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Abstract— The problem of solving strategy games has in-
trigued the scientific community for centuries. In this paper,
we consider two-player adversarial zero-sum symmetric games
with zero information loss. Here, both players are continuously
attempting to make decisions that will change the current game
state to his/her advantage and hence the gains of one player are
always equal to the losses of the other player. In this paper, we
propose a model improvement self-play algorithm, where the
agent iteratively switches roles to subdue the current adversary
strategy. This monotonic improvement sequence leads to the
ultimate development of a monolithic, competent absolute no-
loss policy for the game environment. This tactic is the first
of its kind in the setting of two-player adversarial games. Our
approach could perform competitively and sometimes expertly
in games such as 4x4 tic-tac-toe, 5x5 domineering, cram, and
dots & boxes with a minimum number of moves.

I. INTRODUCTION

In a turn-based adversarial zero-sum game, an opponent
player and the agent attempt to alter the current state of
the game to his advantage, where the profits of one player
are equal to the losses of the other player. Tic-tac-toe is
the classical illustration of an adversarial zero-sum game.
At every instant, one player’s reward is the other player’s
anti-reward in equal measure. Other games in this cate-
gory include chess, Backgammon, Go, and Othello, which
are very complex with total board configurations in the
range of the number of atoms in the universe. The turn-
based two-player adversarial games can be conceptualized
as a time-homogeneous, discrete-time, sequential decision-
making problem under uncertainty with a finite number of
states and actions, where the uncertainty results from the
opponent’s moves being absolutely unpredictable.

Adversarial games are always been foremost among the
challenging problems in artificial intelligence. Several ap-
proaches are proposed dating back to the work of Shannon
and Turing to automate chess [1]. Another early solution
includes the application of self-play to efficiently learn to
play Checkers by Arthur Samuel. With the advancement of
learning algorithms during the late twentieth century, one
could observe an active application of learning methods to
tackle adversarial games as deterministic search methods fail
to find optimal solutions due to the combinatorial explosive
nature of the problem. For example, in a 4× 4 tic-tac-toe
setting, there are 4× 1013 different games possible. In [2],
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the model-free reinforcement learning algorithm Q-Learning
is applied to train an RL agent to learn to play tic-tac-
toe expertly in full-board and partial-board representations
of the game. However, the approach couldn’t achieve zero
loss performance, thus hindering its potential for superhuman
capabilities in tic-tac-toe. In another approach [3], learning
is induced in an RL agent through neural networks and
temporal difference learning in the 3D version of tic-tac-
toe. Here, the results obtained depend on the reference
benchmark player that is used to train the agent. This is
envisaged since the generalization ability of the learning
methods is mostly biased toward the distribution of the
sample data. To achieve superhuman performance, one might
require samples of that nature, which are hard to come
by. Another approach [4] involves the application of least-
squares policy iteration which is a model-free reinforcement
learning algorithm that performed competitively on Othello.

A hybrid approach where Q-learning and min-max are
combined to solve a 2D soccer game [5], where the max
operator in the Q-learning algorithm is replaced with min-
max, which induces risk-averse behavior. The use of min-
max in the Q-learning algorithm suggests that the agent may
take a more conservative approach, prioritizing minimizing
potential losses over maximizing rewards. A decentralized
decision-making algorithm [6] was proposed, which was
claimed to be a no-loss strategy, but later found that the
strategy failed in three different scenarios [7].

In [8], a genetic algorithm-based solution to generate
a single no-loss strategy is proposed. Genetic algorithms
are being used extensively in combinatorial optimization
problems due to their propensity to find the global optimum
solutions. However, to obtain the optimum performance, one
has to fine-tune too many hyper-parameters. AI enthusiasts
are well aware of the min-max algorithm [9], which is mostly
deployed for two-player adversarial games because of its
inherent nature. Min-max is a technique commonly used in
game theory for decision-making, where a player chooses an
action that minimizes the maximum possible loss. The main
drawback of this algorithm is that for complex games the
state space blows up and the task becomes computationally
expensive due to coupled minimum and maximum operations
performed at each instant. There are modifications to the
classical min-max algorithm like the alpha-beta pruning [10],
which can at most reduce the complexity of the algorithm
by half which is not asymptotically significant. Another
approach based on a customized decision tree is elucidated
in [11] specifically for 3× 3 tic-tac-toe. The decision tree
is built a priori using pre-defined logic obtained through
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analysis of the game. This paper demonstrates a significant
shortcoming of the min-max algorithm, particularly in tic-
tac-toe games regarding the non-optimal move selection
at certain instances, where the min-max algorithm takes
additional sub-optimal steps to win a game even though
the agent had a chance to win the game early. Despite this
drawback, min-max is still a competitive no-loss strategy.
The tic-tac-toe game possesses multiple no-loss strategies
and this was explored in [7], where the customized genetic
algorithms are applied to gather all the no-loss strategies.

In this paper, we propose an algorithm that can obtain
an efficient, competent no-loss policy for moderate state-
space, symmetric, adversarial board games. The algorithm
seeks a no-loss policy, meaning that the policy is competent
enough to play the game without losing, regardless of the
opponent’s moves. The efficiency is in terms of the maximum
number of moves required to complete the game. This is
important for board games where players aim to win in the
shortest number of moves possible. Unlike many of the above
algorithms, our algorithm doesn’t require any input game
episodes for training. Instead, our algorithm adopts a self-
play-based model improvement mechanism that converges
to the competent policy.

II. BACKGROUND

A discrete-time, time-homogeneous Markov Decision Pro-
cess (MDP) {(Xt ,At)}t∈N [12], [13], [14] is a framework
for sequential decision-making paradigm under uncertainty,
where an agent learns to interact with a stochastic environ-
ment through a set of actions and a reward-penalty response.
This paradigm is represented by the 4-tuple (S,A,P,R), where
Xt ∈ S is the state space, At ∈ A is the action space, P :
S×A× S→ [0,1] is the probability transition function and
R : S× A× S is the reward function. For s,s′ ∈ S,a ∈ A,
we have P(s,a,s′) = P(Xt+1 = s′|Xt = s,At = a), ∀t ≥ 0,
which is the probability of transitioning to the next state
s′ conditioned on the current state being s and current action
is a. The transition matrix which defines the dynamics of the
system is referred to as the model. The transition at every
instant t is associated with a scalar reward R(Xt ,At ,Xt+1). At
every instant t, the agent performs an action according to a
deterministic policy π : S×A. The goal of the setting is find
the optimal policy π∗ which is defined as follows:

π
∗ = argmax

π

Vπ , (1)

where Vπ(s) =E

[
∑
t≥0

γ
tR(Xt ,π(Xt),Xt+1)

∣∣∣X0 = s

]
,s ∈ S.

Here, Vπ is referred to as the value-function associated with
policy π , and γ ∈ [0,1) is the discount factor.

III. PROPOSED WORK

The approach presented in this paper views the adversarial
game setting as similar to how humans learn to play games.
The initial stage involves humans playing the game randomly
against an adversary, which may result in poor performance.
However, with multiple trial games, humans continuously

improve their skills. If the adversary is fixed, the human
can only reach the level of the adversary’s skill. But when
the human and the adversary are in a similar skill range
and the adversary is able to improve, then both parties start
developing until no further improvement is possible. This
stage is referred to as ”self-play,” where the human plays
against a version of itself. In self-play, the human player
continuously refines its strategies and adapts to the changing
behavior of the adversary, leading to an iterative process
of improvement. This approach mimics how humans learn
through practice and experience, gradually honing their skills
over time. Self-play allows for dynamic adaptation to the
changing environment, as the human player learns from their
own actions and refines their strategies accordingly.

Fig. 1. Proposed algorithm

In our approach, the adversary is modeled using the
probability transition function Pk : S×A× S→ [0,1] which
is constantly evolving with respect to iteration k. At each
iteration k, the agent attempts to subdue the adversary by
finding the optimal policy π∗k with respect to the current
MDP model with probability transition function Pk. At this
stage, the roles are flipped, where the agent now plays
the game from the adversary end and a new adversary
defined by Pk+1 which is based on the optimal policy π∗k+1
obtained in the previous iteration plays from the other end.
Since we are considering only symmetric games, the flip
operation is possible. Symmetry refers to games where the
same actions and rules apply to all players, and the outcome
of the game is unchanged when players swap positions or
when the game is reflected or rotated. Many popular board
games such as chess, checkers, and Go exhibit symmetry.
We refer to this step as the model improvement step. This
improvement step allows the agent to continuously adapt
to the changing behavior of the adversary and refine its
strategies accordingly, resulting in an iterative process of
improving the model of the adversary. To elucidate this
further, we define the operator I(s,a), s ∈ S, a ∈ A which
returns the intermediate state after action a is applied to
state s by the agent. This intermediate state is not among
the state space of the agent. This state will not be seen by
the agent, instead, this state is visible only to the opponent
on which he performs his action. In the case of tic-tac-toe,
this intermediate state is the immediate board configuration
just after the agent places his symbol and just before the
opponent places his symbol. The probability P(next state =
s′|current state = s,current action = a) can be viewed as
P(next state = s′|intermediate state = I(s,a)) which is the
probability of transitioning from the intermediate state to the
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Algorithm 1 Proposed Algorithm
Input: S,A,R, I,γ,α ∈ (0.5,1],ε > 0
Output: π∗

1. Initialization:
for (s ∈ S,a ∈ A) do

P0(s,a, .) ∼U(0,1) Initial transition probabilities are
uniform
end for

k← 0
2. Model Improvement:
while (π∗k improves) do

Initialize V0,V−1 ∈ R|S|,π0,π−1
t← 0
while πt ̸= πt−1 do

2.1 Policy Evaluation:
while (∥Vj−Vj−1∥∞ ≥ ε) do

Vj+1(s)← ∑s′ Pk(s,πt(s),s′)[R(s,πt(s),s′)+
γVj(s′)], ∀s ∈ S

j← j+1
end while
Vt+1←Vj
2.2 Policy Improvement:
πt+1(s)← argmaxa∈A(s) ∑s′ Pk(s,a,s′)[R(s,a,s′)+

γVt+1(s′)], ∀s ∈ S
t← t +1

end while
π∗k ← πt
for (s ∈ S,a ∈ A(s),s′ ∈ S(s)) do

/* S(s) and A(s) are the valid states
and actions possible from s */

s̄← I(s,a)
if (I(s̄,π∗k (s̄)) = s′) then

Pk+1(s,a,s′) = α /* Model updation using
the previous optimal policy */

else
Pk+1(s,a,s′) = 1−α

|S(s)|−1 /* Non-optimal transi-
tions are chosen uniformly at random */

end if
end for
k← k+1

end while
return π∗k

next state s′. Essentially this is the distribution followed by
the opponent when playing the game. The next probability
transition function Pk+1 is defined as follows: For every
possible tuple (s,a,s′):

- If the state s′ is the obtained by applying an ac-
tion π∗k (I(s,a)) on the intermediate state I(s,a), then
Pk+1(s,a,s′) = α , where α ∈ (0.5,1] is fixed a priori.

- Else the weight is uniformly distributed over the re-
maining transitions resulting from the intermediate state
I(s,a).

Essentially, this implies that the opponent considers the
action suggested by the previous optimal policy with high
probability mass (α) while considering the remaining possi-
ble actions with low probabilities. This process is repeated
until no further improvement in the policy is recognized. The
improvement is measured based on the number of games the
policy beats, namely wins or in the worst case ties, and the
number of games it loses. The use of probability mass α for
suggesting actions from the previous optimal policy, along
with low probabilities for remaining actions, implies a form
of exploration-exploitation trade-off, where the algorithm
balances between trying out new actions and exploiting the
currently known optimal actions. As a caveat, the initial prob-
ability transition function is generated uniformly at random,
i.e., for each state s, the transition probabilities follow a
uniform distribution. The reward function and discount factor
remain unchanged throughout the iterations.

IV. GAMES & RESULTS

We evaluated our proposed algorithm exhaustively in
various game settings which include tic-tac-toe(3× 3,4×
4), domineering(4× 4,5× 5), cram and dots & boxes. By
exhaustive we mean that the resultant policy is played for
all possible games by considering all possible sequences of
moves the opponent could make. Tic-tac-toe, domineering,
cram, and dots & boxes are all popular games with different
complexities and strategies, and testing our algorithm in
these different settings can provide valuable insights into
its strengths and weaknesses. For all the tested games, the
algorithm could produce no-loss strategies. However, except
for tic-tac-toe, all other games have a first/second-mover
advantage. So, for these games, the algorithm can find the
no-loss strategy in cases where the agent has the advantage,
and for the rest, the number of losses is minimal.

A. Tic-Tac-Toe

Tic-tac-toe is played on a 3×3 empty grid where players
choose either the symbol X or O. Players then take turns
filling the board with their initially chosen symbol. The first
player to complete a diagonal, row, or column with their
symbol is the winner. If no one wins and the grid is full,
then the game ends in a tie. Here, the game complexity is
as follows: |S|= 5479 and |A|= 10.

1) Tic-Tac-Toe 3×3: The algorithm required 4 iterations
of model improvement to reduce the losses to zero. After
the first iteration i.e., after training against the initial ran-
dom adversary, the number of losses is still significant. In
each further iteration, the losses are reduced, indicating the
improvement of the policy over the flips.

2) Tic-Tac-Toe 3×3 with Deep Q-Learning: We consider
a variation of our algorithm in which we use deep Q-learning
to obtain the optimal policy at each instant on a reduced
state space version of tic-tac-toe 3× 3. The whole setup is
unchanged, except that the deep neural network is now used
to get the optimal policy, which necessitates the generation
of several game episodes. The model improvement step is
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Fig. 2. Tic Tac Toe 3×3

performed using the optimal policy returned by the deep Q-
learning method. We consider different deep RL algorithms
like A2C, PPO, and DQN. However, only A2C could con-
verge. In each iteration, we train the deep neural network for
106 steps and then extract policy for model improvement.
Note that deep RL methods are approximation methods and
we could not achieve a zero-loss policy due to the inherent
approximation bias.

Fig. 3. Tic Tac Toe 3×3 - Deep Q-Learning

3) Tic-Tac-Toe 4× 4: The grid dimension is 4× 4 and
the players have to complete a row, column, or diagonal to
win. The game complexity leaps multi-fold compared to its
3×3 counterpart with |S|= 9722012 and |A|= 17. Just like
for tic-tac-toe 3×3, our algorithm performs well for 4×4.
The number of possible games is as huge as eleven million.
After the first model improvement iteration, the losses were
close to 1.4×105. But, as more iterations are performed, the
losses decrease drastically to 0.

B. First/Second Mover Advantage

Games such as domineering, cram, and dots & boxes
possess the First/Second mover advantage, where the player
who starts first (similarly second) has an edge for winning in
case of first (similarly second) mover advantage. This means

Fig. 4. Tic Tac Toe 4×4

that when two expert players play against each other, the
outcome of the game depends entirely on who made the first
(or second) move. However, the first mover advantage does
not make the game outcome predetermined. Even though a
game possesses the first-mover advantage, the player still has
to make intelligent moves to win, however, there is always
a way to win. So, learning is still required to deduce the
way to win if the agent starts the game. Because of the
first mover advantage, no matter how much the agent is
trained, an expert opponent can still win if he starts first.
So, to evaluate our algorithm against these kinds of games,
we consider two kinds of comparisons for an unbiased
performance evaluation. In the first one, the policy is tested
for all the possible games in which the agent makes the first
move, and in the second one, the policy is tested against all
possible games in which the opponent makes the first move.

C. Domineering

Domineering game is a perfect information board game
played over a 2D grid of dots. One of the players links
only vertically adjacent dots while the other links only the
horizontal ones. A dot cannot be linked more than once.
The first player with no moves left loses. Since the game
will eventually end with one of the players unable to move,
the game never ends in a draw.

1) Domineering 4×4: Figures 5 and 6 show the results
for two scenarios respectively, one when the agent starts the
game, and the other when the opponent starts the game.
With just two model improvement iterations, our algorithm
can find a no-loss strategy for all those games in which the
agent makes the first move. In the latter scenario, the policy
was tested against all those games in which the opponent
makes the first move. Because of the first mover advantage,
there exists no policy for which the number of losses is zero.
But, the algorithm attempts to reduce the number of possible
games in which the opponent wins. After the first iteration,
the number of losses is 9, but it got reduced to 6 in the next
iteration and got stagnant at 6 in further iterations. Here, the
game complexity is as follows: |S|= 3121 and |A|= 13.
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Fig. 5. Domineering 4×4 : Agent plays first.

Fig. 6. Domineering 4×4 : Adversary plays first.

2) Domineering 5× 5: Unlike, domineering 4× 4, dom-
ineering 5× 5 has a second-mover advantage. This means
that if a player does not make the first move and plays
intelligently, then he/she always wins. Our algorithm could
find the optimal policy for all those games, where the
opponent starts the game in only two model improvement
steps. Also for those games in which the agent makes the
first move, our algorithm minimizes the number of losses.
Here, the game complexity is as follows: |S| = 723997 and
|A|= 21.

D. Cram

Cram is a two-player abstract strategy board game similar
to domineering. The game consists of a 2D grid of dots. The
players take turns linking two adjacent dots with either a
vertical or a horizontal line. A dot cannot be linked more
than once. The player with no moves left loses. Since there
is always a player with no moves left, the game never
ends in a draw. The only difference between this game and
domineering is that in domineering a player will have to
place either a vertical or horizontal edge throughout the
game, whereas in cram, a player can choose to place any of
the edges at each step of the game. Here the game complexity
of a 4×4 cram game is as follows: |S|= 5700, |A|= 25.

Fig. 7. Domineering 5×5 : Agent plays first.

Fig. 8. Domineering 5×5 : Adversary plays first.

Fig. 9. Cram 4×4: Agent plays first.

Cram has a second-mover advantage. But unlike domineer-
ing, the number of losses is much higher than the number
of wins when the agent plays first. This suggests that cram
has a very explicit second-mover advantage. Here also, our
algorithm minimizes the number of losses. Further, when the
opponent makes the first move, our algorithm can find the
optimal policy in only three model improvement iterations.
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Fig. 10. Cram 4×4: Adversary plays first.

E. Dots and Boxes

The game of dots and boxes is also played on a 2D grid
of dots. Players join two vertically or horizontally adjacent
dots, creating squares. If a player completes the fourth side
of a square, it gets assigned to them and also they get the
next turn. In the end, the player with the maximum number
of squares assigned wins. Even though the rules of the game
are simple, the game dynamics are complex and require some
skillful play on the part of the players. The game complexity
of 3×3 version is as follows: |S|= 5286, |A|= 13.

Fig. 11. 3×3 Dots and Boxes: Agent plays first

Dots and Boxes have a first-mover advantage. It is inter-
esting to note that, it took five model improvement iterations
to achieve the optimal policy. By the end of three model
improvement iterations, the number of losses is reduced to
zero, but there are still some ties. In the next two iterations,
the algorithm could reduce the number of ties to zero as well.
So, if the agent makes the first move, it is guaranteed that
the agent will certainly win, there is not even a chance for
the opponent to tie the game.

V. CONCLUSION
In this paper, we propose a self-play-based approach for

generating efficient and competent no-loss policies for mod-

Fig. 12. 3×3 Dots and Boxes: Opponent plays first

erate state-space, symmetric, and adversarial board games.
Our algorithm could deduce no-loss policies that require
a minimum number of moves for different board games
of varying complexities. By eliminating the need for input
game episodes and relying on self-play, our algorithm offers
scalability and adaptability for various board games, making
it a promising approach for developing game-playing agents.
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