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Abstract— A semi-analytic method is proposed to solve a
class of optimal control problems while exploiting its underlying
Hamiltonian structure. Optimal control problems with a fixed
final state at a fixed terminal time are considered. The solution
methodology proposed in this work solves the Hamilton-Jacobi
equation over a predefined domain of states and co-states. The
advantage over traditional methods is that an approximate
generating function (analogous to the value function of HJB
theory) is obtained as a function of time, which allows for
the computation of co-states for any final time and final state
specified. Numerical experiments are conducted to demonstrate
the efficacy of developed method while considering benchmark
problems including spin stabilization.

I. INTRODUCTION
The problem of controlling the dynamics of engineering

systems from an arbitrary initial state to a desired target state
within a predefined time range is of fundamental interest to
engineers. Hamilton’s principle states that the flow between
two specified states at two specified times is obtained as
the extremum of the action integral. This observation that
the dynamical flow is an optimization problem motivates
finding the solution to general optimization problems using
appropriate Hamiltonian formulations. Further, Hamilton-
Jacobi (HJ) theory can be utilized to obtain an analytic
solution to Hamilton’s equations by prescribing canonical
transformation of variables through a generating function [1],
[2]. Particularly, the transformation that maps the state and
co-state at any time instant to its value at the initial time is
useful in obtaining the feedback control law as a function of
the initial, final, and current state.

Since feedback control utilizes the current state informa-
tion as opposed to the state information from an earlier
epoch, the resulting closed-loop system is modestly robust
to model errors and state uncertainties. Traditionally, the
feedback solution is obtained by solving the Hamilton Jacobi
Bellman (HJB) equation. The HJB equation is a partial dif-
ferential equation (PDE) whose analytic solution is primarily
limited to linear systems. Since the HJB equation generally
lacks closed-form solutions, different computational methods
have been formulated to approximate the solution of the HJB
equation, also known as the value function over an apriori
defined domain [3]–[7]. The main challenge in the solution of
HJB equation is the curse of dimensionality, as the dimension
of spatial variables is equal to the state dimension. More
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recently, sparse approximation methods in conjunction with
non-product quadrature methods are employed to derive a
computationally efficient method to solve the HJB equation
[8]–[11]. However, one has to solve the HJB equation again if
the specified final time and/or boundary condition is changed
like any other computational method.

The methodology proposed in this work is fundamen-
tally different from the traditional computational methods
to derive optimal feedback solutions via the HJB equation.
The proposed approach utilizes the HJ equation to solve for
generating functions for the underlying Hamiltonian system
in state and co-states. The generating functions provide a
map between the current state and co-state to its value at
the initial time. Numerous strategies have been proposed for
solving the HJ equation within the context of optimal control
[12]–[15]. The special nature of the relationship between the
value function and the generating function is clarified in [13],
[14], where a family of value functions can be derived from a
single generating function. Thus, solving the HJ equation for
a generating function achieves a family of optimal feedback
control profiles as an explicit function of the boundary
conditions. Eapen et al. [16], [17] have investigated this
property of Hamiltonian dynamical systems in the context
of the optimal feedback control problem. By connecting the
value function to the Hamilton-Jacobi generating function,
a systematic way to evaluate the optimal feedback control
and cost function while still satisfying the general boundary
conditions was obtained. These findings are expanded upon
in the current work. The Hamilton-Jacobi equation will be
solved locally using a collocation scheme for approximating
the generating function using a non-product sampling method
called Conjugate Unscented Transformation (CUT). Addi-
tionally, the required polynomial basis function set for the
collocation-based approximation is automatically generated
from an overcomplete dictionary of basis functions using
current developments in sparse approximation. It is shown
that a form for the feedback control law, which is typically
unknown, is automatically identified by the solution process
using the basis function selection method.

The remainder of the paper is structured as follows: First,
it is briefly shown how the generating functions are obtained
from the variational principal and provides the necessary
background for the method developed. Next, the Two-Point
Boundary Value Problem (TPBVP) is posed, and its connec-
tions to the Hamilton-Jacobi theory is discussed. The general
solution process is delineated for solving the HJ equation
using a collocation-based scheme. Finally, the utility of the
developed method is demonstrated using two examples, the
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van der Pol oscillator and the attitude stabilization example.

II. PROBLEM FORMULATION AND HAMILTON-JACOBI
PRELIMINARIES

The primary objective of this research is to develop a
numerical framework for solving the optimal control problem
with terminal constraints:

min
u(t)

J = φ
(
x
(
t f
)
, t f

)
+

∫ t f

0
L(x(t),u(x,τ))dτ (1)

subject to: ẋ = f(x,u, t), x(0) ∈ X0, x(t f ) ∈ X f (2)

ψ
[
x
(
t f
)
, t f

]
= 0 (3)

where x ∈ ℜn is the state, u ∈ ℜm is the control,
(X0,X f ) ⊂ ℜn is the domain of initial and final states,
and ψ

[
x
(
t f
)
, t f

]
∈ ℜq (q ≤ n) is the terminal state con-

straint. φ
(
x
(
t f
)
, t f

)
is a penalty on the terminal state, and

L(x(τ),u(τ), t) is a problem-dependent penalty on the state
and control variables and is assumed as convex in both x(t)
and u(t). Furthermore, only fixed final time problems are
considered in this work. The general procedure of solving the
optimal control problem is done by defining an augmented
cost function of the Hamiltonian, which is given as:

H(x,λ ,u, t) = L(x,u, t)+λ
T f(x,u, t) (4)

The Hamiltonian H in Eq. (4) governs the evolution of
the state and co-state variables. The paths of these variables
produce a certain stationary functional:

δ

∫
λ ·dx−Hdt = 0 (5)

The first-order necessary condition for optimality
( ∂H(x,λ ,u,t)

∂u = 0) is obtained by the variation of Eq.
(5) and is related to Pontryagin’s Minimum Principle
(PMP), which states that the optimal control is the one that
minimizes the Hamiltonian. Therefore, the optimal feedback
control law can be computed as:

u(x,λ , t) = arg min
ū∈U

{H(x,λ , ū, t)} (6)

where U is the set of admissible control laws.
It is easy to verify that the addition of a path-independent

term to Eq. (5) does not affect the dynamics. If one were to
introduce a new state and co-state (x0,λ0) that are expressed
in terms of the old state and co-state (x,λ ) in such a way
that they can be represented as:

x0 = x0(x(t),λ (t), t, t0), λ0 = λ0(x(t),λ (t), t, t0) (7)
The path-independent term ensures that the transformation
above is canonical and called the generating function. It is
noted that Eq. (7) is not an explicit function of the control
because it is assumed that the cost function in Eq. (1)
is in control-affine form, and therefore the control can be
expressed as a function of the co-states. Since the generating
function is path-independent, it should satisfy:

n

∑
i=1

λ
iẋi −H(x,λ , t) =

n

∑
i=1

λ0
iẋi

0 −K(x0,λ0, t)+
dF
dt

(8)

Therefore, for a new set of variables (x0,λ0) and a new
Hamiltonian, K, the dynamics are the same if the integrand
differs by a path-independent term, dF , such that

λ
T ẋ−H(x,λ , t) = λ0

T ẋ0 −K(x0,λ0, t)+
dF
dt

(9)

Eq. (9) gives a functional form of the differential criterion
that leads to [x0,λ0] satisfying the canonical differential
equations of Hamilton. The variable change that preserves∮

λ · dx also preserves dynamics (with appropriately modi-
fied Hamiltonian). In this work, the freedom to add path-
independent terms to specify canonical transformations is
leveraged to relate the states and co-states at any current
time with its value at the initial time, thereby providing the
optimal feedback control at any time instant as a function of
the generating function, F . There exist four possible forms
of the generating function which can generate the given
canonical transformation to the new variable space (x0,λ0)
and satisfy the HJ equation as shown in Table I.

F1(x,x0, t, t0) λ = ∂F1
∂x λ 0 =− ∂F1

∂x0

∂F1
∂ t +H

(
x, ∂F1

∂x , t
)
= 0

F2(x,λ0, t, t0) λ = ∂F2
∂x x0 =

∂F2
∂λ 0

∂F2
∂ t +H

(
x, ∂F2

∂x , t
)
= 0

F3(λ ,x0, t, t0) x =− ∂F3
∂λ

λ 0 =− ∂F3
∂x0

∂F3
∂ t +H

(
− ∂F3

∂λ
,λ , t

)
= 0

F4(λ ,λ0, t, t0) x = ∂F4
∂λ

x0 =− ∂F4
∂λ 0

∂F4
∂ t +H

(
− ∂F4

∂λ
,λ , t

)
= 0

TABLE I: Types of Generating Functions
Notice that the above relationship of type-1 generating

function with the fixed final state (instead of the fixed initial
state) and the state at time t can be derived (F1

(
x f ,x, tf, t

)
):

λ =−∂F1

∂x
,λf =

∂F1

∂x f
,−∂F1

∂ t
+H

(
x,−∂F1

∂x
, t
)
= 0 (10)

Since any time instant t (t < t f ) can be the initial time, the
above equation holds for arbitrary initial conditions. Thereby,
using λ =− ∂F1

∂x in Eq. (6):

u = argmin
ū

H
(

x,−∂F1

∂x
, ū, t

)
(11)

Thus, Eq. (11) provides the optimal feedback control using
the type-1 generating function.

An appropriate generating function must be utilized to
find the solution to these transformations. The selection of
the generating function depends upon the type of initial and
final boundary conditions specified for the optimal control
problem. First, the relationship of these generating functions
in the HJ equation with the value function corresponding to
the HJB equation is obtained.

A. Relationship between the value function and the generat-
ing function

To obtain the relationship between the optimal feedback
control using the value function and the generating function,
the control profile is compared using both methods. Dynamic
programming yields the relationship between the co-states
and the optimal value function of the HJB equation, λ =
∂V (x,t)

∂x . Thus, the optimal feedback control can be obtained
by substituting λ = ∂V (x,t)

∂x into Eq. (6) as:

u(x,λ , t) = arg min
ū∈U

{
H
(

x,
∂V (x, t)

∂x
, ū, t

)}
(12)

Equations (12) and (11) imply the existence of a relationship
between the value function computed from the HJB equation
and the generating function computed through the HJ equa-
tion. This relationship between the value function and the
type-1 generating function is expressed as [14], [18]:

V (x, t) =−F1(x f ,x, t f , t)+φ
(
x(t f

)
, t f ) (13)
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This can easily be proved for the hard constraint bound-
ary value problem where the final state is fixed, i.e.,
φ
(
x(t f

)
, t f ) = 0. This results in V (x, t) = −F1 and substi-

tuting this in HJ equation results in:
∂V (x, t)

∂ t
+H

(
x,

∂V (x, t)
∂x

, t
)
= 0 (14)

which is the HJB equation for value function V . In fact,
other generating functions can also be used to compute the
value function by exploiting the Legendre transformations.
For that purpose, however, using F2, F3, or F4 requires one to
solve a set of implicit equations as well as to take partial dif-
ferentiations, whereas employing F1 only necessitates taking
partial differentiations [14]. For the terminal constraint given
by a hyperplane ψ

[
x
(
t f
)
, t f

]
= 0 in Rq≤n, mixed terminal

conditions for both states and co-states in general is obtained.
In this case, a more generalized kind of generating function
is required, which would mix all 4 kinds of variables (initial
and terminal states and co-states).

If one uses the type-2 generating function, it is ob-
served that at the terminal time, F2 = xT

f λ generated: x =
∂F2
∂λ

|x=x f and same with λ 0. The generating function F1
can be obtained from F2 using the Legendre transformation,
F1

(
x,x f , t, t f

)
= F2

(
x,λ f , t, t f

)
− λ

T x, which at the final
time evaluates to:

F1
(
x f ,x f , t f , t f

)
= F2

(
x f ,λ f , t f , t f

)
−λ

T
f x f = 0 (15)

That is, at the final time, F1 satisfies the HJB equation
and is equal to the value function V

(
x f , t f

)
= 0. Thus,

one can observe that there may be drawbacks to using the
generating function of the first kind: F1 becomes singular as
it loses the independence of its arguments. In fact, this is an
equivalent statement that the optimal cost function becomes
singular at the terminal time for the hard constraint problem.
Additionally, mapping the states from any arbitrary time
instant, t, to the final time is counterproductive because it
will require multiple HJ equations to be solved for different
terminal constraints. Contrastingly, mapping to the initial
time provides the advantage of solving the HJE only once.

For these reasons, this paper will utilize the generating
function of type 2, with the canonical mapping from any
arbitrary time instant to the initial time. One of the main
reasons for this is that, unlike F1, F2 can generate identity
transformations. This means that the generating function at
initial time is known exactly as F2 = λ

T
0 x. Furthermore, as-

suming that the implicit relations arising from F2 generating
function can be solved, the terminal time and terminal state
can be kept in a functional form, and the HJ PDE can be
solved in forward time (as opposed to HJB, which is solved
in backward time). This freedom allows for the development
of a systematic methodology to solve OCPs in functional
form and obtain the solution in a semi-analytic way.

III. SOLUTION METHODOLOGY FOR OCP SOLUTION
USING TYPE-2 GENERATING FUNCTION

As mentioned in the previous section, a methodology
to solve the Hamilton-Jacobi equation stemming from the
optimal control problem is presented in this work. Recall that
the generating function enables the canonical transformation

to map the space variables to initial condition space variables,
i.e., (x(t),λ (t))→ (x0,λ 0)∀t ∈

[
t0, t f

]
. Considering a type-2

generating function, the HJ equation and the corresponding
relation between co-state and state are given as:

∂F2 (x,λ 0, t, t0)
∂ t

+H
(

x,
∂F2 (x,λ 0, t, t0)

∂x
, t
)
= 0 (16a)

λ =
∂F2 (x,λ 0, t, t0)

∂x
, x0 =

∂F2 (x,λ 0, t, t0)
∂λ 0

(16b)

In the case where the initial and terminal states are explic-
itly given, the generating function F2(x,λ 0, t) can be directly
used to find the initial state and final co-states from the
above relationship. The key observation is that solving for λ 0
solves the boundary-value problem and, hence, the optimal
control problem. Suppose there exists an analytical form
for F2(x,λ 0, t). Then, by taking its partial derivatives and
specifying x0 and x f , the appropriate co-states to generate the
optimal control profile can be found. The major advantage
is that the solution process for solving the HJ equation is an
initial value problem as opposed to a boundary value problem
that the HJB equation gives. This exclusive advantage allows
the HJ equation to be solved semi-analytically.

Since the existence of a generating function is not guar-
anteed for nonlinear dynamical systems, a numerical method
is used to approximate the solution in a pre-defined neigh-
borhood. To do so, a sparse-collocation method will be
employed to precisely determine the minimal number of
coefficients required to approximate the generating function
from an over-complete dictionary of basis functions. In
addition, the methodology uses a low number of collocation
points that can accurately represent the entire domain and
alleviate the curse of dimensionality.

A. Development of Collocation Equations

Consider a dynamical system with state x and co-state
λ . Following the definition of the approximate generating
function, the solution to the HJ equation is assumed to be:

F2(x,λ 0, t) =
m

∑
j=1

c j(t)φ j(x,λ 0) = c(t)Φ(x,λ 0) (17)

where c(t) ∈ Rm is a vector of time-varying coefficients,
while φ(x,λ 0)∈Rm is a vector of the basis function and are
assumed to have at least continuous first-order derivatives.
There are infinitely many choices for basis functions, such
as polynomials, radial basis functions, wavelets, and so on.
A key difficulty in choosing an optimal basis function set
is due to the unknown characteristics of the generating
function. It should be noted that a good approximation can
lead to a large basis function matrix, Φ(x,λ 0), which can
consequently increase computational costs. An ingenious
choice of basis function should create sparse matrices and
result in a parsimonious model, i.e., very few c(t) are
non-zero while meeting the approximation requirements. A
series of predefined continuous functions always exists on
a compact interval [19] according to the Stone-Weierstrass
theorem. This theorem allows for the accurate approximation
of any continuous function over a compact interval using
polynomial variables with a sufficient number of terms. Due
to these reasons, along with the ease of differentiation and
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integration, polynomial functions are commonly employed
as basis functions in approximation theory.

Note here that since the Hamiltonian H is non-
autonomous, the approximate generating function is written
in a way that the basis functions are in the spatial variables,
and its coefficients are temporal. Substituting Eq. (17) in Eq.
(16a), the HJ equation can be written as:

ċi(t)Φ(x,λ 0) =−H
(

x,
∂F2

∂x
, t
)

(18)

Expanding the time derivatives as finite differences, the
above equation can be written as:

Aδck+1 = b (19)
where δck+1 = ck+1−ck. Here ck are the coefficients at time
tk and δck+1 are the departure coefficients at time tk+1. The
residual error from Eq. (19) is given as:

e(ζ ) = Aδck+1 −b, AT
i = Φ

i(ζ ),bi =−H
(

x,
∂F2

∂x
, tk

)
dt

(20)
where ζ = [x,λ 0]. In the collocation method, the error is
projected onto a series of delta functions centered at chosen
collocation points, resulting in a residual error being zero at
the collocation points. Assuming there are total N collocation
points, leading to a system of N equations in m unknowns
to exactly solve the HJ equation at prescribed points, ζ i:∫

e(ζ )δ (ζ −ζ i)dζ = 0 → e(ζ i) = 0, i = 1,2, . . .N (21)

where ζ i are the chosen collocation points. The selec-
tion of the collocation points is crucial in obtaining a
well-conditioned system of equations for the unknown
coefficients. Therefore, an efficient numerical sampling
method known as the Conjugate Unscented Transformation
(CUT) method is used to generate collocation points in
n-dimensional space. The CUT method avoids the tensor
product of 1-D points and hence provides a lower number
of points as compared to traditional quadrature methods
like Gauss quadrature and sparse grid [20]. Further sim-
plifications can be made by examining the structure of the
Hamiltonian.

Theorem 1: If Hamiltonian is an even function, the type-2
generating function will only be a function of even coeffi-
cients.

Proof: Since H is an even function, it can be written
as: H(z) = ∑

p
i=1 aiΦ(z2

i ). Assuming a generating function
with the unknown coefficients, F2(z) = ∑

q
i=1 ciΦ(zi). By

substituting F2(z) in the HJ equation (Eq. 16a), the following
relation isobtained: ∑

q
i=1 ċiΦ(zi) = ∑

p
i=1 aiΦ(z2

i ). Equating
the odd coefficients on both sides results in the following:
ċodd = 0. Using the finite-difference method, the following
is obtained: ck+1odd = ckodd which means the odd coefficients
have the same value at each time step. Since the initial
coefficients are even (F2 = xT

0 λ ), the odd coefficients will
never be able to get excited due to the even Hamiltonian.

Due to the fact that standard polynomials are used to
approximate the generating function, numerical challenges
may develop for larger domains with high-order polynomials.
The system dynamics are thereby mapped to a local domain
within a unit hypercube. This assures that the polynomial
basis functions are well-conditioned numerically. One crucial

point to remember is that, for a general nonlinear system,
the co-states have no physical meaning. Therefore, in order
to determine the domain of discretization of the co-states,
an open-loop control problem is solved for obtaining the
domain’s edge values. Assuming the global domain (±a) is
known apriori, a constant linear transformation can be ap-
plied to scale the global space to within ±1 in all dimensions.

yζ = Tζ ⇒
[

yx
yλ0

]
=

[
T1 0
0 T2

][
x
λ0

]
(22)

Thus, Eq. (20) can be written as:

AT
i = Φ

i(yζ ), bi =−H i(x,T1
∂F2

∂yx
)dt, i = 1,2, . . . ,N

(23)
and Eq. (16b) can be written as:

λ =
∂F2

(
yζ , tk

)
∂yx

T1, x0 =
∂F2

(
yζ , tk

)
∂yλ 0

T2 (24)

Notice that the numerical solution of Eq. (20) can be com-
puted by minimizing l2-norm of error, which determines the
best-fit solution for the given N collocation points resulting in
M coefficients. These M coefficients obtained by the l2-norm
solution utilize most of the M coefficients from the complete
dictionary of basis functions and thus provide the smallest
possible two-norm error. As a result, this method tends to
overfit the training data (collocation points) and can yield a
high norm error on the testing data (interpolation). Therefore,
an alternative method utilizing l1-norm approximation is
implemented to provide the minimum possible number of
coefficients required to accurately describe the full domain
while maintaining the optimization convex.

B. Optimal Selection of Basis Functions
As described in the section III-A, the solution of Eq. (20)

can be calculated by minimizing the weighted two-norm
error, which aims to find the best-fit solution for the given
CUT collocation points:

δck+1l2
= min

δck+1
∥W(Aδck+1 −b)∥2 (25)

where W is the weight matrix. As previously stated, δck+1l2
is known to pick all possible coefficients from the dictionary
of basis functions and is therefore not sparse. This research
seeks a minimal polynomial expansion that guarantees spar-
sity for the generating function. Therefore, a weighted l1-
norm optimization problem is proposed to select the mini-
mum possible coefficients from the extensive dictionary of
basis functions. In lieu of the equality constraint of Eq.
(19), this optimization problem is considered as a bounded
two-norm error using ε as a soft inequality constraint.
This allows sparse coefficients δck+1s to trade sparsity for
approximation error, providing a more flexible option. The
complete optimization problem to select the minimal poly-
nomial expansion of log-pdf is illustrated in Algorithm 1 and
more details can be found in Ref. [21], [22].

After obtaining the sparse coefficients δck+1s , it is possible
to separate the dominant coefficients from the non-dominant
coefficients by choosing a user-defined coefficient threshold
δrs. In addition, the non-dominant coefficients can be ignored
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Algorithm 1 Iterative weighted l1-norm optimization:
δck+1s = WeightedOpt(A,b,W,∆s,α,ε,η)

Input: A,b,W,∆s,α,ε,η
Output: δck+1s

1: Initialization K ∝ O(basis),δ = 1
2: compute δc−k+1 = min

δck+1
∥Kδck+1∥1

subject to: ∥W(Aδck+1 −b)∥2 ≤ ε

3: while δ ≥ ∆s do
4: Update K = 1

(δc−k+1+η)
, to

find δc+k+1 = min
δck+1

∥Kδck+1∥1

subject to: ∥W(Aδck+1 −b)∥2 ≤ ε

5: Compute δ = ∥δc+k+1 −δc−k+1∥2
6: δc−k+1 = δc+k+1
7: end while
8: δck+1s = δc−k+1

for computational purposes by substituting zero. A new mini-
mal representation of the basis functions ARS ∈ℜN×mr corre-
sponding to the mr non-zero coefficients can be constructed.
Therefore, the reduced sparse (RS) coefficients δck+1 ∈ ℜmr

can be calculated using the l2-norm minimization:
δck+1 =A†

RSb (26)

where A†
RS is the pseudo-inverse of the dominant basis

functions. Moreover, ck+1 can then be computed as:
ck+1 = ck +δck+1 (27)

This minimal representation ck+1 is then employed to com-
pute the generating function at time tk+1 and the procedure
can be repeated till the final time t f . Now to obtain the
solution of the OCP, given any initial state x0 and final state
x f , the initial co-state can be computed using coefficients at
final time (ct f ) using Eq. (24) as:

x0 =
∂F2

(
yζ , t f

)
∂yλ 0

T2 =
∂Φ(x f ,λ 0)ct f

∂yλ 0

T2 (28)

Once the value of the initial co-state corresponding to an
initial and final state is obtained, the TPBVP is solved. The
problem is now modified to an initial value problem where
the initial conditions on state and co-state is solved using the
necessary conditions.

IV. NUMERICAL VALIDATIONS

The current section presents two motivating examples. The
first example considered is the TPBVP for the van der Pol
dynamical system. The reason for introducing this example
is to emphasize that the HJ theory approach to TPBVP is not
limited to the optimal control of Hamiltonian systems only.
The van der Pol system is non-conservative, as evidenced by
the existence of a limit cycle. The second example considered
is the attitude stabilization of a rigid body. This example
is chosen to demonstrate that an exact analytical solution
can be obtained through the approximation of the generating
function, provided the correct set of basis functions is chosen.
The rigid body stabilization has a closed-form solution for
the infinite horizon problem, which is retrieved using the
solution methodology presented in this paper.

OCP Parameters

min
u(t)

J =
1
2

∫ t f

t0
u2dt

subject to: ẋ1 = x2

ẋ2 =−x1+ε(1− x2
1)x2 +u

ψ[x(t f ), t f ] =[−0.2,−0.2]

ε = 0.1
t f = 7s,dt = 0.01

α = 10−7,η = 10−5, δrs = 10−4

(x,λ ) ∈ [−0.5,0.5], N = 161
Basis(O(10))−→ m = 1001

Coefficient Variation State Evolution

x u J
RMS Error 4.2611e-03 4.0059e-03 4.0274e-06

TABLE II: Van der Pol Oscillator
A. Van der Pol Oscillator

The optimal control problem for the Van der Pol oscillator
is considered through the minimization of the total control
energy as shown in Table II. Using these parameters men-
tioned, the heatmap of RS coefficients up to 6th order is
shown in the second row as the higher order coefficients
(O(7− 10)) come out to be zero. It can be noticed that all
odd-order coefficients are inactive in approximating the gen-
erating function. This is due to the fact that the Hamiltonian
of Van der Pol oscillator comes out to be an even function
in terms of states and co-states, as H(x,λ ) = H(−x,−λ ).

With the acquired RS coefficients, the functional form of
the generating function can be determined. Thus, given the
initial and final boundary condition (x0, x f ), the initial co-
state (λ 0) can be obtained directly from generating function
using the relations in Eq. (24).

x0 =
∂F2

(
yζ , t f

)
∂yλ 0

T2 = κ(x f ,λ 0,ct f )⇒ λ 0 = κ̄(x0,x f ,ct f )

Utilizing these relations, one can find closed-form solutions
for the co-state given any initial and final state. To further
demonstrate the effectiveness of the developed approach in
computing the optimal solution, 100 random initial condition
samples within the domain are considered to reach the
final target state. The state evolution between x1 and x2 is
also shown in the Table II. Moreover, the obtained results
RS solution are then compared with the bvp4c solution in
MATLAB for the given final target. The RMS error over
time for the state, control, and cost function corresponding
to the 100 initial states is shown in the last row.

B. Spin Stabilization
The second example examines the spin stabilization of a

spacecraft in a torque-free environment. Here, an appropri-
ate feedback control is employed to prevent the rotational
motion of a tumbling rigid body. A performance index that
minimizes the state and control energy describes the optimal
control problem as shown in Table III.

The evolution of the RS coefficients in approximating the
generating function is also shown. The stationary value of
the type-2 generating function at t f = 7s is shown in (29a)
along with the type-1 generating function in (29b).
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OCP Parameters

min
u(t)

J =
∫ t f

0

(
ω

T Qω +uT Ru
)

dt

s.t.: ω̇ =−J−1
ω ×Jω +gu(x, t)

ψ[ω(t f ), t f ] = [0,0,0]

g = J−1,Q = q0I3x3,R = r0I3x3

J = diag[7,10,12]
r0 = 1,q0 = 50

t f = 7s,dt = 0.01
α = 10−5, η = 10−4, δrs = 10−4

x ∈ [−1,1],N = 301
Basis(O(8))−→ m = 3003

Coefficient Variation State Evolution

ω u J
RMS Error 3.3247-03 2.7813e-02 2.8861e-03

TABLE III: Spin Stabilization
F2(ω,λ , t f ) =−98.90ω

2
1 −70.64ω

2
2 −56.51ω

2
3 (29a)

F1(ω f ,ω f , t f ) =−α
(
J1ω

2
1 + J2ω

2
2 + J3ω

2
3
)

(29b)

where α ≈
√

50. This demonstrates that the stationary gen-
erating function is directly proportional to the spacecraft’s
kinetic energy. In addition, the stationary generating function
comes out to be negative of the stationary value function
of the HJB equation, as shown in Ref. [23]. Moreover,
the coefficient variation of the generating function is the
opposite to that of the value function. The coefficients of the
generating function become stationary as time progresses,
while the coefficients of the value function exhibit transient
behavior. This clearly demonstrates that the HJB equation is
solved backward in time, unlike the HJ equation, which is
solved in forward time.

Moreover, the state variation for 100 random initial states
to the final state is shown in Table III. It can be noticed that
these initial states are brought to zero in the chosen final time,
thereby achieving detumbling of the spacecraft. Finally, the
RMS error over time of the state, control, and cost function
between the RS solution and the bvp4c solution is shown in
Table III.

V. CONCLUSIONS

This paper proposes a semi-analytic method for solving
a class of optimal control problems with fixed final state in
a given final time by leveraging the underlying Hamiltonian
structure. The Hamilton-Jacobi equation is utilized to solve
the TPBVP by mapping the state and co-state at any time
instant to the initial time by exploiting the type-2 generat-
ing function. In addition, the CUT-based sparse-collocation
method provides a minimal number of collocation points
and coefficients in accurately approximating the generating
function. The utility of the developed method is demonstrated
using two examples, the van der Pol oscillator and the spin
stabilization problem.
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