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Abstract— In this paper we propose a novel distributed
gradient-based two-time-scale algorithm for decentralized
multi-agent multi-task learning (MTL) using a linear approx-
imation of the optimal action value function (Q-function) in
POMDPs. The algorithm is based on the idea of using in a con-
current way recursive Bayesian state belief filters for estimation
of the system model parameters, prediction of the hidden state
and definition of the optimal approximation parameters of the
local Q-functions. The main MTL algorithm is composed of:
1) local parameter updates based on an off-policy gradient-
based learning algorithm with target policy belonging to the
greedy or Gibbs classes, and 2) a linear stochastic time-varying
consensus scheme for parameters shared between the agents
in order to achieve the MTL goal. It is proved, under general
assumptions, that the parameter estimates generated by the
proposed algorithm weakly converge to a bounded invariant
set of the corresponding ordinary differential equations (ODE).
Simulation results illustrate the effectiveness of the algorithm.

I. INTRODUCTION

Reinforcement learning (RL) for Markov Decision Pro-
cesses (MDPs) has become a widely accepted problem solv-
ing sample-based tool applicable to unknown and stochastic
environments. Numerous successful RL methods for large
state and action spaces are based on (action) value function
and/or policy function approximation, using a limited number
of parameters and reducing the problem to finding optimal
parameter values (see e.g. [1]). Also, decentralized and dis-
tributed multi-agent RL algorithms are currently in the focus
due to great theoretical and practical challenges [2]–[4].
Partially observable Markov decision processes (POMDPs)
are a natural generalization of MDPs which assumes partial
state observation [5]–[7]. When the POMDP parameters are
given, the optimal policy is determined by using dynamic
programming in the belief state [8]. There are numerous
contributions to the problem of finding approximate solu-
tions, e.g. [6], [9]. As the belief state is continuous, the
optimization problem is computationally very challenging.
An intuitively appealing idea is to develop a recursive system
model parameter estimator for a POMDP, to predict hidden
states, and to obtain the optimal parameters in parallel [8].

M. S. Stanković is with Singidunum University, Belgrade, Serbia; and
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Lusófona, Lisboa, Portugal; e-mail: beko.marko@gmail.com
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Q-learning has been recognized as a basic, but always
promising RL tool [1]. Q-learning iteratively estimates the
optimal Q-function (action value function) [1]. However,
applications have been limited to the problems with relatively
small state and action spaces. To overcome this, Q-learning
with function approximation has been treated in many papers
[10]–[12], but convergence is guaranteed usually under fairly
strong assumptions.

In this paper we present a comprehensive and intuitively
logical method for solving multi-agent multi-task learning
problems for POMDPs in a recursive, distributed and decen-
tralized way, using Q-learning [10], [11] in conjunction with
a dynamic consensus scheme [12], [13]. The method is in
the form of a multi-agent network connecting POMDPs with
different characteristics performing different tasks, aimed at
setting up the inductive bias across tasks by designing a
parameterized common policy optimizing a proxy objective
[14]. The proposed methodology incorporates system param-
eter identification at the local level using belief based predic-
tion [15] and distributed recursive estimation of parameters
of a linear approximation of the local Q-functions [11], [12].

More specifically, the paper contains the following main
contributions:
a) formulation of a proxy criterion for the MTL problem
involving linear Q-function approximation;
b) proposal of an original consensus-based decentralized
two-time-scale algorithm for estimation of the parameters
of local Q-function approximations based on belief-based
functions derived from the Baum-Welch method [16];
c) formulation of a weak convergence theorem of the param-
eter estimates to a set of limit ODEs using the Kushner-Yin
methodology [17], [18];
d) proposal to apply the Borkar-Meyn fluid model method-
ology to the stability analysis of the derived ODEs [19].

To the authors knowledge, the formulated distributed
multi-agent problem has not yet been treated in the literature
using Q-learning with function approximation in the context
of POMDPs. Utilization of the joint conditional probability
of successive states in the construction of the proposed
estimation schemes is different from similar schemes found
in the literature and possesses superior quality (compare to
e.g. [8]). Also, the given formulation of MTL involving two
types of parameters (shared and local) in the context of
consensus-based estimation of the parameters of Q-functions
approximation is novel, leading to new methodological el-
ements [17], [18]. The proposed algorithm can also be
an efficient general tool for parallelization of Q-function
approximation in POMDPs [12], [20].
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II. PROBLEM DEFINITION

A. General Setting

Consider N autonomous agents, attached one-to-one to
partially observable Markov Decision Processes (POMDPs)
denoted as POMDP(i), i = 1, . . . , N . All these POMDPs
are characterized by the septuplets Σi = {S, A,
P i(s′|s, a), Ri(s, a, s′),Y, Y i(y, s), γi}, where S is a fi-
nite state space, A a finite action space, P i(s′|s, a) =
P{sit+1 = s′|sit = s, ait = a)} a state transition proba-
bility for POMDP(i) of moving from s ∈ S to s′ ∈ S
by applying action a ∈ A, Ri(s, a, s′) a reward model
with distribution qi(·|s′, a, s), Y a finite observation space,
Y i(y, s) = P{yit = y|sit = s)} the observation probability
for POMDP(i) and γi ∈ [0.1) a discount factor. At each time
t ∈ I+ agent i observes yit ∈ Y at the state sit ∈ S, performs
action ait ∈ A and gets a reward Ri

t ∈ R according to
Ri(s, a, s′). Each POMDP(i), i = 1, . . . , N , applies a local
stationary behavior policy πi(a|y) (probability of taking
action ait = a at observation yit = y), implying that the
state processes {sit} and the state-action processes {sit, ait},
i = 1, . . . , N , represent time-homogenous Markov chains.

We assume that the agents communicate between them in
order to achieve a common goal. The inter-agent commu-
nications are formally represented by a strongly connected
digraph G = {N , E}, where N is the set of nodes attached
to the agents (POMDPs) and E the set of directed arcs.
Let Ni ⊂ N be the in-neighborhood of node i [2], [21].
We shall assume strict Information Structure Constraints
(sISCs) restricting agent i to observation, action and reward
information only from the local POMDP(i), i = 1, . . . , N .

Recall that the target policy for POMDP(i) taken apart
is characterized by a stationary distribution πi(a|s). The
corresponding action value function (Q-function) is defined
by

Qπi

(s, a) = Eπi

{ ∞∑
t=0

γitri(sit, a
i
t)|s0 = s, a0 = a

}
. (1)

The optimal Q-function Qi∗(s, a) satisfies the Bellman equa-
tion

Qi∗(s, a) = ri(s, a) + γi
∑
s′

P i(s′|s, a)max
a′

Qi∗(s′, a′),

where ri(s, a) denotes the one-step expected reward.
The corresponding optimal policy is defined by πi∗ =
Argmaxπ Q

i∗(s, a). In general, the optimal value Qi∗ can
be found using dynamic programming. If the MDP model
is unknown, it can be computed by stochastic approxima-
tion. The so-called Q-learning algorithm iteratively provides
optimal Q-values in a tabular form [1].

Let ϕi : S × A → Rpi

be a function that maps each
state-action pair (s, a) to a feature vector ϕi(s, a). We
shall consider the linear approximation of the Q-function
in the form Qi

θ(s, a) = θiTϕi(s, a), ∥ϕi(s, a)∥ < ∞,
(s, a) ∈ S × A, where θi ∈ Rpi

is a parameter vector
(pi << |S × A|). Following [11], we introduce a class
of stationary stochastic target policies πi

θ(·|s) to denote the

action selection probability distribution at state s. In this
paper, we shall focus on: 1) the greedy class, where πi

θ(·|s)
is such that argmaxa′∈AQ

i
θ(s, a

′) is chosen w.p.1, and 2)
the Gibbs class, when πi

θ(a|s) ∼ eκ(Q
i
θ(s,a)) for some κ(·).

B. Multi-Task Learning: Performance Criteria

The goal of multi-task RL is to learn a common policy
for multiple tasks so that it generalizes well across all of
them [4], [22]. A common way to introduce some shared
parameters between tasks is to optimize a proxy objective
[14]. There are many successful approaches to multi-task
learning [4], [23], [24]. However, most of the proposed
methods assume access to all data to all tasks.

We shall propose in this paper a new completely decen-
tralized and distributed off-policy method for multi-task RL
learning. Formally, we introduce N local learning tasks,
aimed at minimizing the following local criteria in the form
of projected Bellman errors

Ji(θ
i) = ∥ΠiT

πθiQi
θi −Qi

θi∥2µi
, (2)

where θi ∈ Rpi

, i = 1, . . . , N , is the local parameter
vector attached to POMDP(i), Tπθi the Bellman operator
and ∥Qi

θi∥2µi =
∑

s,aQ
i2
θi(s, a)µi(s, a), where µi(s, a) is

the steady-state distribution of the underlying Markov chain,
and Πi is an operator that projects Q-functions into the
linear space Fi = {Qi

θi : θi ∈ Rpi} w.r.t. ∥ · ∥µi , i.e.
ΠiQ̂

i = Argminfi∈Fi
∥Q̂i−fi∥µi . In addition, we adopt the

principle of hard parameter sharing [14], [25] and assume

that θi = [θ̄iT
...θ̃iT ]T , dim(θ̄i) = p̄ and dim(θ̃i) = p̃ (this

implies w.l.o.g. that pi = p = p̄ + p̃ in order to simplify
notation), where θ̄i is the approximation vector shared with
all the remaining agents and θ̃i are task-specific vectors
(i = 1, . . . , N ). Formally, we have now J i(θi) = J i(θ̄i, θ̃i)
and Qi

θi = θiTϕi(s, a) = θ̄iT ϕ̄i(s, a) + θ̃iT ϕ̃i(s, a), where
ϕ̄i(s, a) and ϕ̃i(s, a) are preselected specific feature vectors.

At the network level, we introduce the global parameter
vector Θ = [θ1T · · · θNT ]T and define the following opti-
mization problem including consensus w.r.t. θ̄i

minΘ J(Θ) = minθ1,··· ,θN

∑N
i=1 q

iJi(θ
i) (3)

Subject to θ̄1 = · · · = θ̄N ,

where qi > 0 are a priori defined weights. The optimal
parameter vector Θ∗ = arg minΘJ(Θ) provides Θ̄∗ =
[θ̄∗T · · · θ̄∗T ]T , Θ̃∗ = [θ̃1∗T · · · θ̃N∗T ]T .

III. HMM ESTIMATION

In this section, we shall provide a short insight into some
basic Hidden Markov Model (HMM) concepts applicable
to the introduced MTL optimization problem (3). We shall
also introduce probabilistic functions derived from the Baum-
Welch algorithm relevant for the paper.

Notice that the HMM property is induced into the
POMDPs by the behavior policies πi

b. The corresponding
Markov chains are characterized by the state transition prob-
ability P i

s′s = P{sit+1 = s′|sit = s; Φi}, ∀s, s′, where Φi are
the parameters describing Σi, and the extended observation

7681



probability Xi
xs = P{xit = x|sit = s; Φi} matrices, where

xi = (yi, ai, Ri) denotes the extended observation [8].
(A1) The transition probability matrices P i

s′s are aperiodic
and irreducible [1].

A. HMM Parameter Identification
When the system model parameters Φi are available, the

belief vectors uit = [uit,1 . . . u
i
t,|S|]

T are calculated, where
ut,j = P{sit = j|X i

t−1; Φ
i} and X i

t−1 = (xi0, . . . , x
i
t−1),

using the recursive Baum-Welch state predictor [8], [15], [26]

uit+1 =
P iTBi(xit)u

i
t

biT (xit)u
i
t

, (4)

where bi(xit) = [bi1(x
i
t) · · · bi|S|(x

i
t)]

T , bij(x
i
t) = P{xit|sit =

j} = P{yit|sit = j}P{ait|xit}P{Ri
t|sit, ait} and Bi(xit) =

diag{bi(xit)}.
Identification of the HMM parameter vectors Φi can be

based on the conditional log-likelihood of a sequence of
extended observations Li

t(Φ
i) = 1

t+1 log p(l
i
t, . . . , l

i
1; Φ

i),

where p(lit, . . . , l
i
1; Φ

i) = P{xit = lit, ..., xi1 = l1t |
sit, . . . , s

i
1; Φ

i}. It is proved in [15] that Li
t(Φ

i) =
1

t+1

∑t
k=1 log(b

iT (xik)u
i
k), according to (4), having in mind

that p(lit, . . . , l
i
1; Φ

i) =
∏t

k=1 P{xik = lik|Xk−1; Φ
i}. Fol-

lowing this line of thought, one can formulate a gradient
scheme for HMM identification based on stochastic gradient
ascent maximizing Li

t(Φ
i) [8], [15], [26].

We shall, therefore, take into account two possibilities in
practice: 1) identification of the system parameters is done
in real time, simultaneously with the learning algorithm, 2)
system parameters are considered to be known and fixed.

B. Belief-based Functions
Besides the a priori belief function given by (4) (used

for prediction), it is possible to define the a posteriori
belief function vit = [vit,1 · · · vit,|S|]

T , where vit,j = P{sit =

j|X i
t ; Φ

i}, j = 1, . . . , |S|, defined by

vit+1 =
Bi(xit+1)P

iT vit
biT (xit+1)P

iT vit
=
Bi(xit+1)u

i
t+1

biT (xit+1)u
i
t+1

. (5)

A similar forward recursion for the |S|-vector αi
t;j =

P{xit, . . . , xi1, sit = j} is a standard part of the Baum-Welch
algorithms [16]:

αi
t+1 = Bi(xit+1)P

iTαi
t, (6)

t ≥ 1, with αi
1 = [P{si1 = 1}b1(x1), . . . , P{si1 =

|S|}b|S|(x1)]
T .

The following matrix connected to the belief function will
play a fundamental role in the construction of the learning
algorithm proposed in the next section

Ξi
t = [ξit(j, k)] =

diag{αi
t}P i diag{bi(xit+1)}
αiT
t P ibi(xt+1)

, (7)

where ξit(j, k) = P{sit = j, sit+1 = k|X i
t+1,Φ

i} [16]. Notice
that (7) enables applications to recursions involving one-step
look ahead processing such as value iteration or temporal
difference methods. Applying (7), we shall be able to get a
methodologically consistent link between the original state
spaces and the belief spaces for the proposed algorithm.

IV. ALGORITHM

The main focus of the paper is on the proposal of a new
algorithm for decentralized multi-agent multi-task learning
based on a linear approximation of Q-functions for POMDPs.
To the authors knowledge, explicit application of the joint
conditional probability (7) of successive states has not been
treated in the literature in connection with temporal differ-
ence recursions (the approach to the iterative Q-learning from
[8] is similar, but devoted to the single-agent case and utilizes
a different belief-based function). The application of (7) has
its theoretical, as well as practical advantages.

A. Algorithm Derivation

Starting from (2) we obtain the Fréchet sub-gradients of
Ji using the arguments from [11]. Let δit+1(θ

i) = Ri
t+1 +

γiϕ̂iTt+1θ
i − ϕiTt θi be the temporal difference error, with

ϕit = ϕ(sit, a
i
t) and ϕ̂it+1 = ϕ(sit+1, â

i
t+1), where âit+1 is

obtained using either the greedy policy or the Gibbs policy
[11]. Following further [11], we define dit+1 = γϕ̂it+1 − ϕit,
and obtain

∂Ji(θ
i) = E{dit+1ϕ

iT
t }[E{ϕitϕiTt }]−1E{δit+1(θ

i)ϕit}
= E{δit+1(θ

i)ϕit}+ γiE{ϕ̂it+1ϕ
iT
t ]wi∗(θi), (8)

where wi∗(θi) = E{ϕitϕiTt }−1E{δit+1(θ
i)ϕit}. Notice that,

in such a way, we come to the condition
∑N

i=1 q
i∂Ji(θi) = 0

subject to θ̄1 = · · · = θ̄N . The new distributed algorithm
is composed of two main parts: 1) local parameter updates,
based on the gradient descent methodology using realizations
of (8) and 2) convexification of current parameter esti-
mates based on inter-agent communications. The algorithm
represents a decentralized multi-agent generalization of the
Greedy-GQ algorithm proposed in [11], [12], supposing, in
addition, partial state observation.

The update part of the algorithm is defined by

θ′it = θit + µi
tg

i
t(θ

i
t, w

i
t); w′i

t = wi
t + νith

i
t(θ

i
t, w

i
t) (9)

where

git(θ
i, wi) =

∑
j

∑
k

ξit(j, k)ĝ
i
t(j, k; θ

i, wi), (10)

with ĝit(j, k; θ
i, wi) = δit+1(j, k; θ

i)ϕit(j)

−γiϕ̂it+1(k; θ
i)ϕiTt (j)wi with δit+1(j, k; θ

i) = δit+1(s
i
t =

j, sit+1 = k; θi) = Ri
t+1 + γiϕ̂it+1(k, θ

i)T θi − ϕiTt (j)θi,
ϕit(j) = ϕi(sit = j, ait) (ait is generated by the behavior
policy πi

b), ϕ̂it+1(k; θ
i) = ϕi(sit+1 = k, ãit+1), where ãit+1 is

generated by one of the two adopted target policies (e.g.

ãit+1 = argmaxa′

∑
j

∑
k

ξit(j, k)ϕ
iT (sit+1 = k, a′)θit (11)

for the greedy policy), and

hit(θ
i, wi) =

∑
j

∑
k

ξit(j, k)ĥ
i
t(j, k; θ

i, wi) (12)

with ĥit(j, k; θ
i, wi) = δit+1(j, k; θ

i) − ϕiTt (j)wi]ϕit(j). The
initial values θi(0) and wi(0) are chosen arbitrarily. The
step size sequences {µi

t} and {νit} are composed of positive
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numbers which satisfy µi
t << νit , introducing two time-

scales in the algorithm.
The second (convexification) part of the algorithm is given

by

θ̄it+1 =

N∑
j=1

aijt θ̄
′j
t ; θ̃it+1 = θ̃′it , wi

t+1 = w′i
t , (13)

having in mind that θi = [θ̄iT θ̃iT ]T . In (13) convexification
is applied only to the θ̄-iterates in order to achieve consensus
w.r.t. θ̄. We shall assume that aijt ≥ 0 are random variables,
elements of an N × N time-varying random matrix At =
[aijt ], with general properties specified later (see e.g. [21]).

According to the definition of the joint probability ξit(j, k)
in (7), we conclude that∑

j

∑
k

ξit(j, k)f1(j)f2(k) = E{f1(sit)f2(sit+1)|X i
t+1}

(14)
for arbitrary integrable functions f1(xit = j) and f2(xit+1 =
k). Therefore, we can write git(θ

i, wi) = qiE{δit+1(θ
i)ϕit −

γiϕ̂it+1(θ
i)ϕiTt wi|X i

t+1} and hit(θ
i, wi) = E{[δit+1(θ

i) −
ϕiTt wi]ϕit|X i

t+1}.

B. Global Model

Let Xt = [ΘT
t

...WT
t ]T , Θ̄t = [θ̄1Tt · · · θ̄NT

t ]T , Θ̃t =
[θ̃1Tt · · · θ̃NT

t ]T , Wt = [w1T
t · · ·wNT

t ]T and X ′
t =

[Θ
′T
t

...W
′T
t ]T . Then, we have at the network level the fol-

lowing global model

X ′
t = Xt + ΓtFt(Xt), Xt+1 = C̃(At)X

′
t, (15)

X(0) = X0, Γt = diag{µ1
t , . . . , µN

t , ν
1
t , . . . , ν

N
t }

⊗Ip, (⊗ denotes the Kronecker’s product),

Ft(Xt) = [F θT
t (Xt)

...FwT
t (Xt)]

T , F θ
t (Xt) =

[F θ1T
t (Xt) · · ·F θNT

t (Xt)]
T , Fw

t (Xt) =
[Fw1T

t (Xt) · · ·FwNT
t (Xt)]

T , with F θ,i
t (Xt) = git(θ

i, wi)
and Fw,i

t (Xt) = hit(θ
i, wi). In the second relation, C̃(At) =[

T pT 0
0 INp

]
block diag{At ⊗ Ip̄, IN(p̃+p)}

[
T p 0
0 INp

]
,

where T p is an Np × Np permutation matrix satisfying

T pΘ =

[
Θ̄

Θ̃

]
.

Applying the expectation operator Ei{·}, where sub-
index i denotes the expectation under the probability
law induced in POMDP(i), we obtain ḡi(θi, wi) =
Ei{git(θi, wi)}, h̄i(θi, wi) = Ei{hit(θi, wi)}; more specif-
ically, we have

ḡi(θi, wi) = bi −Di(θi)θi − γiBi(θi)wi (16)
h̄i(θi, wi) = bi −Di(θi)θi − Ciwi (17)

where
bi = Ei{Ri(sit, a

i
t, s

i
t+1)}, Ci = Ei{E{ϕitϕiTt | X i

t+1}},
Di(θi) = Ci − γiBi(θi), Bi(θi) =Ei{E{ϕ̂it+1ϕ

iT
t |X i

t+1}}.
Accordingly, we introduce F̄ (X) =

[F̄ θ(X)T
...F̄w(X)T ]T , where F̄ θi(X) = qiḡi(θi, wi)

and F̄wi(X) = h̄i(θi, wi), i = 1, . . . , N .

V. CONVERGENCE ANALYSIS

Convergence analysis of the proposed distributed algo-
rithm is based on the weak convergence methodology. We
start from the general results of Kushner and Yin [17], [18]
and focus only to the specific properties of the algorithm, in-
cluding the parameter structure implied by the MTL problem
posed. Analysis of the fixed points of the algorithm is shortly
considered using the methodology of Borkar and Meyn [19].

A. Consensus Part; Assumptions

(A2) Graph G is strongly connected.
Define Ψt|k = At · · ·Ak for t ≥ k, Ψt|t+1 = IN . Let

Ft be an increasing sequence of σ-algebras such that Ft

measures {Xk, k ≤ t, Ak, k < t}.
(A3) There is a scalar a0 > 0 such that ajj(n) ≥ a0,

and, for j ̸= k, either ajkt = 0 or aijt ≥ a0, as well as
a scalar p0 > 0 and an integer t0 such that PFt

(agent k
communicates to agent j on the interval [t, t+ t0]) ≥ p0, for
all t and for j, k = 1, . . . N .

By [18, Lemma 2.1] and [21], Ψk = limt Ψt|k exists with
probability 1 (w.p.1) and its rows are all equal; moreover,
E{|Ψt|k − Ψk|} and EFk

{|Ψt|k − Ψk|} → 0 geometrically
as t − k → ∞, uniformly in k (w.p.1); also, EFk

{Ψt|k}
converges to Ψk geometrically, uniformly in k, as t → ∞
(| · | denotes the infinity norm).

(A4) There is a N×N matrix Ψ̄ such that E{|EFk
{Ψt}−

Ψ̄|} → 0 as t− k → ∞ (it has the form Ψ̄ = [Ψ̂T · · · Ψ̂T ]T ,
where Ψ̂ = [ψ̄1 · · · ψ̄N ]T ).

In the following, we shall adopt that ψ̄i = 1/N , i =
1, . . . , N , in order to avoid ambiguities w.r.t. to the weights
qi in the products ψ̄iq

i.
(A5) Sequence {At} is independent of the processes in

POMDP(i), i = 1, . . . , N .
(A6) Sequence {Xt} is tight.
(A7) Matrices Ci are nonsingular, i = 1, . . . , N .
(A8) Matrices

∑N
i=1 qiD

i and Di, i = 1, . . . , N , are
nonsingular and bounded.

B. Convergence Proof

Theorem 1: Let (A1)–(A8) hold.
a) Fast time-scale. Let W ν

t be generated by (9) and (13)
for arbitrary θit = θi0, i = 1, . . . , N , using νt = ν > 0.
Then, W ν(τ) = Wt for τ ∈ [tν, (t + 1)ν), τ ∈ R+, is
tight and converges weakly to W (·) = [w1(·)T · · ·wN (·)T ]T
generated by

ẇi = h̄i(θi, wi), (18)

for any given θit = θ0 ∀t ∈ I+ and wi
0, i = 1, . . . , N .

b) Slow time-scale. Let Θµ
t be generated by (9) and (13)

for wi
t = wi∗

t , i = 1, . . . , N , using step size µt = µ > 0,
µ << ν. Then Θµ(τ) = Θt for τ ∈ [(t−tµ)µ, (t−tµ+1)µ),
where µ

1
2 tµ → 0 as µ→ 0, is tight and converges weakly to

Θ(·) = [θ1(·)T · · · θN (·)T ]T , θi(·) = [θ̄(·)T θ̃i(·)T ]T , where

˙̄θ = 1
N

∑N
i=1 q

iḡi1(θ̄, θ̃
i, wi∗(θ̄, θ̃i)), (19)

˙̃
θi = ḡi2(θ̄, θ̃

i, wi∗(θ̄, θ̃i)), (20)
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i = 1, . . . , N , with arbitrary initial conditions θ̄0 and θ̃i0,
where ḡi = [ḡiT1 ḡiT2 ]T , dim(ḡi1) = p̄, dim(ḡi2) = p̃; wi∗(θi)
is the unique solution of the equation h̄i(θ

i, wi) = bi −
Di(θi)θi − Ciwi = 0.

Proof: At the start, we conclude that the assumptions
C(3.2), C(3.3) and C(3.4) from [18, Theorem 3.1, Part 1] are
satisfied. Consequently, it is possible to show using [18] that
supµ,t≥tµ

1
µ2E{|Xt+1−Xt|2} <∞ and { 1

µ |Xt+1−Xt|, t ≥
tµ} is uniformly integrable, {Xµ(·)} is tight and the limit
paths are Lipschitz continuous.

a) ODE in (18) follows directly from the assumption about
two time-scales in the algorithm. Existence and uniqueness
of the solution to h̄i(θi, wi) = 0 w.r.t. wi follows from (A7)
implying that the ODE ẇi = h̄i(θi, wi) admits a unique,
globally asymptotically stable equilibrium wi∗, given any
fixed value of θi.

b) Let F̄ [1](·) be obtained from F̄ (·) as Θ̄ is obtained from
Θ. Following [18], the asymptotic mean ODE (19) can be
obtained by demonstrating that the M(τ), τ ∈ R+, defined
by

M(τ) =f(Θ̄(τ))− f(Θ̄(0)) (21)

+

∫ τ

0

f ′(Θ̄(s)){Ψ̄⊗ Ip̄}F̄ [1](Θ̄(s))ds,

is a Lipschitz-continuous martingale where f(·) a real valued
function [18]. The technical part of the derivation is based on
the Skorokhod embedding. As X(τ) is Lipschitz continuous
and M(0) = 0, it follows that M(τ) = 0. This implies that
˙̄Θ = (Ψ̄⊗ Ip̄)F̄

[1](Θ̄). By (A2)–(A4), all the rows of Ψ̄ are
equal. It follows that Θ̄(·) = [θ̄(·)T · · · θ̄(·)T ] and that θ̄(·)
satisfies the ODE from (19). ODEs (20) generating θ̃it are
obtained directly from the corresponding recursions.

In the following, we shall shortly indicate the main line
of thought for the analysis of the fixed points of the ODEs
(19) using fluid models [19]. Namely, if the following limits
exist

limc→∞
1
cN

∑N
i=1 q

iḡi1(cθ
i, w∗

i (cθ
i)) = ḡi,∞1 (θi),

limc→∞
1
c ḡ

i
2(cθ

i, w∗
i (cθ

i)) = ḡi,∞2 (θi), (22)

i = 1, . . . , N , and the convergence is uniform, we
want to show that zero is the unique globally exponen-
tially stable equilibrium to Θ̇ = Ḡ∞(Θ), where Ḡ∞ =
[ḡ1,∞T · · · ḡN,∞T ]T .

Let D̃i,∞(θi) = (Ci)−
1
2Di,∞(θi)=

 D̃i,∞
[11] D̃

i,∞
[12]

D̃i,∞
[21] D̃

i,∞
[22]

 ,
with dim(D̃[11]) = p̄× p̄, dim(D̃[12]) = p̄× p̃, dim(D̃[21]) =

p̃× p̄, dim(D̃[22]) = p̃× p̃.
(A9) Di,∞(θi) = limc→∞Di(cθi) and the convergence

is uniform.
Define Ñ = [Ñ jk] with (N + 1) × (N + 1) block-

matrices Ñ jk with compatible dimensions defined by:
Ñ11 = 1

N

∑N
i=1 q

iD̃i,∞T
[11] D̃i,∞

[11] , Ñ
1k = D̃k−1,∞T

[11] D̃k−1,∞
[12] ,

Ñ j,1 = D̃j−1,∞T
[22] D̃j−1,∞

[21] , Ñ jj = D̃j−1,∞T
[22] D̃j−1,∞

[22] , j, k =
2, . . . , N + 1.

�
����

�
�1 2 3 14 15

�
����

Fig. 1. Diagram of the simulated POMDPs.

Following [11], we have that

ḡi,∞1 (θi) =
1

N

N∑
i=1

qi∇θ̄∥
1

c
(bi −Bi(cθi)wi∗)

−Di(cθi)θi∥2(Ci)−1 ,

ḡi,∞2 (θi) =∇θ̃i∥
1

c
(bi −Bi(cθi)wi∗)−Di(cθi)θi∥2(Ci)−1 .

Letting c → ∞, our task is, therefore, to analyze asymp-
totic stability of

Θ̇ = −ÑΘ. (23)

Properties of the composite matrix Ñ depend on the cor-
relation between the feature vectors ϕ̄i(s, a) and ϕ̃i(s, a).
Notice that in the case when there are no task specific
parameters (θi = θ̄i, i = 1, . . . , N ), the matrix Ñ reduces
to the block Ñ11, so that the results from [11], [19] can be
directly applied. The general stability problem remains to be
elaborated elsewhere, due to the lack of space.

Remark 1: It should be pointed out that the proposed
multi-agent algorithm can be considered as an efficient
parallelization tool. In this case, all the local POMDPs
have equal model parameters, but different behavior policies
independent of the main target policy. It has been found that
the algorithm enables a more efficient exploration of the state
space and reduction of variance compared to the single agent
case (similar effects as in A2C or A3C algorithms [5]).

VI. SIMULATION

In this section we shall illustrate the proposed algorithm
using simulations. The underlying POMDP is assumed to
belong to a class of Boyan chains [27] depicted in Fig. 1.
POMDP is modeled as in [2], [20], additionally assuming
that the states are not directly observable.

In each state with odd number there are two possible
actions: either ah (staying on the current main route) or aexit

(exiting and using an alternative route). The goal state, where
the process ends, is state 15. Opting for action aexit results in
a reward of −2.5 across all the states, with a probability of
0.2 (pexitstuck) of remaining in the same state. Action ah yields
a reward of −1 for any state transition, and the probability
of remaining in the same state increases as 1 − 1

s . The
control policy to be optimized is determined by maximizing
the expectation of the current Q-function estimate on the
belief state distribution as has been specified in (11). The
discount factor γ = 0.9 is used. The feature vectors utilized
in the Q-function approximation are 14-dimensional, with 7
dimensions allocated for each of the two potential actions.
Each dimension is represented using Gaussian radial basis

functions defined as e−
(s−zi)

2

2σ2 , where i ranges from 1 to 7,
zi takes values from the set 1, 3, 5, 7, 9, 11, 13, and σ2 = 2.
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Simulations are conducted across multiple episodes since
state 15 is absorbing.

We analyzed the performance of the proposed algorithm
(9), (13) with 10 agents, assuming identical POMDPs
and communications according to a sparse time-invariant
communication graph. We have assumed that all the pa-
rameters in θi are involved in the consensus scheme
(13), i.e. θi = θ̄i for all i = 1, ..., 10. The agents
use different stationary behavior policies (exit probabil-
ities for each observation) as follows: πb(a

exit|y) =
[0.15, 0.24, 0.13, 0.38, 0.55, 0.89, 0.64, 0.97, 0.75, 0.69]. The
HMM parameter estimation is performed according to Sec-
tion III. The step sizes in (9) are set to µ = 0.001 and ν = 1.5
(respecting the need for two time-scales). In Fig. 2 we
compare two cases: 1) The agents cannot perfectly observe
the state (location); the observation space is assumed to be
the same as the state space but an agent can wrongly observe
one of the two neighboring locations with 0.25 probability
each, except in state 1 in which state 2 is observed with
probability 0.5; and 2) The state is fully observable. The
figure shows the evolution of the value of the policy (11)
found at every 100 steps by calculating the mean discounted
rewards received under 500 episodes (with the policy fixed
by the choice of the Q estimate at the corresponding step).
The figure also shows the true optimal value function under
full observability and full knowledge of the underlying MDP
model. In the case of full observability, as expected, we have
convergence close to the true optimal value/policy (exact
convergence to the optimum cannot be achieved due to the
Q-function parametrization), while in the case of partial
observability we also achieve very good performance. It has
been observed that larger network connectivity increases the
rate of convergence and noise immunity of the scheme.

0 500 1000 1500 2000 2500
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V
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Full MDP knowledge and observability

Fig. 2. Evolution of the mean value functions corresponding to the agents’
policy estimates under the two described scenarios.
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