck in a particular

area, unable to move because other agents are blocking

their path. Deadlocks occur when agents are blocked in a

way that no agent can move, leading to a frozen state. In

[14], a multi-phase planning algorithm is demonstrated

for finding collision-free paths in a similar environment

for the narrow corridor. An efficient dual-layer algorithm

is proposed in [15] to find the collision-free path in a

narrow-lane environment for multi-agent path planning.

This paper addresses the MAPF challenge in a narrow

and long corridor setting, focusing on collision-free

navigation for agents. The major contributions of this

paper are as follows:

• We propose a novel Conflict-Free Node-To-Robot

Scheduling (CFNRS) algorithm that strategically

assigns nodes to robots, ensuring conflict avoidance

and unobstructed movement.

• We introduce a Deadlock-Detection and Resolution

Algorithm that identifies and resolves deadlocks

through wait-spot strategies.

• We demonstrate a problem-reduction technique that

streamlines deadlock detection and resolution by

generating a more manageable problem set.

The rest of the paper is organized as follows. Section

II introduces the MAPF problem formulation, while sec-

tion III presents the conflict-free node-to-robot schedul-

ing solution approach. Section IV delves into an in-depth

comparative study and simulation results that validate

the proposed methods. Conclusions and future prospects

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6376

are outlined in section V.

II. PROBLEM FORMULATION

We model the warehouse environment as an undi-

rected graph G(N,E), with nodes N denoting loca-

tions and edges E indicating connections. The prob-

lem involves a fleet of n robots, denoted as R =
{R1, · · · , Rn}. In a classic MAPF problem, our goal is

to find conflict-free paths for each robot, with source

node si and goal node gi. However, in the lifelong
MAPF scenario, each robot continuously receives new

goals after reaching the current goal. Using Dijkstra’s

algorithm, we determine the shortest path Pi for each

robot. The complete set of robot paths is denoted as P =
{P1, · · · , Pn}. We use P[start] and P[goal] to represent

the set of robots’ source and goal nodes, respectively.

The warehouse layout is described as warehouse-C-R-
L-W-S.map, with C and R as columns and rows, L and

W as corridor length and width, and S as shelve spacing.

For instance, in Fig. 1, warehouse-2-4-7-2-1.map has

C = 2 (c1 and c2), R = 4 (r1 to r4), L = 7, W = 2,

and S = 1. Narrow corridors created by storage shelves

(pink cells in Fig. 1) pose challenges for collision-free

paths, requiring strategic coordination among robots due

to one-robot-at-a-time passages.

1 2

5 6

L

3 4

W

S

c1 c2

r1

r2

r3

r4

Fig. 1. A warehouse-C-R-L-W-S.map with corridors length L,
storage shelves (in pink cells) and robots’ initial location (circles).

This paper addresses the lifelong MAPF problem in

a similar environment by acquiring a conflict-free node-

to-robot schedule for a given path-set P . This goal can

be divided into the following sub-problems:

Problem 1: Obtain a reduced set from the initial path

set P to minimize conflicts with other robots.

Problem 2: Given the reduced problem set obtained

from Problem 1, identify the robot pairs in deadlock and

obtain an updated path set using deadlock resolution.

Problem 3: For the updated path set obtained from

Problem 2, find a collision-free node-to-robot schedule

for all robots at each node in path Pi, considering the

robots receive a new goal after reaching the current one.

In this paper, we assume that all robots have unique

start and goal nodes on graph G, uninterrupted power

supply for continuous operation, and receive new goals

upon reaching the current one, nullifying their previous

behaviour (as in [1], [7]), which facilitates formulating

the lifelong MAPF problem.

III. CONFLICT-FREE NODE-TO-ROBOT SCHEDULING

In this section, we present our solutions to the prob-

lems discussed in section II.

A. Definitions:
To begin with, we define three key concepts: node

dependency, safe spot for a robot, and low-priority robot.
1) Node Dependency Between Robots: In the context

of robot paths, the dependence of path Pi of robot Ri on

path Pj of robot Rj arises when the starting location of

Rj is positioned on Pi, meaning Pj [start] ∈ Pi. If Pi and

Pj share common nodes (Pi ∩ Pj [start] �= φ), Pi relies

on Pj for nodes Pi ∩ Pj , termed as Ndij , indicating Pi

depends on Pj . Mathematically,

Ndij :=

{
φ if Pi ∩ Pj [start] = φ

Pi ∩ Pj if Pi ∩ Pj [start] = Pj [start]

Example 1: To illustrate, consider a scenario with

six robots navigating a narrow-corridor environment

(Fig. 2). The robots follow the following shortest paths:

2 3 4 5 6 8 9 10 1171

15 16 17 18 19 20 21 22 23 24 25

R3

R1

R2
R6

12 13 14

26 27 28

29 30 31 32 33 34 35 36 37 38 39

R4

R5

WR1 WR2

WR6

J1 J2

Fig. 2. Paths of 6 robots in the narrow-corridor environment

P1 = {21, 22, 23, 24}, P2 = {23, 22, 21, 20, 19}, P3 =
{18, 17, 16}, P4 = {3, 4, 5, 6, 7, 8, 9}, P5 =
{5, 6, 7, 8, 9, 10}, P6 = {22, 21, 20, 27, 34, 33, 32}.
Here, P3 is not dependent on any other robot, as starting

node Pj [start], j �= {3} does not appear in the path of

P3. Thus, Ndj3 = φ for all robots j = {1, 2, 4, 5, 6}.

Similarly, Ndj4 = φ ∀ j = {1, 2, 3, 5, 6}. For

R4 and R5, where P4 ∩ P5 = {5, 6, 7, 8, 9},

Nd45 = {5, 6, 7, 8, 9} implies R4 awaits these nodes for

reaching its goal. Also, Nd12 = Nd21 = {21, 22, 23}
and Nd16 = Nd61 = {21, 22}.

2) Safe spot for a robot: A node Ni ∈ Pi becomes a

safe spot for robot Ri if Ri can access Ni collision-

free, and Ni does not reside on any other robot’s

path (as Ni /∈ Pj , ∀j �= i). For instance, in Fig.

2, N3 = P3[start] /∈ Pj ∀ j = {1, 2, 4, 5, 6} is the

safe spot for robot R3. Similarly, N4 = P4[start] /∈
Pj ∀ j = {1, 2, 3, 5, 6} is the safe spot of R4, while

N5 = {10} ∈ P5 serves as the safe spot for R5 (as

N5 /∈ Pj∀ j = {1, 2, 3, 4, 6}).

6377

3) Low-Priority Robot: A robot Ri is defined as a

low-priority robot if it can reach a safe spot Ni where

Ndji = φ ∀j �= i. We define the set of low-priority

robots as LR and their corresponding paths as LP . For

instance, in Fig. 2, as N3 = P3[start], N4 = P4[start]
and N5 = {10}, we have LR = {R3, R4, R5} and LP =
{P3, P4, P5} respectively.

Next, we present the solution to Problem 1 based on

the definitions introduced above.

B. Problem Reduction Algorithm

This section introduces a technique for simplifying

multi-robot motion planning problems by eliminating

non-conflicting low-priority robots. When a robot Ri

can access a safe spot, i.e., N /∈ Pj , ∀j �= i, its

path Pi is added to LP . Algorithm 1 describes the

proposed problem-reduction technique. Given a graph

G and the set of paths of all robots P , steps 3-5 ensure

collision-free movement along all robots’ paths. Steps 6-

9 identify low-priority robots with safe spots and include

their paths in LP . The resulting reduced problem set P ′

contains only paths of robots requiring coordination and

mutual dependence. For example, in Fig. 2, robots R3,

R4, and R5 are low-priority robots as they can each

access a safe spot away from other robots’ paths, hence

LP = {P3, P4, P5}. In contrast, robots R1, R2, and R6

cannot access such safe spots due to Nd12 = Nd21 �= φ
and Nd16 = Nd61 �= φ.

Algorithm 1: Problem Reduction Algorithm

Input : Paths: P = {P1, · · · , Pn}, Graph: G
Output : Reduced Path Set: P\LP

Initialize: LP = []
1 for Ri ← R1 to Rn do
2 for Pi[j] ← Pi[start] to Pi[goal] do
3 if Pi[j] = P[start]\Pi[start] then
4 break; � Collision check
5 end if
6 if Ni = Pi[j] /∈ P\Pi then
7 LP .append(Pi);
8 break;
9 end if

10 end for
11 end for
12 return P\LP

Next, we evaluate the outcome of Algorithm 1 to

detect robot deadlock pairs, as outlined in Problem 2.

C. Deadlock Detection Algorithm

A set of robots is said to be in a deadlock if multiple

agents are blocked and unable to reach their destinations.

In this case, there exists a chain of dependencies between

the robots, and no robot can move without colliding

with another robot. Algorithm 2 provides a deadlock

detection approach for the input P ′ = P \ LP obtained

from Algorithm 1. The algorithm starts by creating a

dependency graph DG for all robots in steps 1-7, where

an edge between two robots, Ri and Rj , is formed if

their next move depends on each other, i.e., Ndij �= φ.

Next, in step 8, we obtain all the cycles in the graph and

store them in C. In steps 9-15, we check if the given

cycle is in deadlock. Using cycle Ci ∈ C, we get the set

of all the robots RC i forming the cycle. If all the robots

in the cycle satisfy the condition that the robot’s next

location depends on the movement of some other robot,

i.e., all the robots in Rk ∈ RC i satisfy the condition

of Pk[next step] ∈ ∪Ndij∀Ri, Rj ∈ RC i, we include

the cycle as Deadlock cycle Dc, as indicated in step 13.

Further, the deadlock pairs are obtained using step 12.

Algorithm 2: Deadlock Detection Algorithm

Input : Paths: P\{LP }, Graph: G
Output : Deadlock pairs: Dp, Deadlock cycle: Dc

Initialize: C = [], Dc = [], Dependency Graph: DG
1 for Ri ← R1 to Rn do
2 for Rj ← R1 to Rn, Rj �= Ri do
3 if Ndij �= φ then
4 DG.addedge(Eij)
5 end if
6 end for
7 end for
8 C ← Get all the Cycles in DG
9 for Ci ∈ C do

10 RCi ← Get all the Robots in Ci

11 if Pk[next step] ∈ ∪Ri,Rj∈RCiNdij , ∀Rk ∈ RCi

then
12 Dp.append(RCi) � Add deadlock pair
13 Dc.append(Ci) � Add deadlock cycle
14 end if
15 end for
16 return Dp, Dc

Theorem 3.1: Let P be paths for all robots, and P ′ =
P\LP is the reduced path set. Then, deadlock detection

in P ′ is equivalent to detection in P .

Proof: Consider dependency graph DG formed

with P . Removing LP from P corresponds to removing

a subset of nodes and edges from this graph. Specifically,

we remove all the nodes with no incoming edges as they

are low-priority robots. Since LP does not intersect with

any other robot’s path, removing LP from P does not

affect any cycles in the remaining dependency graph.

Thus, deadlock detection in P ′ is equivalent to detection

in P .

To illustrate, in Fig. 2, the reduced problem

P\{P3, P4, P5} is given as an input to the deadlock

detection Algorithm 2. The dependency graph DG =
{E12, E21, E16, E61, E26} where three cycles C1, C2,

C3 are formed with RC1 = {R1, R2} and RC2 =
{R1, R6} and RC3 = {R1, R2, R6}. As Nd12,Nd21 =
{21, 22, 23}, Nd16,Nd61 = {21, 22}, all the robots in

6378

Rk ∈ RC i satisfy the condition of Pk[next step] ∈
∪Ndij∀Ri, Rj ∈ RC i. Hence, the deadlock cycle Dc =
{C1, C2, C3} is an output of the Algorithm 2.

In the next section, we discuss the approach for re-

solving deadlocks obtained from the detection algorithm.

D. Deadlock Resolution Algorithm

This section presents a technique for resolving dead-

locks for a given deadlock cycle Dc. First, we identify

the robots in deadlock and create a directed cyclic graph

DG(RD,Dp), where nodes represent a set of robots in

deadlock RD, and edges represent deadlock pairs Dp.

Next, we obtain the Feedback Node Set F , which is

the set of nodes (robots) that, when removed from DG,

transforms it into a directed acyclic graph. Alternatively,

F is the set of all subsets F of DG such that RD\F in

the graph DG forms an acyclic graph.

To resolve deadlocks, we search for wait spots (de-

viating from the original path) WF for all robots in

a selected node-set F ∈ F using junctions, which

differs from safe-spot (Section III-A.2). These wait spots

provide temporary locations for robots to move and

free up space for other agents in the deadlock cycle

and should not be in the path of any robot in the

deadlock cycle (PD) to avoid collisions, i.e., WF /∈ PD

∀ Ri ∈ F . Narrow corridor layouts with limited detours,

possibly occupied by other robots, make wait spot-based

resolution a viable and rapid option, preventing the

system from getting stuck in an unproductive state. If

wait spots can be found for all robots in any node set

F ∈ F , we update the paths for all the robots in F
(denoted by PF) by adding a subpath from the start to

the wait-spot, and from the wait-spot to the goal, i.e., PF

← PF [start : WF] ∪ PF [WF : goal]. The efficiency of

this technique depends on the system’s size, complexity,

and the number of deadlock cycles requiring resolution.

Remark 1: To reduce computation time, we can limit

the solution to cases where any node-set F ∈ F can

provide the updated path rather than comparing the costs

of all node sets, which is an NP-Hard problem.

Algorithm 3 proposes steps to resolve the dead-

lock cycle obtained using Algorithm 2. Step 1 creates

DG(RD,Dp), and step 2 provides F , which contains the

set of nodes (robots) that can be removed from DG to

make it a directed acyclic graph. In steps 3-8, for every

F ∈ F , if WF is obtained for all robots in F , paths are

updated by adding the wait spots to the path.

In Fig. 2, deadlock cycles, C1: (R1 −R2), C2: (R1 −
R6), and C3: (R1 − R2 − R6) are provided as input to

Algorithm 3. The algorithm identifies the feasible node

sets, F1 = {R1} and F2 = {R2, R6}, which remove

cycles from DG. It then finds wait spots, WF1
= {13}

for F1 = {R1}; WF2
= {14, 28} for F2 = {R2, R6},

via junctions J1 and J2 (Fig. 2). Among the feasible

Algorithm 3: Deadlock Resolution Algorithm

Input : Paths: P , Graph: G, Deadlock cycle: Dc,
Deadlock pair: Dp

Output : Updated Paths
1 DG(RD,Dp) ← Get the robots in Dc

2 Get F = {F ⊂ DG such that RD\F in
DG is Directed Acyclic Graph}

3 for every F ∈ F do
4 Get wait spot for all robots in F , WF ∀ Ri ∈ F ,

WF /∈ PD via Junction
5 if WF �= φ then
6 return PF ←

PF [start : WF] ∪ PF [WF : goal]
7 end if
8 end for

sets, F1 is selected and wait spot WF1 = {13} is

assigned to R1 and returns the updated path P1 =
{21, 20, 13, 20, 21, 22, 23, 24} (Fig. 3).

In the next section, we discuss the move-one-step

scheduler to get a collision-free path for the robots.

E. Node-to-Robot Scheduling Algorithm

In the Move-one-step scheduler algorithm, multiple

robots traverse a graph to reach their respective goals

without colliding with each other. Algorithm 4 works

iteratively by attempting to move each robot one step at

a time, checking for collisions and deadlocks (in steps

2-8), and updating the robot’s position if no conflicts

are detected. If a conflict or deadlock is detected, the

algorithm rejects the updated path and keeps the robot

at its current node; otherwise, if there is no collision

or deadlock, the robot gets its schedule for that node

and updates its start position. The algorithm terminates

when the final node-to-robot schedule for all robots is

obtained.

Algorithm 4: Move-One-Step Scheduler

Input : Paths: P = {P1, · · · , Pn}, Graph: G
Output : Node-to-robot schedule

1 for Ri ← R1 to Rn do
2 if Pi[next step] �= P[start]\Pi[start] then
3 P ′

i ← Pi[next step : goal] P ′ = {P\Pi}⋃P ′
i

4 if Deadlock Detection Algorithm(P ′, G)= φ
then

5 Ri : Pi[start] ← P ′
i [start]

6 P ← P ′

7 end if
8 end if
9 end for

10 return Node to robot schedule

The complete algorithmic framework is proposed in

CFNRS Algorithm 5. Here, Updated Robot Path func-

tion (in steps 1-5) takes the current paths of all robots

as input, calculates the paths that do not intersect with

6379

each other using Algorithm 1, checks for deadlocks

using Algorithm 2, and resolves them using Algorithm

3. The updated paths are then returned and used for

generating a node-to-robot schedule using Algorithm

4. Updated Robot Path is repeatedly called whenever a

robot is assigned a new goal, as it can potentially lead

to new deadlocks. Overall, Algorithm 5 ensures conflict-

free traversal of robots to their respective goals.

Algorithm 5: CFNRS Algorithm

Input : Paths: P = {P1, · · · , Pn}, Graph: G
Output : Updated Paths P ′, Node-to-robot schedule

1 Function Updated Robot Path(P ′, G):
2 Get P ′\LP using Algorithm 1 for input (P ′,G)
3 Get Dp,Dc using Algorithm 2 for input P ′\LP

4 Find updated paths for robots in deadlock using
Algorithm 3 for input Dp,Dc

5 return Updated paths P ′

6 P ′ ← P
7 Updated Robot Path(P ′, G)
8 while all the robots not at the final goal do
9 for Ri ← R1 to Rn do

10 if Ri reached its current goal then
11 Assign next goal to Ri and get P ′

i

12 P ′ = {P\Pi}⋃P ′
i

13 Updated Robot Path(P ′, G)
14 end if
15 end for
16 Get Node to robot schedule using Algorithm 4
17 end while

2 3 4 5 6 8 9 10 1171

15 16 17 18 19 20 21 22 23 24 25

12
13

14

26 27 28

29 30 31 32 33 34 35 36 37 38 39

WR6

[R4] [R4] [R4] [R4] [R4] [R4] [R4] [R5]

[R5][R5][R5][R5][R5]

[R3][R3][R3]

[R6] [R6] [R6]

[R6]

[R2]

[R1]

[R1][R1]

[R2]

[R1]

[R2]

[R1]

[R2]

[R1]

[R2]

[R6][R6]

[R6]

[R1]

[R1]

Fig. 3. Schedule for all the robots at each node in the form of stack

Illustrated in Fig. 3, Algorithms 5 unfold as fol-

lows: Steps 1-5 ascertain conflict-free paths, yielding

an updated path for R1 with WR1
= {13}, via Al-

gorithm 3. No path revisions occur for singular task

assignments (steps 9-15). In step 16, each robot sequen-

tially probes node-to-robot schedules within graph node

G(N,E). Employing Algorithm 4, R1 engages node

P1[next step] = {20}, gauging collisions (step 3) and

deadlock potential (steps 5-8) against peers. Unimpeded

by deadlock, R1 adopts the {20} schedule. As R1 arrives

at {13} and proceeds towards {20}, it evaluates collision

risks with other robots. In this assessment, a deadlock

involving R2 surfaces, resulting in the non-issuance of a

schedule for this node. This iterative procedure extends

to all robots, ultimately generating the schedule.

IV. EXPERIMENTAL RESULTS

In this section, we compare the performance of the

proposed Algorithm with state-of-the-art MAPF solvers

in C++. All the experiments are performed on a machine

with an 11th Gen Intel® Core™ i7-11850H processor

with 16 cores, running at 2.50 GHz, and equipped with

32 GB of RAM.

A. Comparison results for Classic MAPF

In this section, we compare our CFNRS Algorithm

with EECBS (sub-optimality factor α = 1.1), EECBS

(α = 1.2), EECBS (α = 2) [6], optimized PBS [7], and

CBSH [8] for a long-corridor environment.

1) Scenario 1 (S1): We analyze the warehouse-1-
2-18-2-1.map with an 18-grid corridor in a 7 × 20
grid warehouse, where 52% of total grids form obstacle

clusters. In Fig. 4(a), we report the success rate out of 50

instances for each number of agents (with random start-

ing and target vertices and the mean values reported),

given the 60 s timeout. For each number of agents, the

average computation time for all the successful cases

(excluding the timeout cases) is depicted in Fig. 4(b).

Due to the small layout, increasing the number of robots

impacts the success rate and computation time for any

MAPF solver. The total solution cost (sum of time steps

required for a robot to reach its goal) for each number of

agents is shown in Fig. 4(c). Notably, the optimized PBS

and CFNRS solvers provide better performance than the

other solvers for the narrow-corridor environment.

2) Scenario 2 (S2): We examined the warehouse-2-
4-18-2-1.map with an 18-grid corridor in a 39×13 grid

warehouse and 56% (of total grids) obstacles. In Figs.

4(d), 4(e), and 4(f), we report the success rate, average

computation time, and solution cost for all the successful

cases (excluding the timeout cases), respectively.

Overall, the results reported in scenarios 1 and 2 show

that the CFNRS-based solver is comparable or better in

computation time, success rate, and solution cost than

the MAPF solvers for the narrow-corridor environment.

B. Lifelong operations using CFNRS Algorithm

As in lifelong MAPF, robots receive new goal lo-

cations after reaching their current destinations; we

perform 50 random initializations for each number of

agents and report the average number of goals visited

(tasks performed) in 900 s. The maximum time limit for

recomputing the deadlock-free path using the CFNRS

Algorithm is 60 s. The success rate (no timeout) is

reported in Fig. 4(g), and the average total number of

goals visited for successful cases is reported in Fig. 4(h).

Clearly, the success rate in the classical problem does

6380

(a) S1: Success rate for 1 to 9
Agents

(b) S1: Computation time for suc-
cessful cases

(c) S1: Solution cost for successful
cases

(d) S2: Success rate for 1 to 30
Agents

(e) S2: Computation time for suc-
cessful cases

(f) S2: Solution cost for successful
cases

(g) Success rate (h) Number of goals visited

Fig. 4. Scenario S1 and S2: Panels (a)-(f) used to compare various solvers in warehouse-1-2-18-2-1.map and warehouse-2-4-18-2-1.map.
Comparison of goal visited and success rate in S1 and S2 for Lifelong operations using CFNRS Algorithm in Panels (g) and (h).

not ensure a high success rate for lifelong operations

with random goal assignment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied lifelong MAPF problems in

a long and narrow corridor environment. We proposed a

conflict-free Node-to-Robot Scheduling (CFNRS) algo-

rithm for coordinating a robot fleet, integrating problem

reduction, deadlock detection, and resolution techniques

to ensure collision-free routes. We demonstrate the algo-

rithm’s efficacy through various examples and evaluate

it against existing methods using simulated narrow-

corridor warehouse scenarios. Our future work involves

incorporating robot footprint constraints for industrial

relevance and practical validation using real robot fleets

in warehouse environments.

REFERENCES

[1] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T.
Walker, J. Li, D. Atzmon, L. Cohen, T. S. Kumar, et al., “Multi-
agent pathfinding: Definitions, variants, and benchmarks,” in
Twelfth Annual Symposium on Combinatorial Search, 2019.

[2] M. Čáp, J. Vokřı́nek, and A. Kleiner, “Complete decentralized
method for on-line multi-robot trajectory planning in well-
formed infrastructures,” in Proceedings of the international con-
ference on automated planning and scheduling, vol. 25, pp. 324–
332, 2015.

[3] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and
S. Koenig, “Lifelong multi-agent path finding in large-scale
warehouses,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 11272–11281, 2021.

[4] S. Ardizzoni, I. Saccani, L. Consolini, and M. Locatelli, “Multi-
agent path finding on strongly connected digraphs,” in 2022 IEEE
61st Conference on Decision and Control (CDC), pp. 7194–
7199, IEEE, 2022.

[5] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-
based search for optimal multi-agent pathfinding,” Artificial
Intelligence, vol. 219, pp. 40–66, 2015.

[6] J. Li, W. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal
search for multi-agent path finding,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 12353–12362,
2021.

[7] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching
with consistent prioritization for multi-agent path finding,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 7643–7650, 2019.

[8] J. Li, D. Harabor, P. J. Stuckey, H. Ma, G. Gange, and
S. Koenig, “Pairwise symmetry reasoning for multi-agent path
finding search,” Artificial Intelligence, vol. 301, p. 103574, 2021.

[9] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh,
“Generalized target assignment and path finding using answer set
programming,” in Twelfth annual symposium on combinatorial
search, 2019.

[10] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong
multi-agent path finding in a dynamic environment,” in 2018 15th
International Conference on Control, Automation, Robotics and
Vision (ICARCV), pp. 875–882, IEEE, 2018.

[11] F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, “A multi-
label a* algorithm for multi-agent pathfinding,” in Proceedings
of the International Conference on Automated Planning and
Scheduling, vol. 29, pp. 181–185, 2019.

[12] J. Yu and S. M. LaValle, “Structure and intractability of optimal
multi-robot path planning on graphs,” in Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[13] L. Cohen, G. Wagner, D. Chan, H. Choset, N. Sturtevant,
S. Koenig, and T. S. Kumar, “Rapid randomized restarts for
multi-agent path finding solvers,” in Eleventh Annual Symposium
on Combinatorial Search, 2018.

[14] M. Peasgood, J. McPhee, and C. Clark, “Complete and scalable
multi-robot planning in tunnel environments,” IFAC Proceedings
Volumes, vol. 39, no. 20, pp. 26–31, 2006.

[15] J. Huo, R. Zheng, S. Zhang, and M. Liu, “Dual-layer multi-robot
path planning in narrow-lane environments under specific traffic
policies,” Intelligent Service Robotics, vol. 15, no. 4, pp. 537–
555, 2022.

6381

