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Abstract— We propose a coordinated control strategy for
load tap changer (LTC) transformers in high voltage radial
transmission systems that are connected to higher voltage grids
and active distribution networks. We utilize switched systems
modeling tools to capture the non-smooth characteristics of
the LTCs. Our approach employs a state- and time-dependent
switching logic to regulate the voltage at a specific node while
preventing stability issues produced by the voltage hunting
phenomenon. Then, we derive sufficient tuning conditions for
the LTC control parameters, namely, deadband widths and
time delays, as a function of the tap magnitude of the LTCs.
These conditions ensure the existence of an exponentially stable
equilibrium point of the closed-loop switched system and the
exponential convergence of its output, i.e., the regulated voltage,
to a desired set. Finally, a numerical example shows the pro-
posed strategy’s superior performance over an uncoordinated
scenario.

I. INTRODUCTION

A load tap changer (LTC) is a motorized mechanical
arrangement that adjusts the turns ratio of a transformer via
discrete switches [1]. This type of device is employed for
keeping the voltage at the lower-level substation side within
acceptable limits [2]. For this purpose, the LTC compares
local voltage measurements against a predefined setpoint and
triggers tap switches after a certain time delay [1], [2]. In
contrast to passive networks with unidirectional power flows,
the interaction between distributed generators (DGs) within
active distribution networks (ADNs) and LTCs can produce
undesired phenomena due to the reversed power flows [3].

Voltage hunting is a highly detrimental phenomenon char-
acterized by periodic oscillations around the voltage set-
point [4]. This adverse behavior can arise from conflicting
interactions between DGs and LTCs and poses significant
technical and economic threats, e.g., damage of equipment,
overactuation of the LTCs or cascading faults [5]. Motivated
by this, coordinated control strategies for LTC-based volt-
age regulation and prevention of such (tap-induced) voltage
hunting have been proposed in several papers [4], [5], [6].

Coordinated control strategies usually rely on tuning the
LTC control parameters, i.e., defining appropriate voltage
deadbands and time delays. In [4], the voltage deadbands
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are defined based on the geographical location of the DGs
and LTCs, while the time delays vary depending on the
grid conditions. Similarly, the approach from [6] employs
deadbands with adjustable thresholds and estimated voltage
measurements. In a different setting, the authors of [5]
parametrize the conditions that produce voltage hunting
by analyzing the relationship between the tap magnitude,
operation range and control parameters of LTCs. A common
characteristic shared by this type of strategy is that no formal
stability guarantees are provided.

In practice, LTC control strategies, e.g., [4], [5], [6],
produce both continuous and discrete dynamics. From a
control systems perspective, this type of behavior can be
described by employing modeling tools within the hybrid
systems framework [7], see also [8]. A specific subset of
hybrid systems, namely switched systems, offers effective
methods for analyzing engineering systems with hybrid fea-
tures [9], such as LTCs. Switched systems comprise a family
of continuous subsystem dynamics together with a switch-
ing logic that orchestrates the discrete transitions between
them [9]. Since the switching logic can be interpreted as a
hybrid system [10], classic stability concepts for switched
systems, e.g., [11], [12], can be extended to general hybrid
systems [7], [10]. However, a key advantage of the former
methods is the reduced intricacy of the conditions required
for guaranteeing stability properties [10].

A. Main contributions

From the above considerations, the contributions of the
present paper are characterized by the following key features:

1) We provide a formal characterization of the voltage
hunting phenomenon and derive a model for high volt-
age (HV) radial transmission grids that interface LTCs
and DG-based ADNs by employing switched systems
modeling tools. By using this approach, we are able to
capture the non-smooth features of the LTCs. Compared
to existing hybrid models, e.g., [5], [8], stability guar-
antees can be derived in a less elaborate fashion due to
the absence of discontinuities in the proposed system’s
solutions.

2) The coordinated control strategy is designed as a state-
and time-dependent switching logic in which voltage
deadbands and time delays serve as control parameters.
Then, we derive sufficient tuning conditions for the
control parameters, which ensure the existence of an
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exponentially stable equilibrium point of the closed-
loop switched system and the exponential convergence
of its output, i.e., the regulated voltage, to a desired set,
while preventing voltage hunting.

3) We provide a numerical example that illustrates the pro-
posed control strategy’s superior performance compared
to an uncoordinated scenario.

B. Organization of the paper

This paper is organized as follows. In Section II, the
dynamic model of the grid with uncoordinated LTCs is
presented. Subsequently, in Section III, we introduce the
proposed state- and time-dependent switching logic for the
coordinated control strategy of the LTCs, derive the resulting
closed-loop switched dynamics and formulate the problem
statement. Based on this, our main results to address the
considered problem are derived in Section IV. A numerical
example for illustrating the theoretical results is provided in
Section V and conclusions are drawn in Section VI.

C. Notation

We define the sets Z = {. . . ,−1, 0, 1, . . .} and T =
[0, 2π). For any a ∈ R, Z≥a = {x ∈ Z|x ≥ a}, R≥a =
{x ∈ R|x ≥ a} and R≤a = {x ∈ R|x ≤ a}. The cardinality
of a closed set A is denoted by |A|, while the minimum
and maximum value of its elements are denoted by A and
A, respectively. The limit as t approaches a scalar T ∈ R
from the right (correspondingly from the left) is denoted by
t+ (correspondingly t−). The 2-norm of a vector υ ∈ Rn is
given by ∥υ∥=

√
υ⊤υ and its distance with respect to a set

X ⊂ Rn is denoted by ∥υ∥X= min {∥υ − x∥|x ∈ X}. Let
In ∈ Rn×n denote the n × n identity matrix, diag(aii) ∈
Rn×n a diagonal matrix with entries aii ∈ R, i = 1, . . . , n,
aij ∈ R the entry at the ith row and jth column of a matrix
A ∈ Rn×n, ∥A∥ its induced 2-norm and sgn(c) ∈ {−1, 0, 1}
the signum function, which returns the sign of c ∈ R.

II. CONSIDERED SYSTEM

In this section, we describe the type of power system em-
ployed for designing the proposed LTC coordinated control
strategy. Namely, we focus on HV radial transmission grids
involving ADNs, loads and LTCs. We consider an aggregated
HV region of the Nordic test system [13] due to its adequacy
for voltage stability studies, see [14], [15]. The considered
HV grid is interfaced with an extra high voltage (EHV)
substation and a medium voltage (MV) ADN composed of
a MV DG and a HV load [16] via ideal LTCs, see Fig. 1.

A. Power system dynamics

We denote the set of grid nodes by N = {1, 2, 3, 4}
and associate a phase angle δi(t) ∈ T as well as a voltage
amplitude Vi(t) ∈ R>0 to each node i ∈ N in the grid.
Similarly to [17], we consider purely inductive transmission
lines in the grid, i.e., two nodes i ∈ N , j ∈ N , are connected
via an inductive impedance Xij ∈ R>0. For convenience,
we define Xij = 0 whenever i and j are not directly
connected. The set of neighbors of a node i ∈ N is denoted
by Ni := {j|j ∈ N , j ̸= i,Xij ̸= 0}.

Fig. 1. Schematic diagram of the considered transmission grid. The voltage
at bus B2 is regulated by a coordinated control strategy of LTC1 and LTC3.
The considered ADN is shown in the shaded area.

Inspired by [4], [5], we design an LTC coordinated control
strategy that aims at keeping1 V2 within acceptable limits,
while preventing voltage hunting. To achieve this, we control
the voltage at the jth LTC-controlled node Vj , j ∈ N2 =
{1, 3} and introduce the following assumption.

Assumption 1: δij = δi − δj ≈ 0, i ∈ N , j ∈ Ni.
Assumption 1 is commonly known as the standard de-

coupling approximation and implies that the reactive power
flows in the grid can be controlled via the node voltages [17].
With Assumption 1, the reactive power flow at the node of
interest Q2 : R|N |

>0 → R is given by (cf. [17])

Q2 = V2(I
nom
q2 + ψ2) = V 2

2

∑
j∈N2

1

X2j
−

∑
j∈N2

V2Vj
X2j

, (1)

where Inom
q2 ∈ R is the nominal reactive current demand of

the load and ψ2 ∈ R is a constant current disturbance.
Available stability studies, e.g., [14], [15], rely on the

steady-state analysis of (1). However, the post-disturbance
transient response of the LTCs requires a dynamical assess-
ment [13]. It has been shown in [18] that the exponential
recovery load model can describe the reactive current injec-
tion produced by the reactance variation associated to the
LTC tap changes. Inspired by this, we define

τqj
Iqj
dt

= −Iqj +
Vj − V2
X2j

, j ∈ N2, (2)

where Iqj ∈ R represents the reactive current injection of the
jth LTC-controlled node into node B2, with time constant
τqj ∈ R>0. Based on this, we can divide (1) by V2, such that

V2 = Xq2(
∑
j∈N2

Iqj + Inom
q2 + ψ2), Xq2 =

X21X23

X21 +X23
. (3)

B. LTC actuation variables

In order to regulate V2 in (3), Vj , j ∈ N2, can be controlled
via its corresponding LTC switches [1], [3], i.e.,

Vj = V nom
j + njvj , nj ∈ [−n̂j , n̂j ] ⊂ Z, n̂j ∈ Z>0, (4)

where vj ∈ R>0, j ∈ N2, is the tap magnitude, nj is the tap
position, n̂j is the maximum tap position and V nom

j ∈ R>0

is the nominal voltage at the jth LTC-controlled node.
Next, we define the set Σ =

{
n1, n3

}
and its possible

permutations as

σ ∈ S =


1 for Σ1 = {0, 0},
...
N for ΣN ̸= . . . ̸= Σ2 ̸= Σ1,

(5)

1In order to simplify the notation, in the sequel, the time argument of all
signals is omitted whenever clear from the context.
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with N = Πj∈N2
(2n̂j + 1) ∈ Z>0 and Σ2, . . . ,ΣN−1

arbitrarily arranged. Hence, σ ∈ S represents the correspond-
ing combination of LTC tap positions. Then, we define the
nominal operation point of the considered system, as the
solution of (2)-(3) with ψ2 = n1 = n3 = 0 in (4), i.e.,

Inom
qj =

V nom
j −Xq2(I

nom
q2 + Inom

qi )

Xq2 +X2j
,

V nom
2 = Xq2

3∑
k=1

Inom
qk

,

(6)

with Xq2 defined in (3) and j ∈ N2, i ∈ N2 \ {j}. Based
on this, we introduce the desired deadband with acceptable
limits around V nom

2 as the set

D1 = {V2 ∈ R>0|V nom
2 − ϵ1

2
≤ V2 ≤ V nom

2 +
ϵ1
2
}, (7)

where the width ϵ1 ∈ R>0 is usually prescribed by the
transmission system operators, e.g., in [19].

III. LTC COORDINATION STRATEGY AND SWITCHED
DYNAMICS

In this section, we introduce the switching logic that
defines the proposed coordinated control strategy and derive
resulting closed-loop switched dynamics. Similarly to [6],
we employ an auxiliary deadband D3 ⊂ R defined as the set

D3 = {V2 ∈ R>0|V nom
2 − ϵ3

2
≤ V2 ≤ V nom

2 +
ϵ3
2
}, (8)

where ϵ3 > ϵ1, with ϵ1 given in (7). In addition, we consider
a minimum time delay τdj ∈ R>0, j ∈ N2, between any
consecutive switches of the jth LTC, see [4], [5].

Based on this, for any V2 /∈ D1, the LTCs must restore
V2 ∈ D1 via a coordinated switching strategy for nj , j ∈ N2.
To this purpose, we propose the following switching logic

nj(t
+) =


nj(t

−)− 1, if V2(td) /∈ D1∀td ∈ [t− τdj , t)

and V2(t−) > Dj ,

nj(t
−) + 1, if V2(td) /∈ D1∀td ∈ [t− τdj , t)

and V2(t−) < Dj ,

(9)
with control parameters τd3 > τd1 and ϵ3 > ϵ1. Hence, the
discontinuous behavior of σ(t) can be summarized as

σ(t) =

{
σ(t) ∈ S if tk ≤ t < tk+1,

s ∈ S if t ≥ tk+1 and Σσ(t) = Σs,
(10)

where tk ∈ R>0 is the time at which the kth switch is
imposed, with k ∈ Z>0 and Σσ is defined in (5).

In order to derive the closed-loop switched dynamics
produced by imposing (10) on (2),(3), let

x =
[
Iq1 Iq3

]⊤ ∈ R2, κσ(t) =
[
n1(t) n3(t)

]⊤ ∈ Z2,

where κσ(t), σ(t) ∈ S, is a piecewise constant control law,
which switches according to (10). Then, the resulting closed-
loop switched dynamics can be written as

ẋ = Ax+Bκσ(t) + b,

y = V2 = Cx+Xq2(I
nom
q2 + ψ2),

(11)

where y ∈ R is the system output, with C = Xq2

[
1 1

]
and

A =

− 1+
Xq2
X21

τq1
− Xq2

τq1X21

− Xq2

τq3X23
−

1+
Xq2
X23

τq3

 , B =

[
v1

τq1X21
0

0 v3
τq3X23

]
,

b =
[
V nom
1 −Xq2 (I

nom
q2

+ψ2)

τq1X21

V nom
3 −Xq2 (I

nom
q2

+ψ2)

τq3X23

]⊤
.

A. Voltage hunting definition and problem statement

Denote a switching sequence imposed by (10), as

Ω = {σ(tk+) ∈ S|k ∈ Z>0}, (12)

where tk+1 − tk ≥ τkd ∈ R>0, for all tk. Based on [8], the
voltage hunting phenomenon is characterized by a switching
sequence Ω that produces overcompensation of V2 around
D1 in (7), i.e., there exists a non-empty set

H = {σ(tk+) ∈ Ω|sgn(V2(tk)− ϕ(tk)) ̸=
sgn(V2(tk + τkd )− ϕ(tk))},

(13)

where ϕ(tk) denotes the furthest point ν ∈ D1 with respect
to V2(tk), given by

ϕ(tk) =

{
V nom
2 + ϵ1

2 if V2(tk) < D1 = V nom
2 − ϵ1

2 ,

V nom
2 − ϵ1

2 if V2(tk) > D1 = V nom
2 + ϵ1

2 .
(14)

Definition 1: If Ω in (12) produces |H|> 1 in (13), the
system (11) exhibits voltage hunting.

Problem 1: Consider the system (11). Derive conditions
for ψ2 and ϵ1, and design the control parameters of (9),
τd1 , τd3 and ϵ3, for ensuring that any switching sequence
Ω imposed by the switching logic (10) prevents voltage
hunting and guarantees that for any σ(t0) ∈ S, there exists
T ∈ R>0, such that y(t) ∈ D1 for all t ≥ T and there exists
an exponentially stable equilibrium point of the closed-loop
switched dynamics.

IV. TUNING CONDITIONS FOR COORDINATED LTC
CONTROL

In this section, we introduce the dynamic characteristics of
the switched system (11), which are relevant for addressing
Problem 1. Based on these, we tackle the problem of voltage
hunting prevention and subsequently, we address the problem
of existence of equilibria and their stability.

A. Voltage hunting prevention

From (5), each combination Σσ = {n1, n3}, σ ∈ S ,
implies that the corresponding subsystem dynamics in (11)
has an equilibrium point given by

x⋆σ = −A−1Θσ, Θσ = Bκσ + b,

y⋆σ = Cx⋆σ +Xq2(I
nom
q2 + ψ2).

(15)

By solving the matrix multiplication −CA−1(Bκσ + b) for
y⋆σ in (15) and using the notion of Inom

qj , j ∈ N2, introduced
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in (6), we can rewrite y⋆σ as
y⋆σ = −CA−1(Bκσ + b) +Xq2(I

nom
q2 + ψ2)

= Xq2

 3∑
k=1

Inom
qk

+
ψ2

2
+

∑
j∈N2

njvj
2X2j


= V nom

2 +
Xq2ψ2

2
+

∑
j∈N2

nj∆j , ∆j =
Xq2vj
2X2j

.

(16)

Next, we compute the solution x(t) of (11), during any time
interval t ∈ [tk−1, tk), k ≥ 1, which is given by (cf. [20])

x(tk−1 + t̄) = eAt̄x(tk−1) +

∫ t̄

0

eA(t̄−T )Θσ(tk−1+ )dT,

where 0 ≤ t̄ < tk − tk−1 and Θσ(tk−1+ ) defined in (15)
is constant between switches, i.e., during t ∈ [tk−1, tk). By
solving the integral part of this expression, we obtain

(17)x(tk−1 + t̄) = eAt̄x(tk−1) +
(
I2 − eAt̄

)
x
⋆
σ(t

k−1+) ,

where x
⋆
σ(t

k−1+) = −A−1Θσ(tk−1+ ) is the equilibrium point
of the active subsystem dynamics, given in (15). Subtracting
x
⋆
σ(t

k−1+) on both sides of (17) and premultiplying by C,
yields

y(tk−1 + t̄)− y
⋆
σ(t

k−1+) = CeAt̄χ(tk−1), (18)

with y
⋆
σ(t

k−1+) given in (15) and where we used the short-
hand χ(tk−1) = x(tk−1)− x

⋆
σ(t

k−1+) , such that

∥y(tk−1 + t̄)− y
⋆
σ(t

k−1+)∥ ≤ ∥C∥∥eAt̄∥∥χ(tk−1)∥. (19)

Assumption 2: There exists2 Imax ∈ R>0, such that
∥x(t0)∥≤ Imax and maxσ∈S∥x⋆σ∥≤ Imax.

Lemma 1: The matrix A in (11) is Hurwitz with eigen-
values λ1(A) ∈ R<0 and λ2(A) ∈ R<0, λ1(A) ̸= λ2(A).

Proof: The eigenvalues of A are given by

λi(A) =
a11 + a22 ±

√
(a11 − a22)2 + 4a12a21

2
, (20)

with i = 1, 2. Since all entries aik < 0, i = 1, 2, k = 1, 2, of
A in (11), (a11 − a22)

2 + 4a12a21 > 0 > a11 + a22 in (20).
Hence,

√
(a11 − a22)2 + 4a12a21 ∈ R>0, i.e., λ1(A) ∈ R

and λ2(A) ∈ R. Moreover, the numerator of (20) satisfies

(a11 + a22)
2 −

(√
(a11 − a22)2 + 4a12a21

)2

= 8
τq1τq3

> 0,

which implies that

|a11 + a22|> |
√
(a11 − a22)2 + 4a12a21|.

Then, max{a11+a22±
√
(a11 − a22)2 + 4a12a21} < 0 and

A is Hurwitz, with λ1(A) ̸= λ2(A).
Lemma 1 implies that there exist matrices Λ ∈ R2×2 and

W ∈ R2×2, such that (cf. [21, Ch. 3.5])

Λ = diag(λi(A)) =W−1AW, W =
[
v1 v2

]
, (21)

where vi ∈ R2×1, i = 1, 2, is the eigenvector associated to
the ith λi(A), given in (20). Based on this, we can establish

∥eAt̄∥ = ∥W∥∥eΛt̄∥∥W−1∥≤ ζe−εt̄, (22)

2From a practical perspective, Assumption 2 prevents that x(t0) and x⋆σ

in (15) violate any current protection limits, see, e.g., [19].

with ζ = maxi,k
√
λi(WW⊤)λk(W−1(W−1)⊤) ∈ R>1

and ε = mini|λi(A)|∈ R>0.
Note that all subsystem dynamics σ ∈ S in (11) share

the same system matrix A. Since A is Hurwitz, for every
time interval t ∈ [tk−1, tk), k ≥ 1, with tk > tk−1 + t̄ ≥
tk−1 ≥ t0, we can use Assumption 2 together with (17) and
the triangle inequality to obtain

∥χ(tk−1))∥ ≤ max
σ∈S

∥x(t0)− x
⋆
σ(t

k−1+)∥

≤ max∥x(t0)∥+max
σ∈S

∥x⋆σ∥≤ 2Imax,
(23)

with χ(tk−1) defined in (18). Hence, with (22), (23) and
∥C∥=

√
2Xq2 in (11), (19) can be upper-bounded as

∥y(tk−1 + t̄)− y
⋆
σ(t

k−1+)∥ ≤ 2
√
2Xq2Imaxζe

−εt̄. (24)

Based on this notion, the problem of voltage hunting pre-
vention is addressed in the following lemma.

Lemma 2: Consider the dynamics (11) with switching
logic (10) and Assumption 2. For any given ∆1 and ∆3

in (16), if ϵ1 ≥ 2∆1 and the control parameters of (9) are
chosen according to

τd1 >
log(µ(υ))

ε
, µ(υ) =

2
√
2Xq2Imaxζ

υ
,

τd3 = cτd1 , c ∈ Z>1, ϵ3 ≥ ϵ1 +∆3,

(25)

with υ ∈ R>0, υ < ∆1, being a design parameter and ζ > 1,
ε > 0 given in (22), then any switching sequence Ω imposed
by the switching logic (10) ensures that |H|≤ 1, with H
defined in (13). That is, voltage hunting is prevented, see
Definition 1.

Proof: Since τd3 = cτd1 , with c ∈ Z>1, at any ti, such
that (9) imposes n3(ti−) ̸= n3(t

i+), also n1(ti−) ̸= n1(t
i+).

Hence, tk− tk−1 ≥ τd1 , for all k ≥ 1 in (10). Based on this,
the proof is split into two parts.

First, inspired by [22], we design τd1 for ensuring that
any switch σ(tk+) ̸= σ(tk−1+), k ≥ 1, can only occur if
y(tk−1 + τd1) has reached a neighborhood of y

⋆
σ(t

k−1+) .
Hence, with Assumption 2 and (24), we seek to impose

∥y(tk−1 + τd1)− y
⋆
σ(t

k−1+)∥ ≤ 2
√
2Xq2Imaxζe

−ετd1 < υ,
(26)

for some design parameter υ > 0 to be specified in the
second part of the proof. Solving for τd1 , yields

τd1 >
log(µ(υ))

ε
, µ(υ) =

2
√
2Xq2Imaxζ

υ
.

In the second part of the proof, we derive sufficient
conditions for υ, ϵ1 and ϵ3, which ensure |H|≤ 1. From (9)
and (16), every switch σ(tk+) ∈ Ω produces

|y⋆σ(t
k+) − y

⋆
σ(t

k−1+) | ∈

{
{∆1,∆1 +∆3} if y(tk) /∈ D3,

{∆1} if y(tk) ∈ D3.

(27)
Based on this, set υ < ∆1. Moreover, let Ω = Ω1 ∪ Ω3

in (12), with Ω1 ⊆ Ω and Ω3 ⊆ Ω, Ω1 ∩ Ω3 = ∅, such
that σ(ti+) ∈ Ω1 and σ(tl+) ∈ Ω3 represent the switches
occurring when y(ti) ∈ D3 and y(tl) /∈ D3, respectively.
Then, consider any extreme scenario where y

⋆
σ(t

i−1+) /∈ D1

and y
⋆
σ(t

l−1+) /∈ D3 are arbitrarily close to D1 and D3,
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respectively, i.e.,

0 < ∥y⋆σ(t
i−1+)∥D1

= γ1, 0 < ∥y⋆σ(t
l−1+)∥D3

= γ3,

with 0 < γj < ∆1 − υ, j ∈ N2, and3 y
⋆
σ(t

l−1+) < D3 ≤
y
⋆
σ(t

i−1+) < D1. Based on this, we seek to prove that
Ω1 ∩ H = ∅ and |Ω3 ∩ H|≤ 1, for any Ω in (12). From
H in (13), this implies that σ(ti+) ∈ Ω1 and σ(tl+) ∈ Ω3

produce y(ti+τd1) ∈ D1 and y(tl+τd1) ∈ D3, respectively.
From (26) with υ < ∆1 and (27), this is achieved if y

⋆
σ(t

i+)

and y
⋆
σ(t

l+) given in (16), are upper-bounded by

y
⋆
σ(t

i+) = y
⋆
σ(t

i−1+) +∆1 = V nom
2 − ϵ1

2
− γ1 +∆1

≤ D1 −∆1 = V nom
2 +

ϵ1
2

−∆1,

y
⋆
σ(t

l+) ≤ y
⋆
σ(t

l−1+) +∆1 +∆3

= V nom
2 − ϵ3

2
− γ3 +∆1 +∆3

≤ D3 −∆1 = V nom
2 +

ϵ3
2

−∆1,

(28)

thus implying that ϵ1 and ϵ3 must satisfy

ϵ1 ≥ 2∆1 > 2∆1 − γ1, ϵ3 ≥ ∆3 + ϵ1 > ∆3 + 2∆1 − γ3.

Then, for any ∥y⋆σ(t
i−1+)∥D1≥ γ1 and ∥y⋆σ(t

l−1+)∥D3≥
γ3, (26)-(28) ensure that each σ(tk+) ∈ Ω, k ≥ 1, imposed
by (10) satisfies exactly one of the following scenarios:

1) σ(ti+) ∈ Ω1. From ϕ(ti) in (14), sgn(y(ti)− ϕ(ti)) =
sgn(y(ti+τd1)−ϕ(ti)) and thus, Ω1∩H = ∅, see (13).

2) σ(tℓ+) ∈ Ω3, such that y(tℓ+τd1) ∈ D3. From scenario
1), any possible subsequent switch, σ(tk+), tk ≥ tℓ +
τd1 , occurs when y(tk) ∈ D3 \ D1. Thus, σ(tk+) ∈ Ω1

and Ω in (12) contains at most, one σ(tℓ+).
3) σ(tp+) ∈ Ω3 \ {σ(tℓ+)}, i.e, y(tp + τd1) /∈ D3. From

ϕ(tp) in (14), sgn(y(tp) − ϕ(tp)) = sgn(y(tp + τd1) −
ϕ(tp)) and thus, (Ω3 \ {σ(tℓ+)}) ∩H = ∅, see (13).

From these scenarios, any Ω in (12) imposed by (10) has
the form

Ω = {σ(t1+), . . . , σ(tp+), σ(tℓ+), σ(ti+), . . .}, (29)

with tp < tℓ < ti, for any σ(tp+) ∈ Ω3 \{σ(tℓ+)}, σ(tℓ+) ∈
Ω3 and σ(ti+) ∈ Ω1. Then, |H|≤ max{|∅|, |{σ(tℓ)}|} = 1
and (10) prevents voltage hunting, see Definition 1.

B. Existence of equilibria and stability

Lemma 3: Consider the dynamics (11) with switching
logic (10) and the set D1, defined in (7). If the constant
disturbance ψ2 in (1) satisfies ψ2 ∈ [−ψ̂2, ψ̂2], with

ψ̂2 =
∑
j∈N2

(
2n̂j∆j

Xq2

)
+

ϵ1
Xq2

, (30)

and n̂j given in (4), then there exists a non-empty set S⋆ ⊂
S, such that for every s ∈ S⋆, x⋆s given in (15) qualifies as
an equilibrium point of the switched dynamics (11).

Proof: Any admissible equilibrium point x⋆s must be
such that

ẋ⋆s(t) = Ax⋆s +Bκs + b = 0 ∀t ≥ t0, s ∈ S⋆,

3Since the sets Dj , j ∈ N2, are symmetric around V nom
2 , the proof is

analogous for any y
⋆
σ(t

l−1+) > D3 ≥ y
⋆
σ(t

i−1+) > D1.

with κs being fixed for all t ≥ t0, i.e., no LTC switches
occur. From (9), this is achieved if and only if

D1 ≤ Cx⋆s +Xq2(I
nom
q2 + ψ2) = y⋆s ≤ D1, (31)

with D1, D1 defined in (7) and C given in (11). By
substituting (16) in (31) and solving for ψ2, we obtain

−
∑
j∈N2

(
2n̂j∆j

Xq2

)
− ϵ1
Xq2

≤ ψ2 ≤
∑
j∈N2

(
2n̂j∆j

Xq2

)
+

ϵ1
Xq2

,

due to nj ∈ [−n̂j , n̂j ] in (4). From (31), any x(t0) = x⋆s ,
s ∈ S⋆ ⊂ S , produces ẋ⋆s(t) = 0, for all t ≥ t0 and thus,
x⋆s qualifies as an equilibrium point of (11).

We are now in the position of presenting our main result.
Theorem 1: Let the conditions in Lemma 2 be satisfied

and assume that ψ2 ∈ [−ψ̂2, ψ̂2], with ψ̂2 satisfying (30).
Then, for any σ(t0) ∈ S, the switching logic (10) imposes
a switching sequence Ω = {σ(t1+), . . . , σ(tr+)}, which
ensures that y(t) ∈ D1, for all t ≥ tr + τd1 and x

⋆
σ(t

r+)

is an exponentially stable equilibrium point of the switched
dynamics (11), for some σ(tr+) ∈ S⋆.

Proof: Since D1 ⊂ D3, (26)-(28) ensure that any
switching sequence Ω of the form (29) produces

∥y(tk + τd1)∥D1−∥y(tk)∥D1< 0 ∀k ≥ 1. (32)

From Lemma 3, there exists a set S⋆, |S⋆|≥ 1, such that for
every s ∈ S⋆, y⋆s ∈ D1. Hence, (32) implies that there exists
σ(tr+) ∈ Ω, such that ∥y(tr)∥D1

> ∥y(tr+τd1)∥D1
= 0. That

is, y(tr + τd1) ∈ D1. Therefore, (9) prevents any further
switching for t ≥ tr + τd1 and thus, (26) yields

lim
t̄→∞

∥y(tr + t̄)− y
⋆
σ(t

r+)∥ = lim
t̄→∞

2
√
2Xq2Imaxζe

−εt̄ = 0,

such that y(t) ∈ D1, for all t ≥ tr + τd1 .
Finally, consider tr in (17), subtract x⋆σ(t

r+) and compute
the norm on both sides of the equation. Based on this, we
can conclude that

lim
t̄→∞

∥x(tr + t̄)− x
⋆
σ(t

r+)∥ = lim
t̄→∞

∥eAt̄∥∥χ(tr)∥= 0,

with χ(tr) = x(tr)− x
⋆
σ(t

r+) , due to A being Hurwitz, see
Lemma 1. Then, x⋆σ(t

r+) , σ(tr+) ∈ S⋆, is an exponentially
stable equilibrium point of the switched dynamics (11).

V. NUMERICAL EXAMPLE

In this section, we compare the performance of the coordi-
nated control strategy (9) against an uncoordinated scenario,
via a simulation example conducted in MATLAB.

Scenario setup: We consider the grid in Fig. 1 with
parameters summarized in Table I. The electrical parameters
are taken from [13], while the thresholds of the deadband
D1 are extracted from the German grid codes [19]. Inspired
by [4], we employ fast reactive current time constants τq1 ,
τq3 and consider Imax = 1.1 p.u., ∆1 = 0.02 p.u, ∆3 = 0.07
p.u and a disturbance ψ2 < 0 in the reactive current demand
of the load. Then, we set τd1 and τd3 according to (25).

Coordinated vs. uncoordinated LTC control strategy: The
performance comparison is shown in Fig. 2. Due to the
voltage drop produced by ψ2, the LTC logic imposes a
switch of n1 at t1 = 1.2 s to raise the voltage. Since
V2(t2) /∈ D1 at t2 = 2.2 s, the uncoordinated control
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TABLE I
ELECTRICAL PARAMETERS OF THE CONSIDERED GRID.

Parameter Value[
X21 X23

] [
50.7 47.32

]
Ω

D1 {0.98 ≤ V2 ≤ 1.02} p.u[
τq1 τq3 τd1 τd3

] [
0.1 0.05 1 2

]
s

scheme imposes simultaneous switches of n1 and n3. This
behavior produces overcompensation and sustained periodic
oscillations associated with voltage hunting. Alternatively,
we propose a coordination strategy (9) with an auxiliary
deadband D3 = {0.945 ≤ V2 ≤ 1.055}. Under this setting,
the switch of n3 that produces overcompensation at t2 is
inhibited due to V2(t2) ∈ D3 \D1. As a result, V2 is restored
to D1 shortly after t2.

VI. CONCLUSIONS

We designed a coordinated control strategy for LTCs in a
particular type of radial transmission grids, which is effective
in regulating the voltage at a specific node and preventing
voltage hunting. To capture the non-smooth LTC behavior,
we employed switched systems modeling tools and designed
a state- and time-dependent switching logic. Unlike related
studies in the literature, e.g., [4], [5], [6], we provided a
formal characterization of the voltage hunting phenomenon
and a formal stability analysis of the resulting closed-
loop switched system. For the latter, we derived sufficient
conditions for the voltage deadbands and time delays of
the LTC control strategy, which ensure the existence of an
exponentially stable equilibrium point of the closed-loop
switched dynamics, such that the system’s output converges
to a desired set, while preventing voltage hunting. Finally, the
practical advantages of the proposed control strategy over an
uncoordinated scenario have been illustrated via a numerical
example.

Based on these results, many interesting future research
directions can be foreseen. For example, extending the
present result to larger transmission grids, consider a broader
spectrum of grid architectures or including the continuous
dynamics of reactive power injection of DGs.
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