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Abstract—This paper extends recent results on model refer-
ence adaptive control using reproducing kernel Hilbert space
(RKHS) learning techniques for some general cases of multi-
input systems. We leverage recent results on error bounds for
nonlinear observers in a vector-valued RKHS to design adaptive
model reference adaptive controllers (MRAC) that are induced
by operator-valued kernels. This paper formulates a model
reference adaptive control strategy based on a dead zone robust
modification, and derives for this case conditions for the ultimate
boundedness of the tracking error. The RKHS setting allows the
control designer to influence the ultimate bound by selection
and placement of operator-valued kernels. As in the scalar-
valued setting, closed-form expressions are obtained for the
ultimate upper bound. But in this case the upper bound depends
on a generalization of the power function for an operator-
valued kernel space. Finally, we provide a detailed illustration
our results in practice for the case of attitude control of a
streamlined tailed-controlled underwater vehicle.

Index Terms—Adaptive Control, Autonomous Underwater
Vehicles, Operator-Valued Reproducing Kernel Hilbert Spaces

I. INTRODUCTION

A. Background

This paper proposes a model-reference adaptive controller
that leverages properties a reproducing kernel Hilbert space
(RKHS) to model functional uncertainty in the plant. Our
work builds directly on a sequence of works [3], [12]–
[14], [19], among others, that address native space RKHS
embedding for adaptive estimation and control of uncertain
ODE systems. We specifically build on [5] that addresses
model reference adaptive control embedded in native RKHS
spaces for scalar-valued uncertainty and control signals. The
techniques in [5] rely on conventional scalar reproducing ker-
nels. We generalize to the case of a vector-valued uncertainty
and vector-valued control signals using a native space RKHS
induced by operator-valued kernel functions. The approach in
this paper also extends the work on nonlinear observers in
[4] and [11] to express the model-reference adaptive control
problem using operator-valued kernel functions. We establish
sufficient conditions for boundedness of the state of the con-
trolled plant and that of the reference model, and articulate a
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specific upper bound. Furthermore, we illustrate our results
on a realistic case-study of attitude control of an stream-
lined tailed-controlled autonomous underwater vehicle. Such
systems are often characterized by large uncertainties in
hydrodynamics parameters, for which non-parametric data-
driven models such as we derive herein are well-suited, and
also characterized by coupling between control channels for
which a multi-input control approach is required.

The use in control theory of reproducing kernel Hilbert
space (RKHS) embedding methods, also known as native
space embedding, has a rich history in the related fields of
machine learning, model estimation, and statistical inference
(e.g. [22], [21], [2], [6], [23], [9]). In these fields approaches
typically address nonlinear regression using discrete data
sets consisting of input and output observations. In con-
trast, RKHS methods for designing continuous-time adaptive
controllers and observers leverage the reproducing and self-
adjoint properties of the associated kernel to develop contin-
uous update laws for which we can determine convergence
rates for functional estimates and apply Lyapunov analysis
techniques to the study of system stability [3], [14].

While the theoretical ground work for scalar-valued RKHS
methods has existed since the mid-twentieth century [1], the
study of vector-valued RKHS methods is less mature, gener-
ally dating to the work of Michelli and Pontil in the context of
machine learning theory [17]. More recently, significant effort
has been devoted to the study of the properties of RKHS
embedding methods in the continuous time control setting.
References [3] and [14] establish conditions required for
functional estimate convergence and an RKHS analog of the
persistent excitation condition for adaptive estimation using
scalar-valued RKHS embedding. The work in [4] extends the
persistent excitation and convergence results to vector-valued
functions and presents uniform ultimate boundedness guar-
antees for observer error using RKHS embedding methods.

B. Summary of our contributions

We propose a model-reference adaptive controller for
the case of vector-valued uncertainty and control signals
using a native space induced from an operator-valued kernel
function. Our work builds directly from recent results on
model-reference adaptive control for scalar-valued functional
uncertainty and control signals using native RKHS spaces
induced from more typical scalar-valued kernel functions.
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Note that taking the Cartesian product of scalar-valued RKHS
H to form a vector-valued space H × H × · · · × H is
one way to formulate estimation and control problems for
vector-valued functional uncertainty, and this seems a natural
approach to extend initial efforts using scalar-valued spaces
to more general control problems. But many vector-valued
native spaces cannot be generated in this way. From first
principles the approach in this paper enables MRAC formu-
lations for any operator-valued kernel, which includes the
Cartesian product as a very special case. In this way the
paper defines a very general strategy that is applicable to
a much wider class of native spaces. This work addresses
the case when a dead-zone modification is employed, for
which we generate an ultimate bound between the state of
the plant and the state of the reference model. We show
in Proposition 1 that the ultimate bound is dependent on
selection of the operator-valued kernel function as well as
the number and location of kernel centers, which provide the
control designer opportunities to reduce the bound. It is an
explicit, known function that depends on the location and
number of centers of the approximating subspace used to
represent the functional uncertainty. It is shown following
Corollary 1 that this explicit ultimate bound holds for all
functional uncertainty f in the (generally infinite dimen-
sional) uncertainty class BR := {f ∈ H | ∥f∥H ≤ R}. In this
sense it is a wider robustness guarantee than those stated for
uncertainty associated with ranges of real parameters from
a fixed uncertainty model of finite dimension. We illustrate
our results by implementing an attitude controller for a tail-
controlled underwater vehicle.

II. PROBLEM DESCRIPTION

A. Background

We consider a nonlinear system

ẋ(t) = Ax(t) +B(u(t) + f(x)) (1)

where x(t) ∈ Rn is the state, and u(t) ∈ Rm is a control
signal. We assume that A ∈ Rn×n and B ∈ Rn×m are known
constant matrices, and that f : Rn → Rm is an unknown
function. We further assume that f ∈ H, which is a native
reproducing kernel Hilbert space induced by the operator-
valued kernel K that maps X×X to the set of linear bounded
functions L(Y). Throughout, we specialize to the case that
X := Rn and that Y := Rm.

Thorough treatments of RKHS and operator-valued kernels
can be found in [20] and [11]. We provide herein only
the background necessary for analysis of our specific model
reference adaptive controller.

For any x ∈ Rn, the evaluation operator is defined by
Exf = f(x) ∈ Rm. The vector-valued analog of the
reproducing property for the vector-valued RKHS is the
identity

⟨Kxu, f⟩H = ⟨u,Exf⟩Rm , (2)

which is satisfied for each x ∈ Rn, u ∈ Rm, and f ∈ H.
Here the operator Kx ∈ L(Rm,H) is defined by the identity

(Kxu)(z) := K(z, x)u.

From the reproducing property (2) and properties of the
adjoint, we note that the adjoint of the evaluation operator
satisfies

E∗
xu = Kxu

for all x ∈ Rn and u ∈ Rm. Therefore the adjoint of the
operator Kx is in fact the evaluation operator. Finally, given
the operator-valued kernel K, the vector-valued native space
is defined as the closed linear span

H = span{Kxu|x ∈ Rn, u ∈ Rm}.

B. Finite Approximations

To construct a finite-dimensional approximation of f ∈ H,
we assume that a finite set of distinct points xi ∈ Rn have
been selected ΩN = {xi ∈ Rn|1 ≤ i ≤ N}. The points in
ΩN are referred to as centers, and we define the space of
finite-dimensional approximants

HN := span{Kxiej |xi ∈ ΩN , 1 ≤ j ≤ m}

where {ej}mj=1 is any basis for Rm. We assume that the
kernel function K that defines H is strictly positive definite.
This implies that the dimension of HN is always mN . An
approximant f̂N ∈ HN of f ∈ H is expressed

f̂N (·) =
m∑
j=1

N∑
i=1

α̂kKxi(·)ej , k = i+ (j − 1)N (3)

for some set of scalar coefficients {α̂k}mN
k=1. In this work we

consider time-varying approximants, and we write

f̂N (t, ·) =
m∑
j=1

N∑
i=1

α̂k(t)Kxi(·)ej

for time-varying coefficients {α̂k(t)}mN
k=1. We assume that the

set of centers ΩN are selected only once. However, the choice
of centers affects approximation accuracy, and selecting cen-
ters in real-time is an on-going research challenge that arises
in many streaming (real-time) applications of RKHS. Non-
optimal center choice will adversely affect the achievable
ultimate error bound. The error bound is proportional to the
fill distance of the centers in ΩN and is balanced by the need
to maintain numerical stability of the kernel Gram matrix
as characterized by its condition number which is inversely
proportional to the fill distance of the centers. The problem
of center selection is considered in greater detail in Chapter
3 of [11] and in [19].

For simplicity of notations, we omit dependency of func-
tions on the spatial variable if there is no confusion (e.g.
f := f(·) and f̂(t) := f̂(t, ·)). The orthogonal projection
operator ΠN : H → HN is characterized by [24]

⟨f −ΠNf, g⟩H = 0, ∀ g ∈ HN . (4)

Define fN := ΠNf ∈ HN . The estimation error between
the function, f , and its finite dimensional approximant f̂N is
defined as

f̃(t, ·) := f̂N (t, ·)− f(·),
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and we note that f̃(t, ·) ∈ H for each fixed t. In our analysis,
we find useful a specific decomposition of the estimation
error into mutually orthogonal parts

f̃(t) = f̂N (t)− (f −ΠNf +ΠNf)

= (f̂N (t)−ΠNf)︸ ︷︷ ︸
f̃N (t)

− (f −ΠNf)︸ ︷︷ ︸
f̃R

. (5)

The first term

f̃N (t) := f̂N (t)−ΠNf ∈ HN

is the error between the approximant f̂N (t, ·) and the pro-
jection of the function f into the finite-dimensional subspace
HN , and

f̃R := f −ΠNf ⊥ HN

is the residual error due to projecting the function onto the
subspace.

C. MIMO MRAC Using RKHS

We consider a nonlinear system in (1), expressed as

ẋ(t) = Ax(t) +B(u(t) + Ex(t)f) (6)

where f ∈ H. Our approach follows a standard model-
reference adaptive control(MRAC) formulation (see for ex-
ample [16]). A reference model

ẋr(t) = Arxr(t) +Brr(t) (7)

is proposed that characterizes the desired closed-loop behav-
ior of the system. Our challenge is to generate a control signal
u(t) for (6) such that ∥x(t)− xr(t)∥ ≤ ε̄ for an input signal
r(t) and t ≥ T for T sufficiently large, and where we have
some influence over the value of ε̄. For the reference model,
Ar ∈ Rn×n is Hurwitz, and Br ∈ Rn×l. The control law has
the form

u(t) = K̂T
x (t)x(t) + K̂T

r (t)r(t)− f̂N (t, x(t)) (8)

where K̂T
x (t) ∈ Rm×n, K̂T

r (t) ∈ Rm×l, and f̂N (t, ·) ∈ HN

are updated online according to the adaptation laws. Specif-
ically, the function f̂N ∈ HN is an online estimate of the
unknown dynamics f .

We explicitly consider the dead zone modification method
of the standard approach to MRAC (see Section 11.2.1 in
[16], Section 4.6.4 in [7], among many others). We denote
the tracking error by

e(t) := x(t)− xr(t) (9)

and propose the parameter update laws

˙̂
Kx(t) =

{
−Mxx(t)e

T(t)PB if ∥e(t)∥ ≥ ϵ̄
0 otherwise , (10)

˙̂
Kr(t) =

{
−Mrr(t)e

T(t)PB if ∥e(t)∥ ≥ ϵ̄
0 otherwise , (11)

˙̂
fN (t, ·) =

{
γfΠNE∗

x(t)B
TPe(t) ∥e(t)∥ ≥ ϵ̄

0 otherwise
. (12)

In these equations, the positive definite matrices Mx ∈ Rn×n

and Mr ∈ Rl×l, as well as the positive constant γf ∈ R
affect the adaptation rates, and P ∈ Rn×n is the solution to
the algebraic Lyapunov equation

AT
rP + PAr = −Q (13)

where Q ∈ Rn×n is a positive definite matrix that is selected
as part of the control design process.

D. Tracking error dynamics and matching conditions

The tracking error dynamics with the control law (8) satisfy

ė(t) = Ax(t) +B
(
K̂T

x x(t) + K̂T
r r(t)− Ex(t)f̂N (t, ·)

)
+BEx(t)f(·)−Arxr(t)−Brr(t).

By imposing the classical matching conditions

A+BKT
x = Ar,

BKT
r = Br,

(14)

where Kx and Kr are the so-called ideal adaptation gains,
the tracking error dynamics can be written

ė(t) = Are(t)+BK̃
T
x (t)x(t)+BK̃

T
r (t)r(t)−BEx(t)f̃N (t, ·),

(15)
where the error variables are

K̃x(t) := K̂x(t)−Kx,

K̃r(t) := K̂r(t)−Kr,

f̃(t, ·) := f̂N (t, ·)− f(·).

The role of the matching conditions in control design are
illustrated in the numerical example presented in Section IV.

III. ANALYSIS OF CLOSED-LOOP PERFORMANCE

The tracking error dynamics (15) combined with the up-
date laws of (10)-(12) define a distributed parameter system
whose state {e, K̃x, K̃r, f̃} evolves in

A := Rn × Rn×m × Rl×m ×H.

In this brief paper we always assume that the error equations
that define this DPS are forward complete. That is, for any
initial condition we assume that the maximal interval of
existing is [0,∞). Existence and uniqueness of solutions have
been discussed for a similar DPS in native space embedding
in [3], [12]–[14], [19].

Asymptotic behavior of the closed-loop system is charac-
terized by ultimate boundedness of the tracking error e(t).

Proposition 1. Suppose that there is a compact set Ω ⊃
∪τ≥0x(τ) that contains the closed loop trajectory and the
deadzone ε̄ in the update laws (10)-(12) satisfies

ε̄ ≥ 2∥PB∥C
λmin(Q)

(16)

where C = sup
x∈Ω

∥Ex(f − ΠNf)∥. Then there exists T such

that the tracking error e(t) of (15) combined with the update
laws (10)-(12) satisfies

∥e(t)∥ ≤ ε̄ (17)
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for all t ≥ T .

Proof. To establish ultimate boundedness of e(t), we propose
the Lyapunov function

v(e, K̃x, K̃r, f̃) = eTPe+ γ−1
f ⟨f̃ , f̃⟩H

+ trace[K̃T
xM

−1
x K̃x + K̃T

r M
−1
r K̃r] (18)

where f̃ = f̂N−f . We first consider the case that ∥e(t)∥ ≥ ε̄.
Differentiating (18) along the trajectory of error equations
and substituting

˙̂
Kx = −Mxx(t)e

TPB,

˙̂
Kr = −Mrr(t)e

TPB,

˙̂
fN (t, ·) = γΠNE∗BTPe,

yields

v̇ =− eTQe+ 2eTPBK̃T
x x+ 2eTPBK̃T

r r − 2eTPBExf̃

+ 2γ−1
f ⟨ ˙̂fN , f̃⟩

− 2eTPBK̃T
x x− 2eTPBK̃T

r r.

This simplifies to

v̇ = −eTQe+ 2γ−1
f

〈
˙̂
fN , f̃

〉
− 2eTPBExf̃ . (19)

Recalling the decomposition of f̃ = f̃N − f̃R in (5), the
relationship in (4), and the function estimation dynamics in
(12) noting that ˙̂

fN (t, ·) ∈ HN , the inner product in (19) can
be expressed

⟨ ˙̂fN , f̃⟩ =
〈
f̃N − f̃R,

˙̂
fN (t, ·)

〉
H
,

=
〈
f̃N , γfE∗

xB
TPe

〉
H
−
〈
f̃R,

˙̂
fN (t, ·)

〉
H
,

=
〈
Exf̃N , γfB

TPe
〉
Rm

− 0,

= γfe
TPBExf̃N .

Again from (5), f̃R = f −ΠNf , and we can write

v̇ = −eTQe+ 2eTPBExf̃R

≤ ∥e∥ (−λmin(Q)∥e∥+ 2∥P∥∥B∥∥Ex (I −ΠN ) f∥) .
(20)

Thus v̇ ≤ 0 whenever

∥e∥ ≥ 2∥PB∥
λmin(Q)

sup
x∈Ω

∥Ex(f −ΠNf)∥ (21)

where the right-hand side is a lower bound for the deadzone
ε̄. Thus (21) is satisfied whenever ∥e∥ ≥ ε̄. Following
a standard argument in [7] or [16], for example, this is
sufficient to ensure that ∥e∥ ≥ ε̄ for finite time.

Proposition 1 is intuitively satisfying: if the deadzone ϵ̄
is scaled properly so that it provides a pointwise bound
for the worst case approximation error ∥Ex(f − ΠNf)∥ for
the functional uncertainty f , then the ultimate bound holds.
One of the powerful properties of projection or interpolation
operators in a native space is that such upper bounds are often

readily available. In many of the recent papers [3], [12]–[14],
[19] such bounds are obtained using the power function for a
scalar-valued RKHS. In the paper [4], related ultimate bounds
are derived for a class of nonlinear observers in vector-valued
native spaces induced by an operator-valued kernel. These
bounds make use of a generalization of the power function
for operator-valued kernels described recently in [24]. These
define the operator-valued power function given by

(Pα
N (x))2 := ⟨(K(x, x)−KN (x, x))α, α⟩Rm

for each x ∈ Rn and α ∈ Rm. In this equation KN (x, x) is
the reproducing kernel of HN , as is given in Corollary 2.7
of [24]. This definition is of use in the present context since
from Corollary 2.11 of [24] we have

|⟨Ex(I −ΠN )f, α⟩Rm | ≤ Pα
N (x)∥f∥H

for all x ∈ Rn, α ∈ Rm, and f ∈ H. This gives an immediate
corollary that ties the placement of centers to a bound that
is known in closed form.

Corollary 1. Let the hypotheses of Proposition 1 hold. Then
the tracking error satisfies the ultimate bound

∥e(t)∥ ≤ O

(
sup
x∈Ω

√
∥K(x, x)−KN (x, x)∥∥f∥H

)
.

Proof. The proof of this corollary follows immediately from
the comments above and the proof of Proposition 1. See [4]
for the details.

It should be emphasized that Corollary 1 can be understood
as a statement of robust adaptive control. We define the
functional uncertainty class

BR := {f ∈ H | ∥f∥H ≤ R} ,
and replace C in Equation 16 by

C := sup
x∈Ω

√
∥K(x, x)−KN (x, x)∥R.

Then the ultimate bound of the Corollary holds for all
functional uncertainty f ∈ BR over the uncertainty class
BR. Note that in contrast to approaches in real parametric
adaptive control, the guarantee is over a (generally infinite
dimensional) class of functional uncertainty, and not just
over real parametric uncertainty in coordinate representations
for a fixed dimensional model. In this sense the robustness
guarantee is over a broader class of uncertain models than
usually encountered in real parametric adaptive control.
Remark 1. We note that while the expressions of K and
KN are known in closed forms, computating centers ΩN

that attain the supremum on the right hand side involves
combinatorial optimization. For scalar-valued case, greedy
algorithms have been shown to reach near-optimal rate of
convergence [10], [15].

IV. NUMERICAL ILLUSTRATION

For the purposes of numerical experimentation, we con-
sider the challenge of designing an attitude control system for
an autonomous underwater vehicle (AUV) that is streamlined
in shape and controlled by articulated flaps in the rear of the
AUV.
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A. Underwater vehicle dynamics

We express the AUV dynamics with respect to the Earth-
fixed reference frame. We use a typical 6-DOF model found
in [8], [18], which take the form

Mη η̈ + Cη η̇ +Dη η̇ + g(η) = τ (22)

where η is the Earth-fixed position of the vehicle, η =[
x y z ϕ θ ψ

]
, where {x, y, z} is position of the

AUV in Earth-fixed coordinates, and {ϕ, θ, ψ} is the attitude
of the AUV expressed as Euler angles. Mη(η) is the mass
matrix, Cη(η, η̇) is the Coriolis matrix, Dη(η, η̇) is the
damping matrix, g(η) is the gravitational vector, and τ =[
X Y Z K M N

]T
is the vector of external linear

forces (X,Y, Z) and rotational moments (K,M,N ). We use
the specific model parameters that have been developed for
the Virginia Tech 690 AUV, which are available in [18].

We are concerned with attitude control of an AUV with
a single thruster and four control surfaces located in a t-
configuration at the rear of the vehicle and dynamics given
by (22). For simplicity we consider the problem of attitude
control of a vehicle under constant forward speed thus we
do not consider the thruster as a control input. The attitude
states are given by x =

[
ϕ θ ψ ϕ̇ θ̇ ψ̇

]T ∈ R6 and
the control inputs are the effective elevator angle δe created
by the port and starboard control surfaces, the effective rudder
angle δr created by the top and bottom control surface, and
the roll angle δroll created by offsetting each fin by the same
angle (see [18] for greater detail on control surface mapping).
Thus the control inputs are given by δ =

[
δroll δe δr

]T ∈
R3.

Because we are only concerned with attitude control,
we consider only the dynamics of (22) associated with the
rotational moments. Decomposing the dynamics of (22) into
linear forces and rotational moments[

τ1
τ2

]
=

[
Mη11 Mη12

Mη21
Mη22

] [
η̈1
ẋ2

]
+

[
Cη11 Cη12

Cη21
Cη22

] [
η̇1
x2

]
+

[
Dη11

Dη12

Dη21
Dη22

] [
η̇1
x2

]
+

[
g1
g2

]
(23)

where η1 ∈ R3 =
[
x y z

]T
is the earth-fixed position and

each block matrix is 3× 3.
Because we are only concerned with attitude control,

we consider only the dynamics of (22) associated with the
rotational moments, that is the second row of (23)

τ2 =Mη21 η̈1 +Mη22 ẋ2 + Cη21 η̇1 + Cη22x2

+Dη21 η̇1 +Dη22x2 + g2(η). (24)

We make the additional simplifying assumptions that the
center of gravity and center of buoyancy of the vehicle are
collocated and that the vehicle’s mass matrix is diagonal.
The first assumption results in g2(η) = 0 ∀ η. The second
assumption results in Mη21 = 0 ∀ η. Mη22 is a function of
the roll and pitch due to the presence of a rotation matrix.
Therefore, we additionally apply the small angle assumption
which results in the rotation matrix being approximately

equivalent to the identity matrix and reduces M−1
η22

= M−1
22

which is constant. Using these assumptions we can simplify
the vehicle attitude dynamics of (24). Let x1 =

[
ϕ θ ψ

]T
and let x2 =

[
ϕ̇ θ̇ ψ̇

]T
ẋ1 = x2

ẋ2 =M−1
22 ((τ2 − (Cη21

+Dη21
)η̇1

−M−1
22 (Cη22 +Dη22)x2 (25)

which is in the form required to apply the RKHS MRAC
controller. In the subsequent illustration the functional un-
certainty is given by

f(x, η̇1) = −(Cη21 +Dη21)η̇1 − (Cη22 +Dη22)x2. (26)

For the purposes of expressing the functional uncertainty
we convert the earth reference frame linear velocities, η̇1 in
(25) to body reference frame linear velocities, surge, sway
and heave, denoted collectively ν1. Under the assumption of
constant forward speed the body reference frame velocities
are also near constant which requires us to use fewer basis
centers to cover the range of expected vehicle velocities in
the numerical illustration below. Thus we can express the
AUV dynamics in the required form

ẋ = Ax+B
(
δ + f(x, ν1)

)
(27)

where A ∈ R6×6 and B ∈ R6×3 are constant matrices and B
is based on the vehicle moments of inertia and control surface
effectiveness coefficients. The control surface effectiveness
coefficients are estimated via hydrodynamic modeling dis-
cussed in [18]. For the purposes of this experiment, we
neglect measurement error in the vehicle moments of inertia
which results in a known B matrix. Additionally, the vehicle
body reference frame linear velocities are included in the
input space of the functional uncertainty, f : R9 → R3.

B. Practical Control Considerations

For attitude control of an underwater vehicle, our control
objective is reference signal tracking in the presence of
the uncertainty discussed in the previous section. Practical
attitude control of the VT-690 AUV is impossible at forward
speeds below a minimum threshold, called bare steerageway,
and at attitudes where pitch and roll near or exceed ±90 deg.
Therefore, we restrict our pitch commands to ±20 deg and
verify that measured vehicle forward speed exceeds the bare
steerageway of the vehicle prior to exercising our controller.

As discussed in II-B, using (3), we approximate the uncer-
tain function f using a set of N kernel centers. Learning the
approximate function, f̂N amounts to learning the vector of
coefficients α =

[
α1 α2 · · · α3N

]T ∈ R3N with each
set of three coefficients associated with a kernel centered at
one of the N centers. The set of kernel functions is given by⋃N

i=1{Kξie1,Kξie2,Kξie3} where ej ∈ R3 is the standard
basis vector with a one at entry j and zeros elsewhere. To
develop an update law for α from (12), following a similar
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process to that described in [5], we take the inner product of
˙̂
fN with each basis function

⟨Kξiyi,
˙̂
fN ⟩H = ⟨Kξiyi,

3N∑
k=1

˙̂αk(t)Kξkyk⟩H

Using the reproducing property and the linearity properties
of the inner product results in an update law with the form

˙̂α = γfG
−1Φ(x) (28)

where {G}jk = yTj K(ξj , ξk)yk ∈ R3N×3N and

Φ(x) =


eTPBK(ξ1, x)e1
eTPBK(ξ1, x)e2

...
eTPBK(ξN , x)e3

 .
For the purposes of the numerical illustration in this paper

we placed the kernel centers in a uniformly spaced grid
throughout a subset of the function’s input space (Ω ⊂
R6 × R3) and we use a simple kernel function:

K(x1, x2) = k5/2(x1, x2)

1 0 1
2

0 1 0
1
2 0 1

 (29)

where k5/2(x1, x2) is the scalar 5/2 Matern kernel parame-
terized by amplitude a = 0.1 and length scale l = 0.3 (see
[22]). This kernel was chosen to capture the closely coupled
nature of the roll and yaw behavior of the vehicle model.

We designed the controller reference model to have the
desired transient characteristics consistent with the vehicle
maximum turning and pitch rates based on the control surface
actuation limits. The control surfaces are each limited to
a maximum deflection of ±20 deg, which in turn places
practical limits on the rise time of the step response when
designing the reference model.

The adaptation rate matrices and gains Mx, Mr, γf were
set empirically based on observations of the adaptive param-
eter behaviors.

C. Experiment Description and Results

We first simulate a AUV traveling at a constant speed of
1.5 m/sec, performing repeated step changes in pitch and
yaw. The AUV is modeled using the 6-DOF dynamics of
[18]. The controller is designed according to the RKHS
MIMO MRAC formulation described in the previous sec-
tions. The pitch commands alternate between ±5 deg and
the yaw commands alternate between ±10 deg as shown by
the dotted lines in the figures below.

We performed the first experiment multiple times with
increasing numbers of kernel centers and recorded the av-
erage function error norm, ∥f̃(t)∥2 and the average state
error norm, ∥e(t)∥2. Figure 1 shows the improvement in per-
formance as kernel centers are added and demonstrates that
the magnitude of performance improvement is additionally
dependent on kernel location. Above 1458 kernel centers the
computational intensity became prohibitive. Figures 2-4 show
the simulation with 1458 kernel centers.
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Fig. 1. Experiment 1: Comparison of error norm and functional error norm
versus number of kernel centers
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Fig. 4. Experiment 1: Norm of State Error and Function Error

In the second experiment we repeat the steps of the
first simulation but add an instantaneous change in vehicle
buoyancy from 1% positively buoyant to 1% negatively
buoyant at t = 650 sec. Figures 5-7 show the attitude results
of experiment 2.
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Fig. 5. Experiment 2: Vehicle Pitch
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Fig. 6. Experiment 2: Vehicle Yaw
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Fig. 7. Experiment 2: Norm of State Error and Function Error

V. CONCLUSION

This paper presents an MRAC controller based on vector-
valued RKHS embedding methods. Our adaptive update laws
yield ultimate boundedness of the reference signal tracking
error under that the dead-zone modification. We further illus-
trate implementation of this controller for attitude control of
an underwater vehicle. A benefit of non-parametric function
estimation for adaptive control in an RKHS setting, rather
than parametric function estimation that arises is conventional
adaptive control, is that we are able to influence the estima-
tion performance (e.g., error) by choice of kernel, location
of kernel centers, and the number of kernel centers. For
the attitude control example, we explicitly demonstrate that
increasing the number of kernels and kernel density yields
reduced function estimation error.
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