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Abstract— Linear time-invariant single-input-single-output
systems with nonnegative impulse responses, commonly called
externally positive systems, carry well-known monotonicity
properties such as: (i) the static gain equals the H∞-norm
(peak of the Bode magnitude diagram), (ii) monotone inputs
are mapped to monotone outputs, (iii) the transfer function
is totally monotone on the positive reals. In this paper, we
complement these properties by proving monotonicity proper-
ties of the frequency response gain with the help of variation
diminishing theory. While our results give new insights into
proving monotonicity properties of the gains of positive systems,
they are not limited to such systems, and extend to systems that
preserve the periodic monotonicity of their inputs. In particular,
our results also provide an interesting sufficient condition for
positive dominance.

I. INTRODUCTION

In the past couple of decades, linear time-invariant (LTI)
systems

ẋ(t) = Ax(t) + bu(t)

y(t) = cx(t)
(1)

that map positive inputs to positive outputs have become an
essential part of the control engineering toolkit (see, e.g.,
[1–3]). Such systems, which can be characterized by a non-
negative impulse response, possess a number of interesting
properties that have been exploited for the development of
tractable analysis methods and scalable design algorithms
(see, e.g., [2, 3]). An important property of these systems
is that their dominant pole has to be real. As a result,
parallel, series or positive feedback interconnections of such
systems behave closely to a low-dimensional first-order lag.
As demonstrated in [4], very low-order approximations are
often of sufficient quality. This property can also be observed
in the frequency domain: it is well known that the H∞-
norm is attained at the DC gain, that is, the peak of its Bode
magnitude plot occurs at zero frequency, a property called
positive dominance [5].

Based on these observations, it seems natural that the
frequency response gains of positive systems are often mono-
tone in practice. Unfortunately, there is no general charac-
terization of this property to this day. The closest related
property is the characterization of positivity via the total
monotonicity of the transfer function G(s) = C(sI−A)−1B,
i.e., (−1)k dkG(s)

ds ≥ 0 for all s ≥ 0. In this paper, we
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want to focus on another characterization: the preservation
of monotonicity from input to output, i.e, a monotonically
increasing input u is mapped by a positive system to a mono-
tonically increasing output y. Concretely, we will investigate
the periodic analogue of this property, i.e., when the system
is required to preserve the periodic monotonicity of their
inputs. Roughly, a periodically monotone signal is a periodic
signal whose graph within a period can be decomposed into
a monotonically increasing and a monotonically decreasing
part [6]. Such systems are then called periodic monotonicity–
preserving (PMP).

We first show that the frequency response of a PMP
system displays a generalized form of the positive dominance
property of positive systems. More specifically, a system
that preserves the monotonicity of a T -periodic input is
shown to amplify particular harmonics of such a signal in
a dominant fashion: |G(iω)| ≥ |G(ikω)| for ω = 2π/T for
all k ∈ N≥1. In particular, this gives the sequential property
that |G(i2kω)| ≥ |G(i2k+1ω)| for all k ∈ N0 if the system
is PMP for all periods T = π

2k−1ω
, k ∈ Z.

More generally, we show that this property is also pre-
served if the auto-correlation function of the impulse of
(1) gives rise to a periodized PMP convolution kernel via
periodic summation (see, e.g., [7]). To verify this property,
we derive several tractable conditions. In particular, we
discuss conditions when the periodized auto-correlation is
PMP for all possible periods.

Our results constitute a relaxation of related results in [8]
concerning systems with a so-called cyclic variation dimin-
ishing (CVD) convolution transformation. Unfortunately, it is
unknown how to verify the CVD property in most instances.
As a special case of this theory, however, we show that the
nonnegativity of the auto-correlation is a sufficient condition
for positive dominance, which is computationally tractable
through, e.g., [9–11]. Thus, our results support synthesis
efforts such as [5].

II. PRELIMINARIES

A. Periodic monotonicity and variation diminishment

At the heart of the theory used in this paper lies the
concept of the variation of a signal. The two most relevant
types of variation for our purposes are defined next:

Definition 1 (variation). Let u = (u1, u2, . . . , un) be a
vector of real numbers. We denote by S(u) the number of
sign changes in the sequence u1, u2, . . . , un after deleting
all zero terms, with the special convention that S(0) = −1.

Definition 2 (cyclic variation). For a bounded T -periodic
function u : R → R, the cyclic variation Sc(u) is the
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number of sign changes of u over the course of one period
T . Formally,

Sc(u) := sup
t1<t2<···<tn<t1+T

n∈N

S(u(t1), u(t2), . . . , u(tn), u(t1)).

The idea of periodic monotonicity mentioned in the intro-
duction can now be defined.

Definition 3 (periodic monotonicity). A T -periodic function
u : R → R is called T -periodically monotone (u ∈ PMT )
if and only if for any γ ∈ R, we have Sc(u − γ1) ≤ 2,
where 1 is the constant function 1(t) ≡ 1.

Roughly speaking, this implies that u(t) crosses any con-
stant function γ1 at most twice within a period. T -periodic
monotonicity is equivalent to the existence of numbers t1 ≤
t2 ≤ t1+T such that u is nonincreasing for t1 ≤ t ≤ t2 and
nondecreasing for t2 ≤ t ≤ t1 + T [6].

The T -periodic monotonicity of a signal u(t) may be
preserved by certain operators. In this work, we are interested
in the cyclic convolution

y(t) = (g ∗ u)(t) := 1

T

∫
T

g(t− τ)u(τ)dτ, t ∈ R (2)

for T -periodic convolution kernels g : R→ R∪{±∞} such
that

∫ T

0
|g(t)|dt < ∞ (g ∈ L1(T )), and bounded T -periodic

inputs u.

Definition 4 (periodic monotonicity preservation). The ker-
nel g is said to be T -periodic monotonicity preserving (g ∈
PMPT ) if y ∈ PMT for all bounded u ∈ PMT .

For continuously differentiable kernels, the following
lemma provides a way to check the PMPT property:

Lemma 1. Let g ∈ L1(T ) be continously differentiable.
Then, g ∈ PMPT if and only if all non-vanishing deter-
minants

det

1 g(t1) ġ(t1)
1 g(t2) ġ(t2)
1 g(t3) ġ(t3)

 , t1 < t2 < t3 < t1 + T

have the same sign.

Lemma 1 is essentially [6, Lemma 5], which states that
g ∈ PMPT if and only if g+ iġ is a so-called convex curve.
But it is shown in [8, p. 478] that g + iġ is a convex curve
if and only if the determinant condition above holds.

Lemma 1 may be difficult to use beyond simple cases. A
somewhat more practical test for PMPT is provided by the
main result of [6]:

Proposition 1. Let g ∈ L1(T ). Then g ∈ PMPT if and only
if g = g̃ a.e., where g̃ is bounded and satisfies the following
conditions:

(i) g̃ ∈ PMT .
(ii) g̃ is continuous except for at most two points in a

period. If supR g̃ = gs, infR g̃ = gi, and g̃ is not continuous
at t = t0, then∣∣∣∣∣ limt→t+0

g̃(t)− lim
t→t−0

g̃(t)

∣∣∣∣∣ = gs − gi

(iii) g̃ is continuously differentiable in each interval inside
which g̃ neither assumes nor approaches gs or gi. Further-
more, log | ˙̃g| is concave in those intervals.

We also have the following useful facts:

Lemma 2. For g, u ∈ PMPT , the following hold:
(i) g ∗ u ∈ PMPT .

(ii) g−(t) := g(−t) is in PMPT .
(iii) ∀α ∈ R : αg ∈ PMPT .

Proof: For part i, notice that for any bounded v ∈ PMT

we have that y ∗ v = g ∗ (u ∗ v) is PMT . For parts ii and
iii, notice that scaling or flipping the sign of g(t) does not
change any of the conditions of Proposition 1.

A closely related property to PMP is that of cyclic varia-
tion diminishment [8, p. 259]:

Definition 5. The convolution kernel g(t) in (2) is said to be
T -cyclic variation diminishing of order 2k, or CVD2k(T ), if
Sc(y) ≤ Sc(u) for all T -periodic u such that Sc(u) ≤ 2k.

If a kernel is CVD2(T ), then it is PMPT . Indeed, since for
any γ ∈ R and u ∈ PMT it holds that y−γ1 = g ∗ (u−β1)
some β ∈ R, we have that Sc(y−γ1) ≤ 2 if g is CVD2(T ).
A counterexample for the converse inclusion is shown in [6].

In order to make these tools tractable, we also need the
following algebraic notions. Let the i-th elements of the r-
tuples in

In,r := {v = {v1, . . . , vr} ⊂ N : 1 ≤ v1 < v2 < · · · < vr ≤ n}

be defined by lexicographic ordering. Then, the (i, j)-th
entry of the so-called r-th multiplicative compound matrix
X[r] ∈ R(

n
r)×(

m
r ) of X ∈ Rn×m is defined by det(X[I, J ]),

where I is the i-th and J is the j-th element in In,r and
Im,r, respectively. For example, if X ∈ R3×3, then X[2]

reads(
detX[{1, 2}, {1, 2}] detX[{1, 2}, {1, 3}] detX[{1, 2}, {2, 3}]
detX[{1, 3}, {1, 2}] detX[{1, 3}, {1, 3}] detX[{1, 3}, {2, 3}]
detX[{2, 3}, {1, 2}] detX[{2, 3}, {1, 3}] detX[{2, 3}, {2, 3}]

)
The multiplicative compound of eAt can be expressed in
terms of the so-called additive compound matrix A[j] [12,
Section 1]: A[j] := log(exp(A)[j]) = d

dhe
Ah
[j]

∣∣∣
h=0

, which

satisfies (eAh)[j] = eA
[j]h.

B. LTI systems with periodic inputs
We apply the mathematical machinery of periodic mono-

tonicity theory presented in the previous section to the cyclic
convolution with periodized system functions, in particular
the periodized impulse response and auto-correlation func-
tions. We consider LTI systems (1) with square-integrable
impulse responses g ∈ L1, bounded inputs u, and output

y(t) = (g ∗ u)(t) (3)

(with some abuse of notation, we also use ∗ to denote the
non-cyclic convolution). Assume henceforth that the input
u(t) is T -periodic. Then the cyclic convolution and the
periodized impulse response

gT (t) :=

∞∑
k=−∞

g(t− kT )
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appear naturally in (3), since

(g ∗ u)(t) =
∫ ∞

−∞
g(t− τ)u(τ)dτ

=

∞∑
k=−∞

∫ (2k+1)T
2

(2k−1)T
2

g(t− τ)u(τ)dτ

=

∫ T
2

−T
2

∞∑
k=−∞

g(t− kT − τ)u(τ + kT )dτ

=

∫ T
2

−T
2

gT (t− τ)u(τ)dτ, (4)

where we have used the T -periodicity of u(t). Hence the
cyclic convolution can be used with gT (t) to determine the
periodic output y(t).

The auto-correlation function of (3) is defined as

Rgg(t) :=

∫ ∞

−∞
g(t+τ)g(τ)dτ =

∫ ∞

−∞
g(τ − t)g(τ)dτ (5)

for t ∈ R. Its convolution with u(t) = sin(ωt) yields

(Rgg ∗ u)(t) =
∫ ∞

−∞
Rgg(t− τ)u(τ)dτ = |G(iω)|2 sin(ωt),

(6)
because its Fourier transform computes as

F{Rgg}(iω) =
∫ ∞

−∞
Rgg(t)e

−iωtdt = |G(iω)|2. (7)

Using the same steps as in those in (4), by defining the
periodized autocorrelation function

RT
gg(t) :=

∞∑
k=−∞

Rgg(t− kT )

one can express convolutions such as (6) as

(Rgg ∗ u)(t) =
∫ T

2

−T
2

RT
gg(t− τ)u(τ)dτ, (8)

whenever u(t) is periodic with period T = 2π
ω . Furthermore,

following similar steps to those in (4), it is simple to obtain
the relation

RT
gg(t) =

∫ T
2

−T
2

gT (t+ τ)gT (τ)dτ (9)

between the two periodized system functions. The auto-
correlation function of the (causal) impulse response of (1)
can be derived from (5). Since Rgg(t) = Rgg(−t), we have

Rgg(t) = ceA|t|
∫ ∞

0

eAτ bbTeA
TτdτcT = ceA|t|PcT (10)

= bTeA
T|t|
∫ ∞

0

eA
Tτ cTceAτdτb = bTQeA|t|b (11)

where P and Q are the (symmetric) controllability and
observability Gramians, respectively.

Note that RT
gg(t) is indeed a periodic function of period

T , which on [−T
2 , 0] can be evaluated as

RT
gg(t) = c

( ∞∑
k=0

[
eA(kT−t) + eA(t+kT )

]
− eAt

)
PcT

and on [0, T
2 ] as

RT
gg(t) = c

( ∞∑
k=0

[
eA(kT−t) + eA(t+kT )

]
− e−At

)
PcT.

Using the von Neumann series
∑∞

k=0 e
AkT = (I − eAT )−1

RT
gg(t) = c

[
(eAt + e−At)(I − eAT )−1 − e−A|t|

]
PcT

(12)
on [−T

2 ,
T
2 ].

C. Positive systems

This work will in particular deal with externally positive
systems:

Definition 6. An LTI system is said to be externally positive
if its impulse response g(t) is nonnegative for all t ≥ 0.

Such systems are known to satisfy the following property
(see e.g. [5]):

Definition 7. An LTI system is said to be positively domi-
nated if its frequency response satisfies G(0) ≥ G(iω) for
all ω ≥ 0.

III. MAIN RESULTS

The main objective of this paper is to exploit the properties
of g(t) and Rgg(t) in order to characterize monotonicity
properties of the system gain |G(iω)|. In this section, we
often omit the period T from the notation of the PM and
PMP properties, as they will be clear from context.

A. PMP and the frequency response gain

We begin with a technical lemma:

Lemma 3. For ω > 0 and k ∈ N>0, there exists an a > 0
such that u = sin(ωt)− a sin(kωt) is PMP2π/ω .

Proof: It suffices to show the claim for ω = 1 as scaling
of t leaves the claim invariant. By Lemma 1, we need to show
then that there exists an a > 0 such that

M := det

(
1 sin(t1)− a sin(kt1) cos(t1)− ak cos(kt1)
1 sin(t2)− a sin(kt2) cos(t2)− ak cos(kt2)
1 sin(t3)− a sin(kt3) cos(t3)− ak cos(kt3)

)
has the same non-zero sign for all t1 < t2 < t3 < t1 + 2π.
To verify this, we note that

M =

1 sin(t1) cos(t1)
1 sin(t2) cos(t2)
1 sin(t3) cos(t3)

+O(a)

= 4 sin

(
t1 − t2

2

)
sin

(
t2 − t3

2

)
sin

(
t1 − t3

2

)
+O(a)
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with

0 >
t1 − t2

2
> −π, 0 >

t1 − t3
2

> −π,

0 >
t2 − t3

2
>

t1 − t3
2

> −π.

Thus, M < 0 for sufficiently small a > 0.
Our first main result is the following:

Theorem 1. Let ω > 0 be such that R
2π
ω
gg is PMP. Then,

|G(iω)| ≥ |G(ikω)| for all k ∈ N≥1.

Proof: By Lemma 3, there exists an a > 0 such that
ua(t) = sin(ωt) − a sin(kωt) is PMP. Let ā be the largest
such a. It is easy to see that ā < ∞, because for sufficiently
large a, ua(t) will be dominated by sin(kωt) and, then u is
no longer PM. It follows from (6) that

(Rgg ∗ uā)(t) = |G(iω)|2 sin(ωt)− ā|G(ikω)|2 sin(kωt).

Since R
2π
ω
gg is PMP by assumption, and uā is PMP by

Lemma 3, then Lemma 2 implies that

ub = |G(iω)|−2(Rgg ∗ uā), b = ā
|G(ikω)|2

|G(iω)|2

is PMP. But since we have chosen ā to be the largest a such
that ua is PMP, ub can only be PMP if |G(ikω)|

|G(iω)| ≤ 1.
If RT

gg is PMP for all T = π
2k−1ω

> 0, k ∈ Z, then
Theorem 1 indicates a monotonic gain decrease:

|G(i2kω)| ≥ |G(i2k+1ω)|, k ∈ Z.

It can be shown that the above also applies to LTI systems
that preserve the PMT property of their inputs:

Proposition 2. Let gT be PMPT . Then, RT
gg is PMPT .

Proof: Analogously to what is done in [8, p. 264], we
use (9) to write the cyclic convolution (8) as the composition
of two cyclic convolutions involving gT . Namely, a few
simple manipulations show that RT

gg ∗ u = (gT ∗ gT−) ∗ u,
where gT−(t) := gT (−t). By Lemma 2, it follows that both
gT− ∈ PMPT and RT

gg ∈ PMPT .
Unfortunately, at present it is not known whether the

converse of Proposition 2 holds. For this reason, in the rest of
the section we focus on analyzing the periodized autocorre-
lation, which provides the most general way of obtaining the
sampled frequency response monotonicity property above.

Next, we would like to provide conditions that allow us to
apply Theorem 1. We begin by the PM condition on R

2π
ω
gg .

Lemma 4. The following relationships between RT
gg and Rgg

hold:
i. RT

gg(t) is convex on [0, T ) for all T > 0 if and only if
Rgg is convex on R≥0.

ii. RT
gg(t) is log-concave on [0, T ) for all T > 0 if and

only if Rgg is log-concave on R≥0.
In particular, RT

gg(t) is PM in both cases.

Proof: We only need to show the sufficiency part, as
the properties of Rgg follow from those of RT

gg by taking
T → ∞.

In the first claim, if Rgg is convex on R≥0, then∑∞
k=0 Rgg(t + kT ) is convex on [0, T ) since it is an

infinite sum of convex functions on that interval [13, Section
3.2.1]. Since Rgg is even, it is convex on R≤0, and hence∑∞

k=1 Rgg(t−kT ) is also convex on [0, T ). Hence RT
gg(t) =∑∞

k=1 Rgg(t−kT )+
∑∞

k=0 Rgg(t+kT ) is convex on [0, T ).
For the second claim, assume that Rgg is log-concave on

R≥0. Then by Lemma 7 in appendix A we have

det

(
Rgg(t+ iT ) Rgg(t− h+ jT )

Rgg(t+ h+ iT ) Rgg(t+ jT )

)
≥ 0, i ≤ j

and

det

(
Rgg(t+ jT ) Rgg(t− h+ jT )

Rgg(t+ h+ iT ) Rgg(t+ iT )

)
≥ 0, i > j

for all h > 0 and t. Thus,

det

( ∑∞
k=−∞ Rgg(t+ kT )

∑∞
k=−∞ Rgg(t− h+ kT )∑∞

k=−∞ Rgg(t+ h+ kT )
∑∞

k=−∞ Rgg(t+ kT )

)
=

∞∑
i=−∞

∞∑
j=−∞

det

(
Rgg(t+ iT ) Rgg(t− h+ jT )

Rgg(t+ h+ iT ) Rgg(t+ jT )

)
is nonnegative for all h > 0 and t + h ∈ [0, T ). This is

equivalent to RT
gg being log-concave on [0, T ) by Lemma 7

in appendix A.
In particular, as convex and log-concave functions are

unimodal, RT
gg(t) is PM for both cases.

Note that while both cases of Lemma 4 deal with a
unimodal Rgg , unimodality is in general not sufficient to
claim PM of RT

gg .
Analogously to the second claim in Lemma 4, the follow-

ing relationship for ṘT
gg will allow us to verify the third item

in Proposition 1.

Lemma 5. |ṘT
gg| is log-concave on (0, T ) for all T > 0 if

and only if |Ṙgg| is log-concave on R>0.

Proof: The necessity follows from taking T → ∞. To
see the sufficiency, first notice that if |Ṙgg| is log-concave
on R>0, then Ṙgg cannot change sign, since in that case
|Ṙgg| would not even be unimodal on R>0. Hence Ṙgg ≥ 0
or Ṙgg ≤ 0 for all t ≥ 0. But since Rgg(0) = ∥g∥2L2

> 0,
it is the latter that must hold. Hence, the log-concavity of
|Ṙgg| on R>0 is equivalent to log-concavity of −Ṙgg on
that interval. Hence,

det

(
Ṙgg(t+ iT ) Ṙgg(t− h+ jT )

Ṙgg(t+ h+ iT ) Ṙgg(t+ jT )

)
≥ 0, i ≤ j

and

det

(
Ṙgg(t+ jT ) Ṙgg(t− h+ jT )

Ṙgg(t+ h+ iT ) Ṙgg(t+ iT )

)
≥ 0, i > j

for all h > 0, t + h ∈ (0, T ) and i, j ∈ N0. Further, these
inequalities are also true for −i,−j ∈ N by the evenness
of Rgg . Analogously to the proof of the second claim in
Lemma 4, it follows then that |ṘT

gg| is log-concave on (0, T ).
Note that RT

gg is continuous on [0, T ] and smooth on
(0, T ). For the cases of Lemma 4, the evenness of RT

gg then
shows that supt R

T
gg(t) = RT

gg(0). Thus, in conjunction with
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Lemmas 4 and 5, all items of Proposition 1 are fulfilled. This
yields our next main result.

Theorem 2. Let (A, b, c) be such that

R̈2
gg(t) ≥ Ṙgg(t)

...
Rgg(t) for t ∈ R>0 (13)

and either of the following two conditions hold:
i. R̈gg(t) ≥ 0 for all t ∈ R≥0

ii. Rgg(t) > 0 and Ṙ2
gg(t) ≥ Rgg(t)R̈gg(t) for all t ∈ R≥0

Then, RT
gg is PMP for all T > 0.

In the next section, we will illustrate Theorem 2 by
analytical examples and discuss why its conditions are often
computationally tractable.

B. Variation diminishment and the frequency response gain

In order to close the gap between the frequencies 2jω
and 2j+1ω, we would require a generalization of the PMP
property to signals with maxγ Sc(u − pγ1) ≤ 2k, k >
1. At the present moment, we are not aware of such a
generalization.

An alternative is given by the CVD2k property (see
Definition 5). It has been shown by Karlin that a CVD2k

kernel satisfies a different type of frequency response gain
monotonicity with regards to that of Theorem 1; see [8,
Lemma 5.7.2]. Unfortunately, working with CVD2k comes
with two major drawbacks:

1) CVD2 is more restrictive than PMP [6, pp.131-132].
2) Computationally verifiable conditions such as Proposi-

tion 1 seem to be unknown at this point.
An interesting special case of CVD0 is the following

sufficient condition for positive domination based on Rgg .

Proposition 3. Let (A, b, c) be such that (A,PcT, c) is
externally positive, where AP+PAT = −bbT. Then (A, b, c)
is positively dominated.

Proof: For u(t) = 1 − sin(ωt), it follows by (6) and
(10) that (Rgg ∗u)(t) = |G(0)|2−|G(iω)|2 sin(ωt). Then, if
(A,PcT, c) is externally positive, (Rgg∗u)(t) is nonnegative,
because u and Rgg are nonnegative. Taking t = π

2ω proves
that G is positively dominated.

IV. VERIFIABILITY & EXAMPLES

The conditions in Theorem 2 can be verified in several
ways. First of all, they are equivalent to external positivity
of the following associated systems:

• (13) holds if and only if

0 ≤ det

(
R̈gg(t) Ṙgg(t)...
Rgg(t) R̈gg(t)

)
= det

(
cAeAtAPcT cAeAtPcT

cA2eAtAPcT cA2eAtPcT

)
=

(
cA
cA2

)
[2]︸ ︷︷ ︸

=:c̄

eAt
[2]

(
APcT PcT

)
[2]︸ ︷︷ ︸

b̄

,

i.e., (A[2], b̄, c̄) is externally positive.
• Item i in Theorem 2 holds if and only if (A,PcT, cA)

is externally positive.
• Item ii in Theorem 2 holds if and only if

0 ≤ det

(
R̈gg(t) Ṙgg(t)...
Rgg(t) R̈gg(t)

)
= det

(
ceAtAPcT cAeAtPcT

cAeAtAPcT cA2eAtPcT

)
=

(
c
cA

)
[2]︸ ︷︷ ︸

=:c̃

eAt
[2]

(
APcT PcT

)
[2]︸ ︷︷ ︸

b̃

,

and Rgg(t) > 0 for t ≥ 0, i.e., (A[2], b̃, c̃) is externally
positive and (A,PcT, c) is strictly externally positive.

This can be checked efficiently by computational tools such
as [9–11]. Alternatively, one can also use the following
composition rules.

Lemma 6. Let g1, g2 ∈ L1 be impulse responses, h := g1∗g2
and T > 0. Then, the following hold:

i. If |g1| is convex on R≥0, then Rg1g1 is convex on R≥0

ii. If |g1| is log-concave, then Rg1g1 is log-concave.
iii. If Rg1g1 and Rg2g2 are log-concave, then Rhh = Rg1g1 ∗

Rg2g2 is log-concave.
iv. If Rg1g1 and Rg2g2 are convex on R≥0, then Rhh is

convex on R≥0.
v. If |g1| and |ġ1| are log-concave on R>0, then |Ṙg1g1 | is

log-concave on R>0.
vi. If |g1|, |g2|, |ġ1| and |ġ1| are log-concave on R>0, then

|Ṙhh| is log-concave on R>0.

Proof: Item i: If |g1| is convex on R≥0, either g1 or −g1
has to be a nonnegative function due to limt→∞ g1(t) = 0.
Hence, Rg1g1 = R|g1||g1| is convex as an integral over the
product of a convex function and a nonnegative function (see,
e.g., [13]).

Item ii: If |g1| is log-concave and, thus, unimodal, ei-
ther g1 or −g1 has to be a nonnegative function. Hence
Rg1g1 = R|g1||g1| is log-concave as marginals of log-concave
functions remain log-concave [14].

Items iii and iv: Since F{Rg1g1 ∗ Rg2g2} =
|G1(iω)|2|G2(iω)|2 = G1(iω)G2(iω)G1(−iω)G2(−iω) =
F{Rhh}, it holds that Rhh = Rg1g1 ∗ Rg2g2 . Thus, the
claims follows by the same argument as in the end ofItems i
and ii.

Item v: Since Ṙg1g1(t) =
∫∞
−∞ ġ1(t+τ)g1(τ)dτ , it follows

by the same arugments as in Item ii that either −Ṙg1g1 or
Ṙg1g1 has to be log-concave.

Item vi: Since Ṙhh = Ṙg1g1 ∗Rg2g2 , the claim follows as
in Item v.

A. Example: First Order Systems

In the following, we would like illustrate Theorems 1 and 2
and Lemma 6 based on a first order lag, i.e., g(t) = βe−αt

for all t ≥ 0 with α > 0 and β ∈ R.
Since |g| is log-concave on R and convex on R≥0, the

same applies to Rgg(t) = β2

2αe
−α|t| by Lemma 6. Thus,

1690



both items i and ii in Theorem 2 are verified. Further,
as |ġ| is log-concave, Lemma 6 also implies that |Ṙgg| is
log-concave, which verifies (13). Alternatively, one can use
Proposition 1 to verify that gT = β

1−e−αT e
−αt is PMP, which

by Proposition 2 implies that Rgg is PMP.
Thus, by Theorems 1 and 2, it holds that |G(i2kω)| ≥

|G(i2k+1ω)| for all k ∈ Z and all ω > 0. For first order sys-
tems as well as their series interconnection (see Lemma 6),
we observe that our result partially recovers the well-known
monotonic behaviour of |G(iω)|. Unfortunately, for sums of
first order externally positive systems, RT

gg is not PMP for
all T > 0.

B. Example: 2-Positive Systems

Systems with a 2-positive Toeplitz operator, i.e., systems
that map unimodal inputs to unimodal outputs have been
studied, e.g., in [15–17]. By Lemma 7, such systems are
characterized by a log-concave g. By Lemma 6 and The-
orem 2, in appendix A, such systems are prototypical for
systems where RT

gg is PMP for all T > 0.
An illustrative example for such systems is the difference

of two externally positive first order lags such as

g(t) = 3e−t − 2e−2t.

Indeed, as

∀t ≥ 0 : g(t) > 0, ġ2 − gg̈ = 6e−3t > 0,

it follows that g is log-concave. Thus, by Lemma 6 also

Rgg(t) =
5

2
e−|t| − 7

6
e−2|t|

is log-concave with

R̈2
gg(t)− Ṙgg(t)

...
Rgg(t) =

35

12
e−3t > 0, t > 0.

Form Theorem 2 it follows then that RT
gg is PMP for all

T > 0.

C. Example: Positively dominated system

As mentioned earlier, positive dominance, i.e., |G(0)| ≥
|G(iω)| for all ω > 0, is a well-known characteristic of
externally positive systems, which is not exclusive to systems
with nonnegative impulse responses. In Proposition 3, we
have provided a sufficient condition, which recovers the
externally positive case. Next, we would like to give an
example that illustrates that Proposition 3 also covers systems
with an indefinite impulse response. To this end, consider the
impulse response g(t) = 2e−t − 3e−2t, which has negative
g(0) = −1 and is positive for sufficiently large t > 0. Since,
Rgg(t) =

1
4e

−2|t| > 0, t ≥ 0, it follows as in Proposition 3
that G is positively dominated.

V. CONCLUSION

In this work, we have derived monotonicity properties of
frequency response gains through the framework of periodic
monotonicity preservation. We have shown that if the auto-
correlation of an impulse response gives rise to a PMP kernel,
then a sampled sequence of the frequency response gain

is monotonically decreasing. As a consequence, our results
have outlined a path for showing that this property holds
for many, if not all, log-concave impulse responses. This
is interesting as externally positive systems appear to have
monotone frequency response gains in practice, but a proof
of this property is lacking till this day.

Finally, we would like to note that systems with monotone
gain and phase diagrams play a vital role in PID-autotuning.
In the future, it would be interesting to see if the PMP
property also gives rise to monotone phase shifts.

APPENDIX

A. Auxiliary Results

The following is a well-known characterization of log-
concavity [8, Proposition 7.1.2]:

Lemma 7. Let g : R → R≥0 be a Lebesgue-measurable
function. Then g is log-concave on R if and only if for all
real t1 < t2 and all real τ1 < τ2, we have

det

[
g(t1 − τ1) g(t1 − τ2)
g(t2 − τ1) g(t2 − τ2)

]
≥ 0.
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