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Abstract— We consider particles that are conditioned to
initial and final states. The trajectory of these particles is
uniquely shaped by the intricate interplay of internal and
external sources of randomness. The internal randomness is
aptly modelled through a parameter varying over a deter-
ministic set, thereby giving rise to an ensemble of systems.
Concurrently, the external randomness is introduced through
the inclusion of white noise. Within this context, our primary
objective is to effectively generate the stochastic bridge through
the optimization of a random differential equation. As a
deviation from the literature, we show that the optimal control
mechanism, pivotal in the generation of the bridge, does not
conform to the typical Markov strategy. Instead, it adopts a
non-Markovian strategy, which can be more precisely classified
as a stochastic feedforward control input. This unexpected
divergence from the established strategies underscores the
complex interrelationships present in the dynamics of the
system under consideration.

I. INTRODUCTION
This paper concerns the problem of conditioning a Markov

process at two endpoints. This problem was first studied by
Schrodinger in [1] which we postulate as follows; assume
some fully observed particles, with density ρ0 at time t = 0,
evolve according to a Markov process in Rd with density

qB(s, x, t, y) :=
1

(2π(t− s))
d
2

exp

(
−∥x− y∥2

2(t− s)

)
, (1)

where 0 ≤ s ≤ t ≤ tf and x, y ∈ Rd. Suppose at time
t = tf the particles are observed to have a distribution ρf ,
where

ρf (xf ) ̸=
∫
Rn

qB(0, x0, tf , xf )ρ0(x0)dx0.

Then, ρf deviates from the law of large numbers. This means
that our assumption of the Markov process is inaccurate. The
following question arises:

1) What density q satisfies

ρf (xf ) =

∫
Rn

q(0, x0, tf , xf )ρ0(x0)dx0.

2) Among such densities q, which one is closest to qB in
some suitable sense.

Statement 1 and 2 constitute the Schrodinger bridge problem
and the most likely stochastic process {X(t)}0≤t≤tf such
that the densities of the distributions of X(0) and X(tf ) co-
incides with ρ0 and ρf , respectively, is called the Schrodinger
bridge.
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An important feature of the Markov process is that it
is non-degenerate. That is the stochastic term affects all
directions in the coordinate space. Related to our work and
motivated by questions regarding the transport of particles
having inertia, the case where the Markov process is degener-
ate has been studied in [2]. Irrespective of the type of Markov
process, it is well-established that stochastic bridges are
generated from stochastic optimal control problems (see [2]–
[8] and reference therein).

Our problem is motivated by ensemble-based Reinforce-
ment Learning [9]. In ensemble-based Reinforcement Learn-
ing, the Ornstein-Uhlenbeck (OU) process is a valuable
tool for random exploration when an agent has no prior
knowledge of how a system’s states transition from one to
another [10]. One can envision a similar scenario where a
robot learns to navigate in a new environment. Initially, the
robot knows nothing about the environment’s dynamics, such
as how it moves from one state to another. To effectively
learn and make informed decisions, the robot must explore
its surroundings randomly.

We consider an ensemble of stochastic processes [11],
[12], much like a collection of robots [13], [14] attempting
to explore a new environment for the first time (or a
robot’s various attempts to explore its new environment).
Each process, indexed by a parameter, represents a potential
trajectory or path the robot might take. Our ultimate goal is to
find the paths that are conditioned to meet certain statistical
criteria, such as achieving bridging a given state end-points
or behaviours. In the context of OU processes, our goal is
geared toward understanding its typical behaviour, mean-
reverting tendencies, and statistical characteristics which
are consistent with the end-states. In this case, averaging
the ensemble of OU processes is a practical and effective
approach. That is by averaging the ensemble of OU, one
can emphasize the mean-reverting behaviour and understand
how the system tends to gravitate back to its central trajectory
over time. We state here that studying an ensemble of OU
processes is not new. In [15], they provided a mathematical
framework to study the statistical properties of the centre-of-
mass variable and its relation to the individual processes in
the ensemble of OU. In particular, they determined a non-
autonomous stochastic differential equation (SDE) satisfied
by a process that is equivalent in distribution to the centre-of-
mass variable of an ensemble of the OU processes. Further-
more, they established the equivalence in the distribution of
the centre-of-mass variable with a randomly scaled Gaussian
process (the product of a non-negative random variable and
a Gaussian process). We state here that in as much as the
centre-of-mass variable can be used to estimate the average
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concentration over the parameters, our result focuses on the
average.

Following from [2]–[8], in our case, the ensemble nature
of the Markov process in our problem adds its own set of
technical challenges in solving the corresponding stochastic
optimal control problem. It turns out that averaging an
ensemble of Markov processes fails to be a Markov process
and seems to represent a more complex stochastic process
than is usually encountered in the literature [2], [16]–[18].
Therefore, the standard tools in [2], [6]–[8] used to generate
a bridge will not be applicable in our case. To overcome this
challenge, we rely on the equivalent discrete-time stochastic
optimal control problem and characterize the optimal control
through the approximation of the continuous-time stochastic
process. We show that the parameter-independent optimal
control that bridges the endpoint condition for an ensemble of
Markov processes is a stochastic feedforward control input.
This deviates from the characterization of the optimal control
that induces a stochastic bridge (see [2], [6]–[8], [16]–[19]).
The distinction follows from the fact that, in a standard
Markov process, it is possible to track that state and feed
it back into the system to achieve the bridge. This leads to
the optimal control strategy being a Markov Strategy. In our
case, as you will see, it is not possible to track the average
of an ensemble of a given Markov process. Thus leading to
an stochastic feedforward control. In stochastic feedforward
control, the control input is determined based on past and
present values of the noise. Optimal feedforward controllers
have been described in [20], [21], where it is assumed that
the control input is obtained from the output of a linear
dynamic system driven by white noise. This characteriza-
tion of control has applications in flight system control of
robotics and crystal growth of power transmission networks
(see [20]–[23] and reference therein). Secondly, unlike in [2]
where controllability of the system is relevant to establish
the Schrodinger bridge for the case of degeneracy, as we
showed in [24], our result relies on the so-called averaged
observability inequality [25]–[28] which is equivalent to the
invertibility of a matrix (see [24]). This matrix is used to
solve both the Schrodinger bridge problem and hence design
the optimal control for our problem. We state here that
our result is related to ensemble control theory [13], [14],
[29]–[31] which is motivated by quantum systems [32] and
also robust control theory [11], [12] and has applications
in a variety of fields including engineering [33]–[35] and
economics [36]–[39].

The organization of the paper is as follows; We discuss the
notion of stochastic averaged control problem in Section II.
We state conditions under which this is possible. After that,
we state the problem statement and follow with the main
result in Section III. We conclude with remarks on future
work in Section IV.

II. STOCHASTIC AVERAGED ENSEMBLE CONTROL

Consider the ensemble of a controlled Markov process
defined on a naturally filtered probability space (Ω,F ,P) as

follows

dX(t, θ) =A(θ)X(t, θ)dt+B(θ)u(t)dt+
√
ϵB(θ)dW (t),

X(0, θ) =x0,
(2)

where X(t, θ) ∈ Rd, is the random state of an individual
system at time t indexed by the sample point θ ∈ Ω, A :
Ω → Rd×d and B : Ω → Rd×m are measurable mappings
such that supθ∈Ω ∥A(θ)∥ < ∞ and supθ∈Ω ∥B(θ)∥ < ∞,
where the norm here is the Frobenius norm on the space
of matrices, u ∈ L1([0, tf ];Rm) is a parameter-independent
control input, and x0 is an initial d-dimensional deterministic
vector and {W (t)}t≥0 ⊂ Rm is the Wiener process such that
W (0) = 0. Note that the Markov process indexed by θ at
time t is characterized by

X(t, θ) = eA(θ)tx0 +

∫ t

0

eA(θ)(t−τ)B(θ)u(τ)dτ+

√
ϵ

∫ t

0

eA(θ)(t−τ)B(θ)dW (τ). (3)

For reasons that will be clear later, for now, we study
the controllability of this Markov process in an appropriate
sense. Since the system parameter is unknown but belongs
to a deterministic set Ω, it is natural to control the average
over the parameter. For simplicity of presentation, we assume
that the probability space (Ω,F ,P) is a uniform distributed
probability space with Ω = [0, 1]. To this end, we proceed
to the following definition.

Definition 2.1: The ensemble of linear stochastic sys-
tem (2) is said to be averaged controllable if, for any
initial state x0 ∈ Rd, final state xf ∈ Rd, and final
time tf , there exists a parameter-independent control input
u ∈ L1([0, tf ];Rm) such that the ensemble of states in (3)
satisfies

E
∫ 1

0

X(tf , θ)dθ = xf .

Note that by the linearity of the stochastic system (2), the
expectation of the control will drive the deterministic part of
the dynamics (2) in the averaged sense. We proceed to the
following useful result.

Proposition 2.1: If the matrix

Gtf ,0 :=

∫ tf

0

(∫ 1

0

eA(θ)(tf−τ)B(θ)dθ

)
(∫ 1

0

BT(θ)eA
T(θ)(tf−τ)dθ

)
dτ, (4)

is invertible then, the linear stochastic system (2) is said to
be averaged controllable.

Proof: Suppose Gtf ,0 is invertible and for any initial
state x0 ∈ Rd, final state xf ∈ Rd consider

u(t) =

(∫ 1

0

BT(θ)eA
T(θ)(tf−t)dθ

)
G−1

tf ,0(
xf −

(∫ 1

0

eA(θ)tf dθ

)
x0

)
. (5)
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From (3), since

X(tf , θ) = eA(θ)tfx0 +

∫ tf

0

eA(θ)(tf−τ)B(θ)u(τ)dτ+

√
ϵ

∫ tf

0

eA(θ)(tf−τ)B(θ)dW (τ), (6)

by substituting (5) in (6), we obtain E
∫ 1

0
X(tf , θ)dθ = xf .

This finishes the proof.

III. PROBLEM STATEMENT AND MAIN RESULT

Consider an ensemble of processes governed by

dX(t, θ) = A(θ)X(t, θ)dt+
√
ϵB(θ)dW (t), (7)

with initial condition

X(0, θ) = x0, almost surely (a.s).

Problem 1: Our goal is to find solutions that are conditioned
to have ∫ 1

0

X(tf , θ)dθ = xf , a.s. (8)

To characterize such solutions, suppose ϵ = 0, then to
ensure that (8) is satisfied, one needs to solve the optimal
control problem

c(x0, xf ) := min
u∈U

xf
x0

∫ tf

0

1

2
∥u(t)∥2dt, (9)

where Uxf
x0 is the set of control inputs such that

∂x

∂t
(t, θ) =A(θ)x(t, θ) +B(θ)u(t),

x(0, θ) =x0 and
∫ 1

0

x(tf , θ)dθ = xf , (10)

has a solution. This tends to measure the optimal change
in the drift of the ensemble of the autonomous system that
ensures that condition (8) is satisfied. The fact that the final
conditional state in (8) is parameter-independent motivates
the quest to find a parameter-independent control. If the
control depends on θ ∈ [0, 1], it might lead to different
behaviours for different realizations, making it challenging
to ensure that (8) is satisfied a.s. Another motivation derived
from the condition (8) is that the natural quantity one
observes is the average over the parameter θ ∈ [0, 1]. A
more general problem relating to (9)-(10) has been studied
in [24]. They showed that the optimal value of the control
that steers the average of the ensemble of systems in (10) is
characterized by the Euclidean distance

c(x0, xf ) =
1

2

∥∥∥∥xf −
(∫ 1

0

eA(θ)tf dθ

)
x0

∥∥∥∥2
G−1

tf ,0

, (11)

where ∥x∥2
G−1

tf ,0

= xTG−1
tf ,0

x, for all x ∈ Rd, whenever G0,tf

in (4) is invertible.

From this observation, let

qϵ,G(s, x, t, y) = (2πϵ)−
d
2 (det(Gt,s))

− d
2

exp

(
− 1

2ϵ

∥∥∥∥y − (∫ 1

0

eA(θ)(t−s)dθ

)
x

∥∥∥∥2
G−1

t,s

)
(12)

where Gt,s is defined in (4) with t = tf and s = 0, be
the transition density of the particles moving independently
of each other according to the average diffusion in (7).
Then, following from [6]–[8], the solutions of (7) condition
to be (8) is characterized by the stochastic optimal control
problem

Problem 2 : min
u∈U

E
[∫ tf

0

1

2
∥u(t)∥2dt

]
, (13)

subject to

dX(t, θ) = A(θ)X(t, θ)dt+B(θ)u(t)dt+
√
ϵB(θ)dW (t),

X(0, θ) = x0 a.s and
∫ 1

0

X(tf , θ)dθ = xf , a.s.

(14)

To be more precise, if u ∈ U ⊂ L2([0, tf ];Rm), then;

1) u(t) is x(t)-measurable, where x(t) :=
∫ 1

0
X(t, θ)dθ

with X(t, θ) characterized in (3), for all t ∈ [0, tf ],
2) E

[∫ tf
0

1
2∥u(t)∥

2dt
]
< ∞,

3) u achieves averaged controllability (see Definition 2.1)
for (14).

Note that in this setting, since we aim to steer the final state
to our desired state, the only information available to us is
the past and present noise. Here we state our main result.

Theorem 3.1: Suppose Gtf ,s, for all 0 ≤ s < tf , in (4) is
invertible. Then the optimal control for (13) subject to (14)
is characterized as

u∗(t) = −
√
ϵ

∫ t

0

Φ(tf , t)
TG−1

tf ,τ
Φ(tf , τ)dW (τ)

+ Φ(tf , t)
TG−1

tf ,0
xf . (15)

where

Φ(tf , τ) =

∫ 1

0

eA(θ)(tf−τ)B(θ)dθ. (16)

Note that re-centring the initial ensemble of systems at the
origin 0 holds no bearing on the system’s characterization,
given its inherent linearity. However, we see that the char-
acterization of the optimal control is a departure from the
conventional stochastic optimal control literature, where the
optimal control assumes the form of a Markov strategy [17],
[19]. In particular, when dealing with a Markov process
subject to parameter perturbations, the optimal control that
steers the stochastic bridge adopts an approach—a stochastic
feedforward input, to be precise. This unique characterization
emerges because of the intricate presence of parameters
within the system, further complicating the endeavour to
trace the ensemble’s average behaviour. The exhaustive proof
is omitted due to spatial constraints, with the subsequent
sections devoted to illuminating the rationale behind this
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assertion. The remainder of this paper articulates the intricate
dynamics that lend credence to this phenomenon.

Remark 3.1: To highlight more on the novelty of the
above problem, following from [6] we have that prob-
lem (13)-(14), where X(0, θ) ∼ µ0 and

∫ 1

0
X(t, θ)dθ ∼

µf and µ0, µf are given initial and final distributions, is
the stochastic control approach to the Schrodinger bridge
problem

min
γ∈Π(µ0,µf )

∫
Rd×Rd

ϵγ(x0, xf )

log

 γ(x0, xf )

exp
(
− c(x0,xf )

ϵ

)
 dx0dxf , (17)

where c is in (11). Therefore, aside from the fact that
problem (13)-(14) is the Dirac extension of [24] to include
white noise, more importantly, it also extends the works
in [1], [2], [40], [41] to the case where the Markov process
is generated from a linear diffusion which is submitted to
parameter perturbations.

Since we require the control u(t) at time t to be x(t)-
measurable, our object of interest is the controlled-average
process

x(t) =

∫ t

0

Φ(t, τ)(u(τ)dτ +
√
ϵdW (τ)), (18)

where we have re-centred the dynamics to initialize at 0,
without any loss and Φ(t, τ) is defined in (16).

Therefore, the optimal control problem (13)-(14) is equiv-
alent to the optimal output control problem (13) subject
to (18), where the final state is conditioned to be x(tf ) = xf

a.s. Rather than solving problem (13) subject to (18) condi-
tioned to satisfy x(tf ) = xf , we consider the corresponding
alternative free-endpoint formulation

min
u

J(u) := E
[
a(x(tf )− xf )

T (x(tf )− xf )+∫ tf

0

1

2
∥u(t)∥2dτ

]
(19)

subject to (18), where a > 0. Note that the optimal solution
for (13) subject to (18), is obtained by taking a → ∞. More
precisely, if

lim
a→∞

∥u∗
a − u∗∥2L2([0,tf ];Rm) = 0,

where u∗
a is the optimal control for (19) subject to (18), then

u∗ is the unique optimal solution for (13) subject to (18).
We emphasize here that Φ(t, τ) ∈ Rd×m in (16) is not

a transition matrix in general. The only affirmative case is
where A = A(θ), for all θ ∈ [0, 1]. In the latter case,
the average process (18) satisfies the time-invariant linear
diffusion process

dx(t) =Ax(t)dt+Bu(t)dt+
√
ϵBdW (t),

x(0) =x0 and x(tf ) = xf (20)

where B =
(∫ 1

0
B(θ)dθ

)
and the controllability of the pair

(A,B) plays a major role in establishing results similar

to [2]. In particular, if the system (7) is submitted to
parameter perturbation only in the diffusive coefficient and
(A,B) is a controllable pair, then by averaging and then
solving the standard stochastic linear-quadratic optimal con-
trol problem (19) subject to (20) we generate the Brownian
bridges with desired statistics (see [2]).

On the other hand, for a fixed A ∈ Rd×d, one can check
that the average process (18) satisfies the dynamics

dx(t) =

(
Ax(t) +Bu(t) +

∫ t

0

FA(θ),B(θ)(τ, t)(u(τ)dτ

+
√
ϵdW (τ))

)
dt+

√
ϵBdW (t), (21)

where

FA(θ),B(θ)(τ, t) :=

∫ 1

0

(A(θ)−A) eA(θ)(t−τ)B(θ)dθ.

In this context, employing the variational approach to opti-
mize (19) subject to (21) reveals some significant challenges.
The drift term within (21) assumes the form of a con-
trolled Ito process, causing this equation to deviate from the
conventional definition of a stochastic differential equation
(SDE), (see for instance [17], [19]). Therefore, the average
random differential equation (21) seems to represent a more
complex stochastic process than is usually encountered in the
literature [2], [16]–[18]. However, the real-world significance
of (21) resides in the average process delineated by (18).
This formulation captures the central tendency behaviour of
the system’s fluctuations, thereby holding practical impor-
tance. Consequently, standard stochastic control techniques,
including those rooted in Hamilton-Jacobi Bellman (HJB)
conditions [17], [19], prove unsuitable for this scenario. An
alternative avenue lies in the PDE approach [3]–[8], yet the
presence of noise within the drift term presents challenges
when adapting the corresponding parabolic PDE. As a result,
the methods delineated in [6]–[8] and related references are
not readily applicable.

These observations collectively imply that the optimal
control strategy for problem (13)-(14), or its equivalent form
involving (18), cannot be a Markov strategy. Intriguingly
unrelated, this insight also signifies the formidable nature
of stabilizing the average process.

Special Case: Before delving into solution techniques, let
us consider the classical case. Consider particles governed
by the following equations:

dx(t) =
√
ϵdW (t),

x(0) =0, almost surely (a.s). (22)

Our primary goal is to ensure that, at the final time x(tf ) = 0
a.s. In this special case, since Φ(tf , t) = Id×d, for all t ≥
tf and Gtf ,τ = (tf − τ)Id×d, we have that the stochastic
feedforward control input in (15) reduces to

u∗(t) = −
√
ϵ

∫ t

0

(tf − τ)−1dW (τ). (23)

What is interesting is that under these conditions, this
optimal stochastic feedforward control input simplifies into
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a Markovian control strategy. To get to this point, we follow
the approach outlined in [2]. This involves solving (13),
which leads us to (19) subject to (20), where A = 0d×d ∈
Rd×d and x0 = xf = 0. Utilizing the HJB conditions [17],
[19] and taking limit as a → ∞, we arrive at the following
expression for the optimal control u∗:

u∗(t) = −(tf − t)−1x(t), (24)

Notably, by substituting u∗ in (24) into (20), where A =
0d×d ∈ Rd×d and x0 = xf = 0, we find that the closed-loop
trajectory is:

x(t) =
√
ϵ

∫ t

0

e
∫ τ
t
(tf−α)−1dαdW (τ),

thus,

x(t) =
√
ϵ(tf − t)

∫ t

0

(tf − τ)−1dW (τ). (25)

By substituting (25) into (24) we obtain (23). This illustrates
that in cases where the system is not an ensemble, the feed-
forward control input in reduces to the Markovian strategy
in (24).

Equivalent discrete-time optimal control problem: To
solve problem (19)-(18), we transform the problem (19)-(18)
to an equivalent discrete-time optimal control problem. We
partition over time so that it is consistent with the definition
of the Ito integral [16]–[18]. To this end, let P := {0 = t0 <
t2 < · · · < tk−1 = tf} be a regular partition with constant
step size △tk = ti+1−ti, for any i ∈ {1, . . . , k} and suppose
uk,i = u(ti) is a constant x(ti)-measurable random variable
in L2[ti, ti+1), where i ∈ {0, . . . , k − 1} and consider the
discrete-time optimal control problem

min
uk

Jk(uk) := E
[
a(xk − xf )

T (xk − xf )+

1

2

k−1∑
i=0

uT
k,iuk,i△tk

]
, (26)

subject to

xk =

k−1∑
i=0

Φi(tf )
(
uk,i△tk +

√
ϵ△Wi

)
(27)

where xk := x(tk) ∈ Rd, uk := (uk,0, . . . , uk,k−1) ∈
(Rm)k, Φi(tf ) := Φ(tf , ti) ∈ Rd×m and △Wi :=
W (ti+1)−W (ti) ∈ Rm. We call this problem the equivalent
discrete-time optimal control problem because the solu-
tion (26)-(27) is exactly the same as the solution for (19)
subject to (18) (see [42], [43]). We proceed to characterize
the optimal control. We omit the proof due to space limita-
tions.

Proposition 3.1: Suppose Gtf ,s, for all 0 ≤ s < tf ,
in (4) is invertible. Then the optimal control for (26)- (27)

is characterized as

u∗
a,k,i =

−
√
ϵ

i∑
j=0

Φ(tf , ti)
T (

k−1∑
α=j

Φ(tf , tα)Φ(tf , tα)
T△tk+

1

2a
In)

−1

Φ(tf , tj)△Wj +Φ(tf , ti)
T (

k−1∑
α=0

Φ(tf , tα)Φ(tf , tα)
T△tk

+
1

2a
In)

−1xf .

From this result, we have that

lim
a→∞

lim
k→∞

∥u∗
a,k − u∗∥2L2([0,tf ];Rm) = 0,

where u∗ is in (15).

IV. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the problem of condition-
ing a Markov process, subjected to parameter perturbations,
to initial and final states. The central motivation behind this
endeavor lies in our quest to understand and control the dy-
namics of ensembles of systems characterized by stochastic
processes. Specifically, we have explored the problem of
steering an ensemble of linear stochastic systems toward
average behavior, irrespective of the underlying parameter
perturbations. Our investigation has revealed that due to the
inherent complexity introduced by parameter perturbations,
the optimal control for this problem cannot adopt a tradi-
tional Markov strategy. Instead, we’ve uncovered a unique
characterization of the optimal control, involving a stochastic
feedforward input that relies on a time-varying drift. One
can view the end-point conditions as Dirac distributions for
particles emanating and absorbed at particular points in phase
space.

This characterization provides a powerful tool for con-
trolling and modelling general distributions of particles and
interpolation of density functions. This leads to a more
general Schrodinger bridge problem- the problem of steering
of particles between specified marginal distributions where
velocities are uncertain or form an ensemble of systems.
In this case, the Schrodinger bridge problem is related to
optimal transport problem [24], [40], [41], [44]–[46]. In
particular, it is known that if the diffusivity turns to zero,
the solution of the Schrodinger bridge problem turns to the
solution of the optimal transport problem [47]–[53]. This
extension and other related problems are the subject of
ongoing work.

REFERENCES
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