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Abstract— We consider a setting where a supervisor delegates
an agent to perform a certain control task, while the agent
is incentivized to deviate from the given policy to achieve its
own goal. In this work, we synthesize the optimal deceptive
policies for an agent who attempts to hide its deviations from
the supervisor’s policy. We study the deception problem in the
continuous-state discrete-time stochastic dynamics setting and,
using motivations from hypothesis testing theory, formulate a
Kullback-Leibler control problem for the synthesis of deceptive
policies. This problem can be solved using backward dynamic
programming in principle, which suffers from the curse of
dimensionality. However, under the assumption of deterministic
state dynamics, we show that the optimal deceptive actions
can be generated using path integral control. This allows
the agent to numerically compute the deceptive actions via
Monte Carlo simulations. Since Monte Carlo simulations can
be efficiently parallelized, our approach allows the agent to
generate deceptive control actions online. We show that the
proposed simulation-driven control approach asymptotically
converges to the optimal control distribution.

I. INTRODUCTION

We consider a deception problem between a supervisor
and an agent. The supervisor delegates an agent to perform a
certain task and provides a reference policy to be followed in
a stochastic environment. The agent, on the other hand, aims
to achieve a different task and may deviate from the reference
policy to do its own task. The agent uses a deceptive policy
to hide its deviations from the reference policy. In this work,
we synthesize the optimal policies for such a deceptive agent.

We formulate the agent’s deception problem using moti-
vations from hypothesis testing theory. We assume that the
supervisor aims to detect whether the agent deviated from
the reference policy by observing the state-action paths of
the agent. On the flip side, the agent’s goal is to employ a
deceptive policy that achieves the agent’s task and minimizes
the detection rate of the supervisor. We design the agent’s
deceptive policy that minimizes the Kullback-Leibler (KL)
divergence from the reference policy while achieving the
agent’s task. The use of KL divergence is motivated by the
log-likelihood ratio test, which is the most powerful detection
test for any given significance level [1]. Minimizing the KL
divergence is equivalent to minimizing the expected log-
likelihood ratio between distributions of the paths generated
by the agent’s deceptive policy and the reference policy. We
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also note that due to the Bratagnolle-Huber inequality [2],
for any statistical test employed by the supervisor, the sum
of false positive and negative rates is lower bounded by a
decreasing function of KL divergence between the agent’s
policy and the reference policy. Consequently, minimizing
the KL divergence is a proxy for minimizing the detection
rate of the supervisor. We represent the agent’s task with a
cost function and formulate the agent’s objective function as
a weighted sum of the cost function and the KL divergence.

We assume that the agent’s environment follows discrete-
time continuous-state dynamics. When the dynamics are
linear, the supervisor’s (stochastic) policies are Gaussian,
and the cost functions are quadratic, minimizing a weighted
sum of the cost function, and the KL divergence leads to a
linear quadratic regulator problem. However, we consider a
broader setting with potentially non-linear state dynamics,
non-quadratic cost functions, and non-Gaussian reference
policies. In this case, the agent’s optimal policy does not
necessarily admit a closed-form solution. While the agent’s
problem can be solved using backward dynamic program-
ming, this approach suffers from the curse of dimensionality.

We show that, under the assumption of deterministic state
dynamics, the optimal deceptive actions can be generated
from Monte Carlo simulations of an open-loop system with-
out explicitly synthesizing a policy. This is a significant
benefit in today’s landscape of robotics research, where
widely accessible physics simulators, often referred to as
“digital twins” [3], enable high-fidelity simulations of com-
plex systems. This benefit becomes especially prominent
when traditional model-based policy synthesis is impractical
due to the complexity of acquiring analytical models for
dynamical systems.

In this paper, we propose a two-step randomized algo-
rithm for simulator-driven control for deception. At each
time step, the algorithm first creates forward Monte Carlo
samples of system paths under the reference policy. Then,
the algorithm uses a cost-proportional weighted sampling
method to generate a control input at that time step. We show
that the proposed approach asymptotically converges to the
optimal action distribution. Since Monte Carlo simulations
can be efficiently parallelized, our approach allows the agent
to generate the optimal deceptive actions online.

The contributions of this paper are threefold: 1) The work
studies a problem of deception under supervisory control for
continuous-state discrete-time stochastic systems. Given a
reference policy, we formalize the synthesis of an optimal
deceptive policy as a KL control problem and solve it using
backward dynamic programming. 2) For the deterministic
state dynamics, we propose a path-integral-based solution
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methodology for simulator-driven control. We develop an
algorithm based on Monte Carlo sampling to numerically
compute the optimal deceptive actions online. Furthermore,
we show that the proposed approach asymptotically con-
verges to the optimal control distribution of the deceptive
agent. 3) We present a numerical example to validate the
derived simulator-driven control synthesis framework.

A. Related Work

Deception naturally occurs in settings where two parties
with conflicting objectives coexist. The example domains for
deception include robotics [4], [5], [6], supervisory control
settings [7], [8], warfare [9], and cyber systems [10].

We formulate a deception problem motivated by hy-
pothesis testing. This problem has been studied for fully
observable Markov decision processes [7], partially observ-
able Markov decision processes [8], and hidden Markov
models [11]. Different from [7], [8], [11] that study discrete-
state systems and directly solve an optimization problem for
the synthesis of deceptive policies, we consider a nonlinear
continuous-state system and provide a sampling-based solu-
tion for the synthesis of deceptive policies. In the security
framework, [12], [13] study the detectability of an attacker in
a stochastic control setting. Similar to our formulation, [12],
[13] provide a KL divergence-based optimization problem.
While we consider an agent whose goal is to optimize
a different cost function from the supervisor, [12], [13]
consider an attacker whose goal is to maximize the state
estimation error of a controller.

KL divergence objective is also used in reinforcement
learning [14], [15] to improve the learning performance
and in KL control frameworks [16], [17] for the efficient
computation of optimal policies. In [17], Ito et al. studied
the KL control problem for nonlinear continuous-state space
systems and characterized the optimal policies. Different
from [17], we provide a randomized control algorithm based
on path integral approach that converges to the optimal
policy as the number of samples increases. Path integral
control is a sampling-based algorithm employed to solve
nonlinear stochastic optimal control problems numerically
[18], [19], [20]. It allows the policy designer to compute the
optimal control inputs online using Monte Carlo samples of
system paths. The Monte Carlo simulations can be massively
parallelized on GPUs, and thus the path integral approach
is less susceptible to the curse of dimensionality [21]. In
increasingly common scenarios, physical models of the sys-
tem are represented by “digital twins” which are easy to
simulate but are not necessarily easy to express as models in
the classical sense. Similar to the digital-twin technology, we
use simulation information to decide on the control inputs.

B. Notation

Let (X ,B(X )) be a measurable space where X ⊆ Rn is a
Borel set and B(X ) is a Borel σ-algebra. Suppose (Ω,F ,P)
is a probability space. An (F ,B(X ))-measurable random
variable X is a function X : Ω → X whose probability
distribution PX is defined by PX(B) = P(X ∈ B) ∀B ∈

B(X ). PX2|X1
(·|·) : B(X2) × X1 → [0, 1] represents a

stochastic kernel on X2 given X1. For simplicity, we write
PX(dx) and PX2|X1

(dx2|x1) as P (dx) and P (dx2|x1). If
P1 and P2 are probability distributions on (X ,B(X )) then,
the Kullback-Leibler (KL) divergence from P1 to P2 is
defined as D(P2∥P1) =

∫
X log dP2

dP1
(x)P2(dx) if the Radon-

Nikodym derivative dP2

dP1
exists, and D(P2∥P1) = +∞ oth-

erwise. Throughout this paper, we use the natural logarithm.
Let T = {0, 1, ..., T} be the set of discrete time indices. A
set of variables {x0, x1, . . . , xT } is denoted by x0:T and a
Cartesian product of sets X0 ×X1 × . . .×XT is denoted by
X0:T . PX0:T

(dx0:T ) denotes the joint probability distribution
of random variables X0, X1, . . . , XT on (X0:T ,B(X0:T )).

II. PROBLEM FORMULATION

We consider a setting in which a supervisor contracts an
agent to perform a certain task. Suppose the agent oper-
ates in a stochastic environment and follows discrete-time
continuous-state dynamics. Let the state transition law of the
agent be denoted by P (dxt+1|xt, ut) : B(Xt+1)×Xt×Ut →
[0, 1], where the random variables Xt ∈ Xt and Ut ∈ Ut
represent the state and the control input of the system at
time t ∈ T . Xt and Ut are assumed to be Euclidean spaces
with appropriate dimensions. Suppose a supervisor provides
a (possibly stochastic) reference policy {RUt|Xt

(·|xt)}T−1
t=0

to the agent and expects the agent to follow the policy to
accomplish a certain task. Here, RUt|Xt

: B(Ut)×Xt → [0, 1]
is a stochastic kernel on Ut given Xt. The agent, on the other
hand, aims to do a different task by minimizing the following
cost function, which we henceforth call as path cost:

C0:T (x0:T , u0:T−1) :=

T−1∑
t=0

Ct(xt, ut) + CT (xT ) (1)

where Ct(·, ·) : Xt×Ut → R for t ∈ T and CT (·) : XT → R
represent the stage costs and the terminal cost, respectively.
In order to minimize the path cost (1), the agent designs
its policy (possibly stochastic) {QUt|Xt

(·|xt)}T−1
t=0 that may

deviate from the reference policy {RUt|Xt
(·|xt)}T−1

t=0 . The
agent also attempts to be stealthy to hide its deviations
from the supervisor. While the agent executes its policy
Q, suppose the supervisor observes its state-action paths
{x0:T , u0:T−1}, and uses a likelihood ratio test to detect
whether the agent deviates from the reference policy. Ac-
cording to the Neyman–Pearson lemma, the likelihood-ratio
test is optimal among all simple hypothesis tests for a given
significance level [1]. In other words, we consider the worst-
case scenario for the agent to be detected by the supervisor.
Suppose the initial state X0 = x0 of the agent is known. We
denote the joint probability distribution of the state-action
paths induced via the reference policy by

RX0:T×U0:T−1
=

T−1∏
t=0

P(Xt+1|Xt,Ut)R(Ut|Xt), (2)
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and the joint distribution induced via the agent’s policy by

QX0:T×U0:T−1
=

T−1∏
t=0

P(Xt+1|Xt,Ut)Q(Ut|Xt). (3)

Given a path {x0:T , u0:T−1} randomly sampled under the
agent’s policy, the supervisor computes the log-likelihood
ratio (LLR)

π(x0:T , u0:T−1) = log
dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1). (4)

The supervisor decides that the agent uses the reference
policy R if π(x0:T , u0:T−1) ≤ c, and deviates from R
otherwise. Here c is a constant chosen by the supervisor to
obtain a specified significance level. An agent not wanting to
be detected by the supervisor minimizes the LLR. However,
since the agent’s paths are stochastic, the agent cannot
directly minimize the LLR. We consequently consider that
the agent’s goal is to minimize the expected LLR as follows:

Π = EQ

[
log

dQX0:T×U0:T−1

dRX0:T×U0:T−1

(x0:T , u0:T−1)

]
(5)

where EQ[·] represents the expectation with respect to the
probability distribution Q (3). Note that (5) also defines
the Kullback-Leibler (KL) divergence D(Q∥R) between the
agent’s distribution Q and the reference distribution R. It can
be shown that D(Q∥R) can be written as the stage-additive
KL divergence between QUt|Xt

and RUt|Xt
as follows (see

Appendix A of the supplementary material [22]):

D(Q∥R)=EQ

[
T−1∑
t=0

D(QUt|Xt
(·|Xt)∥RUt|Xt

(·|Xt))

]
. (6)

Since the KL divergence D(Q∥R) is equivalent to the
expected LLR (5), we use it as a proxy for the measure
of the agent’s deviations from the reference policy.

Minimizing the KL divergence is in fact equivalent to
minimizing the detection rate of an attacker for an ergodic
process as proved in [13]. While we do not consider an
ergodic process, the use of KL divergence is still well-
motivated by the Bretagnolle–Huber inequality [2]. Let E
be an arbitrary set of events that the supervisor will identify
the agent as a deceptive agent, i.e., the agent followed Q.
According to the Bretagnolle–Huber inequality, we have

Pr(E|R) + Pr(¬E|Q) ≥ 1

2
exp(−D(Q||R)) (7)

where Pr(E|R) and Pr(¬E|Q) denote the supervisor’s false
positive and negative rates, respectively. The false positive
rate is the probability that the supervisor will identify the
well-intentioned agent as a deceptive agent, i.e., the agent’s
policy is R, but the supervisor thinks that the agent has
followed Q. Similarly, the false negative rate is the prob-
ability that the supervisor will identify the deceptive agent
as a well-intentioned agent. The inequality (7) states that the
sum of the supervisor’s false positive and negative rates is
lower bounded by a decreasing function of the KL divergence
between the distributions Q and R. Therefore, an agent

wanting to increase the supervisor’s false classification rate
should minimize the KL divergence from R to Q.

The goal of the agent is to design a deceptive policy Q that
minimizes the expected path cost EQ [C0:T (X0:T , U0:T−1)]
(1) while limiting the KL divergence D (Q∥R) (6). Using
(1) and (6), we propose the following KL control problem
for the synthesis of optimal deceptive policies for the agent:

Problem 1 (Synthesis of optimal deceptive policy).

min
{QUt|Xt

}T−1
t=0

EQ

T−1∑
t=0

{
Ct(Xt, Ut) (8)

+ λD(QUt|Xt
(·|Xt)∥RUt|Xt

(·|Xt))
}
+ EQCT (XT )

where λ is a positive weighting factor that balances the
trade-off between the KL divergence and the path cost.

We explain the above problem via the following example:

Example 1. Consider a drone that is contracted by a
supervisor to perform a surveillance task over an area.
The supervisor prefers the drone to operate at high speeds
(policy R) to improve the efficiency of the surveillance. The
operator of the drone, the agent, on the other hand, prefers
the drone to operate in a battery-saving, safe mode (policy
Q) to improve the longevity of the drone. The agent does not
want to get detected by the supervisor. Hence, the goal of the
agent is to operate in a way that would balance the energy
consumption (EQ [C0:T (X0:T , U0:T−1)]) and the deviations
from the behavior desired by the supervisor (D(Q||R)).

III. SYNTHESIS OF OPTIMAL DECEPTIVE POLICIES

In this section, we solve Problem 1 using backward
dynamic programming and propose a policy synthesis al-
gorithm based on path integral control.

A. Backward Dynamic Programming
Notice that the cost function of Problem 1 possesses the

time-additive Bellman structure and, therefore, can be solved
by utilizing the principle of dynamic programming [23].
Define for each t ∈ T and xt ∈ Xt, the value function:

Jt(xt) := inf
{QUk|Xk

}T−1
k=t

EQ

T−1∑
k=t

{
Ck(Xk, Uk) (9)

+ λD(QUk|Xk
(·|Xk)∥RUk|Xk

(·|Xk))
}
+ EQCT (XT ).

Notice that in (9), we used “inf” instead of “min” since we
do not know if the infimum is attained. In the following
theorem, we show that the infimum is indeed attained, and
therefore, “inf” can be replaced by “min”.

Theorem 1. The value function Jt(xt) satisfies the following
backward Bellman recursion with the terminal condition
JT (xT ) = CT (xT ):

Jt(xt) =− λ log

{∫
Ut

exp

(
−Ct(xt, ut)

λ

)
(10)

× exp

(
− 1

λ

∫
Xt+1

Jt+1(xt+1)P (dxt+1|xt, ut)

)
R(dut|xt)

}
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and the minimizer of Problem 1 is given by

Q∗
Ut|Xt

(BUt |xt)=

∫
BUt

exp(−ρt(xt, ut)/λ)R(dut|xt)∫
Ut

exp(−ρt(xt, ut)/λ)R(dut|xt)
(11)

where

ρt(xt, ut) :=Ct(xt, ut) +

∫
Xt+1

Jt+1(xt+1)P (dxt+1|xt, ut) (12)

and BUt is a Borel set belonging to the σ−algebra B(Ut).

Proof: Please refer to Appendix C of the supplementary
material [22].

Theorem 1 provides a recursive method to compute the
value functions Jt(xt) and optimal control distributions
Q∗

Ut|Xt
backward in time. As one can see, to perform

the backward recursions (10) and (11), the function Jt(xt)
must be evaluated everywhere in the continuous domain Xt.
Therefore, in practice, an exact implementation of backward
dynamic programming is computationally costly (unless the
problem has a special structure, for example, linear state
dynamics and quadratic costs). The computational cost grows
quickly with the dimension of the state space of the system,
which is referred to as the curse of dimensionality. In the next
section (Section III-B), we show that under the assumption of
the deterministic state transition law, the backward Bellman
recursions can be linearized. This allows us to design a
simulator-driven algorithm to compute optimal actions.

B. Simulator-Driven Control via Path Integral Approach

In this section, we focus on a special case in which the
agent’s dynamics are deterministic and propose a simulator-
driven algorithm to compute the optimal deceptive actions
via path integral control.

Assumption 1. The state transition law is governed by a
deterministic mapping Ft : Xt × Ut → Xt+1 as

xt+1 = Ft(xt, ut); (13)

that is, P (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1), where δ de-
notes the Dirac measure.

We remark that the control input u can be stochastic under
Assumption 1.

Remark 1. Note that under Assumption 1, the agent can
deviate from the reference policy R only if it is stochastic.
Otherwise, under any deviations from the reference policy,
with a positive probability, the supervisor will be sure that
the agent did not follow the reference policy. Therefore,
in what follows, we consider the reference policy to be
stochastic. The stochasticity of the reference policy could be
to account for the unmodeled elements of the dynamics, to
provide robustness, or to encourage exploration.

Remark 2. Consider a special setting in which the state
dynamics Ft(xt, ut) is linear in xt and ut, the reference
policy distribution RUt|Xt

(·|xt) is Gaussian, and the cost
functions Ct(·, ·) and CT (·) are quadratic in xt and ut. In
such a setting, it can be shown that the optimal deceptive

policy Q∗
Ut|Xt

(·|xt) is also Gaussian and can be analytically
computed by backward Riccati recursions similar to the
standard Linear-Quadratic-Regular (LQR) problems. In this
work, we consider a broader setting with possibly non-
Gaussian reference distribution, non-linear state dynamics,
and non-quadratic cost functions. In this case, the optimal
deceptive policy might not be efficiently computed by solving
backward recursions.

Now, we propose a path-integral-based solution approach
for simulator-driven policy synthesis. Under assumption 1,
we can rewrite (10) as

Jt(xt) =− λ log

{∫
Ut

exp

(
−Ct(xt, ut)

λ

)
(14)

× exp

(
−Jt+1 (Ft(xt, ut))

λ

)
R(dut|xt)

}
.

We introduce the exponentiated value function as Zt(xt) :=
exp

(
− 1

λJt(xt)
)
. Using Zt(xt), the Bellman recursion (14)

can be linearized, and we get the following linear relationship
between Zt and Zt+1:

Zt(xt)=

∫
Ut

exp

(
−Ct(xt, ut)

λ

)
Zt+1 (Ft(xt, ut))R(dut|xt)

=

∫
Ut

∫
Xt+1

exp

(
−Ct(xt, ut)

λ

)
Zt+1(xt+1) (15)

× P (dxt+1|xt, ut)R(dut|xt).

Note that in (15), P (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1) by
Assumption 1. Eq. (15) is a linear backward recursion in
Zt. The linear solvability of the KL control problem is
well-known in the literature (e.g., [16]). We remark that
linearizability critically relies on Assumption 11. Now, by
recursive substitution, (15) can also be written as

Zt(xt) =

∫
Ut

∫
Xt+1

· · ·
∫
UT−1

∫
XT

exp

(
−Ct(xt, ut)

λ

)
× · · · × exp

(
−CT (xT )

λ

)
R(dxt+1:T × dut:T−1|xt).

Thus, by introducing the path cost function

Ct:T (xt:T , ut:T−1) :=

T−1∑
k=t

Ck(xk, uk) + CT (xT ),

we obtain

Zt(xt) = ER exp

(
− 1

λ
Ct:T (Xt:T , Ut:T−1)

)
(16)

where the expectation ER(·) is with respect to the prob-
ability measure R. Eq. (16) expresses the exponentiated
value function Zt(xt) as the expected path cost under the
reference distribution. This suggests a path-integral-based

1We remark that in prior works where the path integral method is used
to solve stochastic control problems, a certain assumption (e.g. Eq. (9) in
[18]) is made to reinterpret the original problem as a problem of designing
the optimal randomized policy for a deterministic transition system.
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approach to numerically compute Zt(xt). Suppose we gen-
erate a collection of N independent samples of system paths
{xt:T (i), ut:T−1(i)}Ni=1 starting from xt under the reference
distribution R. Since the reference distribution is known,
a collection of such sample paths can be easily generated
using a Monte Carlo simulation. If Ct:T (xt:T (i), ut:T−1(i))
represents the path cost of the sample path i, then by the
strong law of large numbers [24] as N →∞, we get

1

N

N∑
i=1

exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
a.s.→ Zt(xt). (17)

Similarly, a collection of sample paths
{xt:T (i), ut:T−1(i)}Ni=1 starting from xt under the reference
distribution R can be used to sample ut from the optimal
distribution Q∗

Ut|Xt
(·|xt). Notice that the optimal deceptive

policy (11) can be expressed in terms of {Zt}Tt=0 as

Q∗
Ut|Xt

(BUt
|xt) =

1

Zt(xt)

∫
BUt

exp

(
−Ct(xt, ut)

λ

)
× exp

(
−Jt+1 (Ft(xt, ut))

λ

)
R(dut|xt)

=
1

Zt(xt)

∫
BUt

exp

(
−Ct(xt, ut)

λ

)
× Zt+1 (Ft(xt, ut))R(dut|xt) (18a)

=
1

Zt(xt)

∫
BUt

∫
Xt+1

exp

(
−Ct(xt, ut)

λ

)
Zt+1(xt+1)

× P (dxt+1|xt, ut)R(dut|xt) (18b)

=
1

Zt(xt)

∫
{Xt+1:T ,Ut:T−1|ut∈BUt}

exp

(
−Ct:T (xt:T , ut:T−1)

λ

)
×R(dxt+1:T × dut:T−1|xt). (18c)

The step (18a) follows from the definition of Zt. In (18b), we
used our assumption P (dxt+1|xt, ut) = δFt(xt,ut)(dxt+1).
Finally, (18c) is obtained by the recursive substitution of
(18b), and {Xt+1:T , Ut:T−1|ut ∈ BUt

} represents a collec-
tion paths such that ut ∈ BUt

.
We use the above representation of Q∗

Ut|Xt
to sample an

action ut from it. Let rt(i) be the exponentiated path cost
of the sample path i:

rt(i) := exp

(
− 1

λ
Ct:T (xt:T (i), ut:T−1(i))

)
(19)

and rt :=
∑N

i=1 rt(i). For each t ∈ T , we introduce a
piecewise constant, monotonically non-decreasing function
Ft : [0, N ]→ [0, rt] by

Ft(x) =

⌊x⌋∑
i=1

rt(i).

where ⌊x⌋ denotes floor(x), i.e., the greatest integer less than
or equal to x. The function Ft(x) is represented in Figure 1.

Notice that the inverse F−1
t of Ft defines a mapping

F−1
t : [0, rt] → {1, 2, ..., N}. To generate a sample ut

approximately from the optimal distribution Q∗
Ut|Xt

, we

( )

(1)

(2)

1 2 3 1

t

t

t

t

Fig. 1. Function Ft(x).

Algorithm 1: Sampling ut approximately from
Q∗

Ut|Xt
(·|xt) by Monte Carlo simulations

Data: Initial state x0

1 for t ∈ T do
2 Sample N paths {xt:T (i), ut:T−1(i)}Ni=1 starting

from xt under the reference distribution R.
3 For each sample path i, compute the

exponentiated path cost rt(i) by (19).
4 Compute rt :=

∑N
i=1 rt(i).

5 Generate a random variable d according to
d ∼ unif[0, rt].

6 Select a sample ID by jt ← F−1
t (d).

7 Select a control input as ut ← ut(jt).

propose Algorithm 1. We first, generate a random variable
d according to d ∼ unif[0, rt]. Then, we select a sample
ID by jt ← F−1

t (d). Finally, the control input adopted in
the jt-th sample path at time step t is selected as ut, i.e.,
ut ← ut(jt). Theorem 2 proves that as the number of Monte
Carlo samples tends to infinity, Algorithm 1 samples ut from
the optimal distribution Q∗

Ut|Xt
(·|xt).

Theorem 2. Let BUt
∈ B(Ut) be a Borel set. Suppose for a

given collection of sample paths {xt:T (i), ut:T−1(i)}Ni=1, ut

is computed by Algorithm 1 and the probability of ut ∈ BUt

is denoted by Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}. Then,
as N →∞

Pr{ut ∈ BUt |{xt:T (i), ut:T−1(i)}Ni=1}
a.s.→ Q∗

Ut|Xt
(BUt |xt).

Proof: Please refer to the supplementary material [22,
Appendix D].

We showed that under Assumption 1, the optimal decep-
tive policies can be synthesized using path integral control.
Algorithm 1 allows the deceptive agent to numerically com-
pute optimal actions via Monte Carlo simulations without
explicitly synthesizing the policy. Since Monte Carlo simu-
lations can be efficiently parallelized, the agent can generate
the optimal control actions online.
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(a) Paths under R, Prsafe = 0.04 (b) Paths under Q̂∗ with λ = 3, Prsafe = 0.48
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(c) Paths under Q̂∗ with λ = 2, Prsafe = 0.62 (d) Paths under Q̂∗ with λ = 0.5, Prsafe = 0.94

Fig. 2. A unicycle navigation problem. The start position is shown by a red dot, and the goal region by a disk colored in gray. 100 sample paths generated
under the reference policy R and the agent’s policy Q̂∗ with three values of λ are shown. The probability of safe paths Prsafe are noted below each case.

IV. NUMERICAL EXAMPLE

In this section, we validate the path-integral-based algo-
rithm proposed to generate optimal deceptive control actions.
The problem is illustrated in Figure 2. A supervisor wants
an agent to start from the origin and reach a disk of radius
GR centered at

[
GX GY

]⊤
(shown in gray color) as

fast as possible. The supervisor also expects the agent to
inspect the region on the way. To encourage exploration
and to provide robustness against unmodeled dynamics, the
supervisor designs a randomized reference policy. The agent,
on the other hand, wishes to avoid the regions on the way
that are covered under fire, as shown in Figure 2. Let these
regions be represented collectively by X fire. Suppose the
agent’s dynamics are modeled by a unicycle model as:

PX
t+1 = PX

t+1 + St cosΘth

PY
t+1 = PY

t+1 + St sinΘth

St+1 = St +Ath

Θt+1 = Θt +Ωth

where (PX
t , PY

t ), St, and Θt denote the x−y position, speed,
and the heading angle of the agent at time step t, respectively.
The control input Ut :=

[
At Ωt

]T
consists of acceleration

At and angular speed Ωt. h is the time discretization pa-
rameter used for discretizing the continuous-time unicycle
model. For this simulation study, we set h = 1. Note that
the agent’s dynamics is deterministic as per Assumption 1;
however, the control input Ut can be stochastic. Suppose
the supervisor designs the reference policy R as a Gaussian
probability density with mean ut and covariance Σt:

RUt|Xt
(·|xt) =

exp
[
− 1

2 (ut − ut)
⊤Σ−1

t (ut − ut)
]√

(2π)2|Σt|
.

The mean ut :=
[
at ωt

]⊤
is designed using a proportional

controller as

At = −kA(St − Sdesired
t ), Ωt = −kΩ(Θt −Θdesired

t )

where kA and kΩ are proportional gains and Sdesired
t ,

Θdesired
t are computed as

Sdesired
t =

∥∥∥∥[GX

GY

]
−
[
PX
t

PY
t

]∥∥∥∥
T − t

, Θdesired
t =tan−1

(
GY − PY

t

GX − PX
t

)
.

As mentioned before, the agent wishes to avoid the region
X fire. Suppose the cost function C0:T is designed as

C0:T (X0:T , U0:T−1) =

T∑
t=0

1
[PX

t PY
t ]⊤∈X fire

where 1
[PX

t PY
t ]⊤∈X fire represents an indicator function that

returns 1 when the agent is inside the region X fire and 0
otherwise. For this simulation, we set[

GX

GY

]
=

[
45
0

]
, Σt=

[
0.5 0
0 0.5

]
, kA=0.1, kΩ=0.2, T =50.

The agent chooses its action at each time step using Algo-
rithm 1 where the number of samples is N = 105.

Suppose Q̂∗ denotes the deceptive agent’s distribution
generated by the sampling-based Algorithm 1. Figure 2
shows 100 paths under the reference distribution R (Figure
2(a)) and the agent’s distribution Q̂∗ for three values of λ
(Figure 2(b) - 2(d)). A lower value of λ implies that the agent
cares less about its deviation from the reference policy and
more about avoiding the region X fire. A higher value of λ
implies the opposite. We also report Prsafe, the percentage
of paths that avoid X fire. Under the reference distribution R,
only 4% of the paths are safe. On the other hand, more paths
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Fig. 3. Expected LLR (with one standard deviation) with respect to time
t for three values of λ.

are safe under the agent’s distribution Q̂∗, and as the value
of λ reduces, Prsafe increases.

Figure 3 shows the expected log-likelihood ratio (with one
standard deviation) with respect to time t for three values of
λ. The expected LLR is computed as follows. Algorithm 1
selects a control input uk ← uk(jk) at time step k, where jk
is a sample ID obtained from step 5. From the construction of
the algorithm, at each time step k, the probability of choosing
the control input uk ← uk(jk) under the agent’s distribution
Q̂∗ is rk(jk)/rk, where rk(jk) and rk are computed by
steps 3 and 4 of Algorithm 1. Whereas the probability of
choosing the control input uk ← uk(jk) under the reference
distribution is 1/N . Therefore, the expected LLR upto time
t ∈ T can be approximately computed as

EQ∗

[
log

dQ∗
X0:t×U0:t−1

dRX0:t×U0:t−1

(x0:t, u0:t−1)

]

=EQ∗

[
t−1∑
k=0

log
dQ∗

Uk|Xk

dRUk|Xk

(xk, uk)

]
≈ 1

NQ̂∗

NQ̂∗∑
i=1

t−1∑
k=0

rk(jk)/rk
1/N

.

where NQ̂∗ is the number of paths generated by repeat-
edly running Algorithm 1. Note that since we assume the
system dynamics to be deterministic (Assumption 1), once
the control input uk is chosen at time step k, the state
xk+1 is uniquely determined. Therefore, while computing
the expected LLR, we only need to consider the probabilities
of choosing the control input uk under policies Q̂∗ and R.
Figure 3 shows that for a lower value of λ, the expected LLR
is higher, i.e., more deviation of Q̂∗ from R.

V. CONCLUSION

We presented a deception problem under supervisory
control for continuous-state discrete-time stochastic systems.
Using motivations from hypothesis testing theory, we formal-
ized the synthesis of an optimal deceptive policy as a KL
control problem and solved it using backward dynamic pro-
gramming. Since the dynamic programming approach suffers
from the curse of dimensionality, we proposed a simulator-
driven algorithm to compute optimal deceptive actions via
path integral control. The proposed approach allows the agent
to numerically compute deceptive actions online via Monte
Carlo sampling of system paths. We validated the proposed
approach via a numerical example with a nonlinear system.

For future work, we plan to study the deception problem
for continuous-time stochastic systems. We also plan to
conduct the sample complexity analysis of the path integral
approach to solve KL control problems.
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