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Abstract— Markov games model interactions among multiple
players in a stochastic, dynamic environment. Each player
in a Markov game maximizes its expected total discounted
reward, which depends upon the policies of the other players.
We formulate a class of Markov games, termed affine Markov
games, where an affine reward function couples the players’
actions. We introduce a novel solution concept, the soft-Bellman
equilibrium, where each player is boundedly rational and
chooses a soft-Bellman policy rather than a purely rational
policy as in the well-known Nash equilibrium concept. We
provide conditions for the existence and uniqueness of the
soft-Bellman equilibrium and propose a nonlinear least-squares
algorithm to compute such an equilibrium in the forward
problem. We then solve the inverse game problem of inferring
the players’ reward parameters from observed state-action
trajectories via a projected-gradient algorithm. Experiments
in a predator-prey OpenAI Gym environment show that the
reward parameters inferred by the proposed algorithm outper-
form those inferred by a baseline algorithm: they reduce the
Kullback-Leibler divergence between the equilibrium policies
and observed policies by at least two orders of magnitude.

I. INTRODUCTION

Markov games model the interaction of multiple decision
makers in stochastic and dynamic environments [1]. In a
Markov game, each player’s transition and reward depend
on the policies of the other players, and each player aims to
find an optimal policy that maximizes its expected discounted
total reward.

The concept of Nash equilibrium, which refers to a set
of policies where no player can benefit by unilaterally
changing their policy [1], overlooks the reality that players
are often boundedly rational. For example, humans have
limited cognitive capacity and are subject to biases and
heuristics that can affect their decision-making. As a result,
the outcomes of games played by humans may not always
align with the predictions from the Nash equilibrium concept.
Recent efforts attempt to address this limitation by account-
ing for players’ bounded rationality in games with specific
structures, including matrix games [2], fully cooperative
games [3–5], and two-player games [6, 7]. Another recent
work tackles the same limitation in dynamic games with
continuous state and action spaces [8]. However, to our
best knowledge, no work has addressed this limitation in
general-sum, multi-player Markov games with discrete state
and action spaces yet.

We propose the soft-Bellman equilibrium as a new solu-
tion concept to capture the dynamics of boundedly rational
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players in affine Markov games. Affine Markov games are a
class of Markov games where each player has independent
dynamics and an affine reward function couples the players’
actions. In a soft-Bellman equilibrium, each player chooses
a policy that maximizes the expected reward with causal
entropy regularization while satisfying independent transition
dynamics. We provide conditions for the existence and
uniqueness of the soft-Bellman equilibrium.

We study the forward problem of computing a soft-
Bellman equilibrium in a given affine Markov game. We
propose a least-squares-based algorithm to solve this problem
by minimizing the residuals of the soft-Bellman equilibrium
conditions.

We then turn to the inverse game problem of inferring
the players’ reward parameters that best explain observed
interactions. We propose an iterative algorithm that leverages
the solutions to the forward problem. In each iteration, the
algorithm computes the soft-Bellman equilibrium given the
current reward parameters and then updates those parameters
with a projected-gradient method based on the implicit
function theorem [9].

The proposed inverse game algorithm outperforms a base-
line algorithm that ignores the coupling between players. Ex-
periments in a predator-prey OpenAI Gym environment [10]
show that the reward parameters inferred by the proposed
algorithm reduce the Kullback-Leibler divergence between
the equilibrium policies and observed policies by at least
two orders of magnitude than the baseline algorithm.

II. RELATED WORK

In single-agent settings, literature in inverse reinforcement
learning studies the problem of inferring reward parameters
from human experts’ trajectories. The principle of maximum
entropy is a popular approach in this direction [11]. Subse-
quent studies further extend this principle to accommodate
stochastic transitions using causal entropy [12]. For example,
recent work extends the maximum causal entropy framework
in inverse reinforcement learning to an infinite time horizon
setting and proposes the concept of stationary soft-Bellman
policy [13]. This policy concept inspires the formulation
of the soft-Bellman equilibrium to account for the players’
bounded rationality, a feature lacking in the Nash equilibrium
concept.

In multi-agent settings, most existing works that try to
address the limitation of Nash equilibrium assume specific
game structures, including matrix games [2], fully coopera-
tive games [3–5], two-player zero-sum games [6], and two-
player general-sum games [7]. This paper generalizes the
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existing works to multi-player, general-sum Markov games.
First formulated in normal-form and extensive-form

games, the quantal response equilibrium is a solution concept
to model the bounded rationality of human players [14, 15].
Inspired by this solution concept, recent work proposes the
entropic cost equilibrium to extend the quantal response
equilibrium to games with continuous states and actions [8].

The current work, on the other hand, proposes the soft-
Bellman equilibrium to support stochastic transitions in
affine Markov games with discrete state and action spaces.
Although both the entropic cost equilibrium and the soft-
Bellman equilibrium extend the quantal response equilib-
rium, the soft-Bellman equilibrium is different in choosing
the state-action frequency matrix, instead of the policy, as the
variable to optimize for each player. This subtle difference
changes the expected reward from a nonconvex function to
a convex one, laying the groundwork for establishing condi-
tions that ensure the existence and uniqueness of solutions.

III. MODELS

We present our main theoretical models: a special class of
Markov games, along with a novel equilibrium concept that
accounts for bounded rationality.

A. Affine Markov Games
We consider a Markov game [1] where each player solves

an MDP with independent dynamics and an affine reward
function that couples the players’ actions. We let p ∈ N
denote the number of players. Player i ∈ [p] solves an MDP
specified by a tuple which includes a set of states, a set
of actions, a transition kernel, an initial state distribution,
a reward matrix, and a discount factor. We let ni ∈ N and
mi ∈ N denote the number of states and actions for player i,
respectively. We let Si

t ∈ [ni] and Ai
t ∈ [mi] denote the state

and action of player i at time t ∈ N. Each action triggers
a stochastic transition between the current state to the next
state. We let T i ∈ Rni×mi×ni

denote the transition kernel
of player i such that

T i
saj := P(Si

t+1 = j|Si
t = s,Ai

t = a) (1)

for all t ∈ N, s, j ∈ [ni] and a ∈ [mi]. We let qi ∈ Rni

denote the initial state distribution of player i such that

qis := P(Si
0 = s) (2)

for all s ∈ [ni]. We let Ri ∈ Rni×mi

denote the reward ma-
trix, where Ri

sa denotes the reward of player i for choosing
choosing action a in state s. Finally, we let γ ∈ [0, 1) denote
a reward discount factor. For each player i ∈ [p], a stationary
policy maps each state to a probability distribution over
actions. We denote such a policy as a matrix Πi ∈ Rni×mi

where
Πi

sa := P(Ai
t = a|Si

t = s) (3)

for all t ∈ N, s ∈ [ni], a ∈ [mi]. An optimal stationary
policy in an MDP minimizes the following expected total
discounted state-action reward

∞∑
t=0

n∑
s=1

m∑
a=1

γtP(Si
t = s,Ai

t = a)Ri
sa. (4)

We let Y i ∈ Rni×mi

denote the state-action frequency
matrix of player i ∈ [p] such that

Y i
sa :=

∞∑
t=0

γtP(Si
t = s,Ai

t = a). (5)

for all s ∈ [ni] and a ∈ [mi].
We now introduce the definition of a p-player affine

Markov game.

Definition 1. A p-player affine Markov game is a collection
of MDPs {Mi = {[ni], [mi], qi, T i, Ri, γ}}pi=1 such that
there exists bi ∈ Rmini

and Cij ∈ Rmini×mjnj

for each
i, j ∈ [p] such that

vec(Ri) = bi +

p∑
j=1

Cij vec(Y j) (6)

for all i ∈ [p], where Y i ∈ Rmi×ni

satisfies (5).

The affine reward structure in (6) couples different players’
decisions together: the reward for a player is not a fixed
number, but depends on the other players’ state-action fre-
quencies. Similar coupling appears in matrix games where
each player has a finite number of candidate options [16, 17].
This function has two parameters: b pertains to the individual
player, and C considers the coupling between the players.

B. Soft-Bellman Equilibrium

We now introduce the notion of soft-Bellman equilibrium.
It extends the notion of quantal response equilibrium in
games with deterministic dynamics to Markov games with
stochastic dynamics [14, 15]. Unlike Nash equilibrium, it
states that all players choose a soft-Bellman policy—rather
than the optimal policy that satisfies the Bellman equations—
given other players’ actions.

Definition 2. Let {Mi = {[ni], [mi], qi, T i, Ri, γ}}pi=1 be
an affine Markov game. Let Πi ∈ Rni×mi

be a stationary
policy matrix of player i ∈ [p]. If there exists vi ∈ Rni

and
Qi ∈ Rni×mi

such that

Πi
sa =

exp(Qi
sa)∑mi

j=1 exp(Q
i
sj)

, (7a)

Qi
sa = Ri

sa + γ

ni∑
j=1

T i
sajv

i
j , (7b)

vis = log

mi∑
a=1

exp(Qi
sa)

 , (7c)

for all s ∈ [ni] and a ∈ [mi], then {Πi}pi=1, is a soft-Bellman
equilibrium for {Mi}pi=1.

Previous studies have proposed similar notions of equi-
librium, e.g., Markov quantal response equilibrium in [18].
However, unlike Equation (7c) in Definition 2, their for-
mulations are inconsistent with the characterization of soft-
Bellman policies. There is a close connection between the
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soft-Bellman equilibrium and the following optimization
over state-action frequency matrix:

maximize
Y ∈Rni×mi

ℓi(Y ) + h(Y )

subject to
mi∑
a=1

Ysa = qis + γ
ni∑
j=1

mi∑
a=1

T i
jasYja, s ∈ [ni],

(8)
where

ℓi(Y ) := vec(Y )⊤bi +
1

2
vec(Y )⊤Cii vec(Y )

+

p∑
j=1,j ̸=i

vec(Y j)⊤Cij vec(Y ),
(9a)

h(Y ) :=

n∑
s=1

m∑
a=1

Ysa

log

 m∑
j=1

Ysj

− log(Ysa)

 . (9b)

The following theorem shows that, if each player chooses
its policy by solving optimization (8), then the resulting
policies form a soft-Bellman equilibrium.

Theorem 1. Let {Mi = {[ni], [mi], qi, T i, Ri, γ}}pi=1 be
an affine Markov game. Suppose that Cii ⪯ 0 and Y i ∈
Rni×mi

>0 is an optimal solution of optimization (8) for all
i ∈ [p]. Let Πi ∈ Rni×mi

be such that

Πi
sa =

Y i
sa∑mi

j=1 Y
i
sj

(10)

for all i ∈ [p], s ∈ [ni], and a ∈ [mi]. Then {Πi}pi=1 is a
soft-Bellman equilibrium for {Mi}pi=1.

Proof. First, h(Y ) is a concave function of matrix Y [13,
19], and ℓi(Y ) is also a concave function of Y since Cii ⪯ 0.
Next, by applying the chain rule to (9a) and (9b) we can show
the following:

∂Ysa
ℓi(Y ) = Ri

sa, ∂Ysa
h(Y ) = log

(∑m
j=1 Ysj

)
−log(Ysa),

where Ri ∈ Rni×mi

satisfies (6). Since Y ∈ Rni×mi

>0 is an
optimal solution for optimization (8), there exists vi ∈ Rni

such that the following Karush-Kuhn-Tucker conditions hold:
mi∑
a=1

Y i
sa = qis + γ

ni∑
j=1

mi∑
a=1

T i
jasY

i
ja, (11a)

log(Y i
sa)− log

mi∑
j=1

Y i
sj

 = Qi
sa − vis, (11b)

for all s ∈ [ni] and a ∈ [mi], where Qi
sa is given by (7b).

Let Πi
sa be given by (10), then (11b) implies that

Πi
sa = exp(Qi

sa − vis), (12a)

1 =

mi∑
j=1

Πi
sj =

mi∑
j=1

exp(Qi
sj − vis), (12b)

for all s ∈ [ni] and a ∈ [mi]. By combining (12a) with (12b)
one can obtain the condition in (7a). Finally, multiplying both
sides of (12b) by exp(vis) gives (7c), which completes the
proof.

IV. FORWARD SOLUTION VIA NONLINEAR
LEAST-SQUARES

We now establish the existence and uniqueness of a soft-
Bellman equilibrium, followed by a discussion on how to
compute it by solving a nonlinear least-squares problem. To
this end, we introduce the following notation:

l :=

p∑
i=1

mini, b :=
[
(b1)⊤ (b2)⊤ · · · (bp)⊤

]⊤
,

r :=

p∑
i=1

ni, q :=
[
(q1)⊤ (q2)⊤ · · · (qp)⊤

]⊤
.

(13)
Let matrices Di, Ei ∈ Rni×mini

be such that

Di = Ini ⊗ (1⊤
mi), Ei

kj = T i
quo(j,m)+1,rem(j,m),k, (14)

for all k ∈ [ni] and j ∈ [mini]. Furthermore, let

H := blkdiag(D1 − γE1, D2 − γE2, . . . , Dp − γEp),

K := blkdiag((D1)⊤D1, (D2)⊤D2, . . . , (Dp)⊤Dp),

C :=


C11 C12 · · · C1p

C21 C22 · · · C2p

...
...

. . .
...

Cp1 Cp2 · · · Cpp

 .

(15)
With these notations, we are ready to establish the fol-

lowing results on the existence and uniqueness of the soft-
Bellman equilibrium.

Theorem 2. Let {Mi = {[ni], [mi], qi, T i, Ri, γ}}pi=1 be
an affine Markov game where Cii ⪯ 0 for all i ∈ [p]. Then
Y i ∈ Rni×mi

>0 is an optimal solution of optimization (8) for
all i ∈ [p] if and only if there exists v ∈ Rr such that

log(y) = log(Ky) + b+ Cy −H⊤v,

Hy = q,
(16)

where

y =
[
vec(Y 1)⊤ vec(Y 2)⊤ · · · vec(Y p)⊤

]⊤
. (17)

Furthermore, there exists y ∈ Rl such that (16) holds for
some v ∈ Rr. If C + C⊤ ⪯ 0, then such a y is unique.

Proof. First of all, the conditions (16) are the union of the
KKT conditions for optimization (8) for all i ∈ [p]. Due
to the assumption that Cii ⪯ 0, C + C⊤ ⪯ 0, and the
strict concavity of logarithm function, one can verify that
Y i ∈ Rmi×ni

is an optimal solution of optimization (8) for
all i ∈ [p] if and only if {Y i}pi=1 is a Nash equilibrium of a
p-player diagonally strictly concave game, which exists and
is unique [16].

As a result of Theorem 2, one can compute a soft-Bellman
equilibrium by solving the following nonlinear least-squares
problem:

minimize
y,v

∥∥log(Ky) + b+ Cy −H⊤v − log(y)
∥∥2

+ ∥Hy − q∥2
(18)
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Notice that the optimal value of the above optimization is
zero, since there exists at least one solution for the nonlinear
equations in (16).

V. INVERSE LEARNING VIA IMPLICIT DIFFERENTIATION

Given the parameters of an affine Markov game, one can
compute a soft-Bellman equilibrium of this game by solving
the nonlinear least-squares problem in (18). The question
remains, however, of how to infer these parameters such
that they best explains observed decisions, a problem also
known as the inverse game. Next, we answer this question
by developing a projected-gradient method for parameter
calibration.

The inverse game problem is a parameter optimization
problem defined as follows. We start with a set of empirically
observed equilibrium state-action frequencies,

Ŷ 1, Ŷ 2, . . . , Ŷ p, (19)

where Ŷ i
sa ∈ Rmi×ni

denotes the empirical probability for
player i to choose action a in state s. Let

ŷ :=
[
vec(Ŷ 1)⊤ vec(Ŷ 2)⊤ · · · vec(Ŷ p)⊤

]⊤
. (20)

To find the best parameters that explain the observed state-
action frequency matrices in (20), one can solve the follow-
ing optimization problem

minimize
y,v,b,C

∥y − ŷ∥2

subject to log(y) = log(Ky) + b+ Cy −H⊤v,
Hy = q, b ∈ B, C ∈ D,

(21)

where B ⊂ Rl and D ⊂ Rl×l are closed convex constraint
sets for vector b and matrix C, respectively.

Solving problem (21) is numerically challenging because
this optimization contains both nonlinear equation constraints
and possible positive semi-definite cone constraints in set
D. As a remedy, we propose an approximate projected-
gradient method that combines nonlinear equation solving
with efficient projections. To this end, we let

J =

[
K diag(Ky)−1 − diag(y)−1 + C −H⊤

H 0r×r.

]
(22)

By using the chain rule and the implicit function theorem
[9] one can show that, if (16) holds and matrix J is
nonsingular, then

∂b ∥y − ŷ∥2 = −2
[
(y − ŷ)⊤ 0r

]
J−1

[
Il

0r×l

]
, (23a)

∂Cj
∥y − ŷ∥2 = −2yj

[
(y − ŷ)⊤ 0r

]
J−1

[
Il

0r×l

]
, (23b)

for all j ∈ [l], where Cj ∈ Rl is the j-th column of matrix C.
Hence one can compute the approximate gradient for vector b
and matrix C that locally decreases the value of the objective
function in (21) as follows:

∇̃b ∥y − ŷ∥2 := −2
[
Il 0l×r

]
(J†)⊤

[
y − ŷ
0r

]
, (24a)

∇̃C ∥y − ŷ∥2 := −2
[
Il 0l×r

]
(J†)⊤

[
y − ŷ
0r

]
y⊤. (24b)

Notice that we approximate J−1 with the Moore-Penrose
pseudoinverse J† in (24). Such an approximation is exact if
J is nonsingular, and still well-defined even if J is singular
or J−1 is numerically unstable to compute.

Based on the formulas in (24), we propose an approximate
projected-gradient method, summarized in Algorithm 1, to
solve optimization (21), where we let

ProjB(b) := argmin
z∈B

∥z − b∥ , (25a)

ProjD(C) := argmin
X∈D

∥X − C∥F , (25b)

for all b ∈ Rl and C ∈ Rl×l. Each iteration of this method
first solves the nonlinear least-squares problem in (18), then
performs a projected-gradient step on b and C.

Algorithm 1 Approximated projected-gradient method.

Input: Step size α ∈ R>0, number of iterations kmax ∈
N, random initial parameters binit ∈ Rl, Cinit ∈ Rl×l,
tolerance ϵ ∈ R.

1: Initialize k = 1, b = binit, C = Cinit.
2: while k < kmax do
3: Solve optimization (18) for y.
4: if change in ∥y − ŷ∥2 < ϵ then
5: terminate.
6: end if
7: b← ProjB(b− α∇̃b ∥y − ŷ∥2) ▷ cf. (24a)
8: C ← ProjD(C − α∇̃C ∥y − ŷ∥2) ▷ cf. (24b)
9: k ← k + 1

10: end while
Output: Vector b and matrix C.

VI. EXPERIMENTS

We evaluate the performance of the proposed algorithm
against a baseline algorithm that neglects the fact that
players’ reward functions depend upon each other’s actions
in a predator-prey OpenAI Gym environment [10]. We
solve the forward problem by specifying the nonlinear least-
squares problem (18) in Julia [20] using the JuMP [21]
interface and the COIN-OR IPOPT [22] optimizer. The
source code is publicly available at https://github.
com/vivianchen98/Inverse_MDPGame.

A. Baseline

The baseline algorithm is a decoupled version of Algo-
rithm 1, that is, it solves optimization (8) with the coupling
parameter Cij = 0 for all players i, j ∈ [p]. Dropping this
parameter frees the baseline algorithm to solve an optimiza-
tion for each player independently, similar to many existing
multi-agent inverse reinforcement learning algorithms.

B. Algorithm Parameters

For the projected-gradient method in Algorithm 1, we use
a backtracking line search technique to fine-tune the step size
in line 7 and 8 based upon the Armijo (sufficient decrease)
condition [23]. Each iteration starts with an initial step size
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1 2

1

Predator
Prey

Fig. 1: Two predators (blue) and one prey (red) moving in a 5x5
GridWorld. The light blue cells represent the catching region of the
predators, and the light purple cell represents the overlapping of
both predators’ catching regions. This episode terminates when the
prey is inside a light purple cell.

α = 1, and the algorithm reduces the step size by half until
it meets the sufficient decrease condition. Both algorithms
terminate when the change in ∥y − ŷ∥2 is below a given
tolerance ϵ = 0.005. The maximum number of iterations
kmax is 100, and the discount factor γ is 0.99. We sample the
values of the vector binit and the matrix Cinit from a random
number generator given a seed. We run both algorithms from
seed 1 to 10.

C. Predator-Prey Environment

We consider a predator-prey environment from a collection
of multi-agent environments based on OpenAI Gym [10].
As shown in Fig. 1, two predators attempt to capture one
randomly moving prey in a 5× 5 GridWorld. Each predator
has observations of all players and the coordinates of the
prey relative to itself and selects one of five actions: left,
right, up, down, or stop. The prey is caught when it
is within the catching region (light blue cells in Fig. 1)
of at least one predator. An episode terminates when the
prey is caught by more than one predator (inside a light
purple cell in Fig. 1), resulting in a positive reward. For
every new episode, the environment initializes the prey into
random locations and the prey never moves voluntarily into
the predators’ neighborhood. In this environment, only the
two predators are controllable, but we collect the trajectories
of all three players, including the prey, to solve the inverse
game problem.

D. Observed Dataset Collection

We collect all players’ trajectories as the observed inter-
actions. Each trajectory is a sequence of states and actions
until termination for the current episode. We train a policy
using a multi-agent reinforcement learning algorithm [24]
and sample trajectories from this policy. The players in this
policy exhibit uncertainties in their decision-making process
that are difficult to articulate explicitly, much like humans.
As a result, the data from these models can serve as a proxy
for human datasets.

We process the collected trajectories from all three players
by first pruning those shorter than the 50th percentile of
trajectory lengths and then capping the remaining trajectories
to the same length. After processing, we attain 100 useful
trajectories of length 6. We compute the collection of state-
action frequencies for all three players ŷ and approximate

1 10 20 30 40 50

100

101

102

103

Iteration

∥y
−

ŷ
∥2

Proposed
Baseline

Fig. 2: Algorithms for the inverse game problem with termination
marked in circles (the lower the better).

the initial state distributions and the transition probabilities
for all players using the observed data.

Proposed Baseline

Pr
ed

at
or

1
Pr

ed
at

or
2

Pr
ey

1

Fig. 3: Heatmaps showing Kullback–Leibler divergence DKL(Π
i
s ∥

Π̂i
s) between the equilibrium policy Πi

s and the observed policy Π̂i
s

at each state s in the GridWorld for all three players. All values
rounded to two decimal places, the smaller (lighter color) the better.

E. Numerical Results

We demonstrate Algorithm 1 and the baseline algorithm
on the predator-prey environment introduced in Section VI-
C. Fig. 2 shows ∥y − ŷ∥2, the squared norm of the difference
between the computed state-action frequency y and the ob-
served state-action frequency matrices ŷ, with respect to the
number of iterations. Results show the proposed algorithm
ends in 31.0 ± 3.6 iterations, while the baseline algorithm
takes 50.0±31.3 iterations to terminate. As shown in Fig. 2,
the final iterate of the proposed algorithm has ∥y − ŷ∥2
below 1, while the baseline algorithm on average terminates
with a value above 590.7. This comparison highlights the

2206



importance of accounting for the coupling between the
players.

Given a state-action frequency matrices yi for player i,
we compute the corresponding policies Πi

sa by (10), and
denote the equilibrium policy at each state s as a probability
distribution

Πi
s =

[
Πi

s,left Πi
s,right Πi

s,up Πi
s,down Πi

s,stop

]
.

We report the Kullback–Leibler divergence DKL(Π
i
s ∥ Π̂i

s)
between the equilibrium policy Πi

s, computed using the
proposed and the baseline algorithms, and the observed
policy Π̂i

s at each state s for all three players. Fig. 3 shows
that Algorithm 1 arrives at an equilibrium policy closer to
the observed policy than the baseline algorithm does.

VII. CONCLUSION & FUTURE WORK

We proposed soft-Bellman equilibrium as a novel solution
concept in affine Markov games, a class of Markov games
where an affine reward function couples the players’ actions,
to capture interactions of boundedly rational players in
stochastic, dynamic environments. We provided conditions
for the existence and uniqueness of the soft-Bellman equi-
librium. We solved the forward problem of computing such
an equilibrium for a given affine Markov game and proposed
an algorithm to tackle the inverse game problem of inferring
players’ reward parameters from observed interactions.

Future work should validate the effectiveness of the pro-
posed algorithms using human datasets instead of synthetic
datasets. For example, the INTERACTION dataset contains
human driving trajectories in interactive traffic scenes [25],
and can serve as a more representative dataset for the inverse
game problem.
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