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A novel approach to the finite frequency H_/# ., fault detection
observer design problem

Guilin Huang, Wenshan Zhu, Imad Jaimoukha

Abstract—1In this paper, a fault detection observer design
problem for a Linear Time-Invariant (LTI) system is studied.
An iterative algorithm is proposed as part of the design process,
effectively enabling the system to detect fault signals in a
finite frequency range. Both the 7{_-index and #..-norm
are introduced and combined in an observer-based design
to generate a residual signal that is sensitive to the fault
signal and insensitive to the disturbances over a specified
finite frequency range. In particular, our approach enforces an
upper bound on the #H..-norm of the disturbances to residual
transfer matrix and a lower bound on the 7{_-index of the
faults to residual transfer matrix to ensure that the system
achieves optimal performance in detecting all fault signals while
limiting the impact of disturbances on the residual within
this frequency range. This approach is achieved through the
generalized Kalman-Yakubovich-Popov (gKYP) Lemma and
uses the Projection Lemma in a novel way to reformulate
the problem as a linear matrix inequality (LMI) optimization
problem. To address the challenge of finding the best multiplier
from the Projection Lemma, an iterative process is designed
to obtain a local optimum. The initial solution of this iterative
process can be selected from any existing algorithms, leading to
an improved observer since each iteration yields a solution that
is at least as effective as the previous one. A numerical example
is provided in the last section to illustrate the effectiveness of
our approach.

I. INTRODUCTION

Fault detection is a set of algorithms that allows a designed
control system to generate a residual signal [1], which is
then used to identify the occurrence of fault signals as they
exceed a predefined threshold. Over recent decades, previous
research [2], [3] on fault detection, in both theory and
applications, has received significant attention, such as multi-
objective and finite frequency problems. Notably, for these
fault detection problems, observer-based residual system
design has emerged as a prevalent approach. With two useful
indexes, H_ and H.., first proposed by [4] and redefined
in [1], the designed observer is enabled to maximize the
sensitivity of the residual signal to faults while minimizing
the effect of disturbances on the residual signal. Algorithms
designed with H_ and H, principles effectively reframe the
fault detection problem as an optimization problem, thereby
fostering further research and potential extensions to this
field.

Multi-objective fault detection problems, with observers
designed using H_/H principles, have been further in-
vestigated through various methods, including co-inner-outer
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factorization [5], [6], [7], LMI formulation [5], [8], [9],
and iterative algorithms [10]. Extensions to more complex
systems, such as time-varying systems [8], Takagi-Sugeno
fuzzy systems [11], uncertain systems [12], robust systems
[13], and polytopic systems [14], provide researchers with
insights and directions to continually enhance and refine their
research.

Interest in fault detection within a finite frequency range
arises because faults and disturbances typically occur in
different frequency ranges. Early solutions generally involve
using a weighted filter on the full frequency domain to spec-
ify the desired frequency range [1]. The H_/H ., observer
design provides insights, as demonstrated in [15], where the
generalized KYP lemma is first utilized, enabling an accurate
observer description. However, this formulation generates
a set of Bilinear Matrix Inequalities (BMIs), resulting in
insufficient conditions. To address this issue, the Projection
Lemma is applied, thereby reducing the original problem
into LMIs. In the context of recent research, an iterative
algorithm, combined with these two previous lemmas, is
proposed as an improved method for resolving the H_/H
problem. The result achieved through the iterative process
depends on the different multipliers used when applying the
projection lemma, as the necessary condition is no longer
satisfied, making it challenging to ensure an improved result.

To address the optimality issue, we propose an iterative
method to resolve the multi-objective H—/Hoo observer
design problem within a specified finite frequency range.
As opposed to the direct use of the gKYP lemma, a new
formulation is introduced, incorporating two constraints that
facilitate the updating of the multiplier. Selecting the initial
solution from existing approaches, whether for the full fre-
quency or a finite frequency, is the first step of the process.
The multiplier is then refined throughout the iterative process
to ensure that the optimum result gets approached.

The paper is organized as follows. Section II presents
the problem statement and preliminaries. The main results
of this research are outlined in Section III, where the new
algorithm, along with clear illustrations, is presented. Section
IV provides an example to compare the performance of
our algorithm with previous results. Concluding remarks are
drawn in Section V.

The notation used in this paper is summarized here for
convenience. The symbol R denotes the set of real numbers,
R™ the set of n dimensional real (column) vectors and R™*™
the set of all n x m real matrices. The set of n x n real
symmetric matrices is denoted as S™ and A7 denotes the
transpose of A. The identity matrix with dimension n X n



is denoted by I,, and the null matrix with dimension m X n
is denoted by 0,,,x,, with the subscripts normally omitted if
they can deduced from context. If A € S™, we use A <
0, A > 0 to denote that A is negative or positive definite,
respectively. H(X) denotes X + X7 for square X.

II. PROBLEM FORMATION AND PRELIMINARIES

Consider a linear time-invariant (LTI) dynamic system,
not necessarily stable [9], subject to disturbances, modeling
errors and process, sensor and actuator faults modeled as

& (t) = Az(t) + Bu(t) + By f(t) + Baqd(t),
y(t) = Cx(t) + Du(t) + Dy f(t) + Dqd(t),

where z(t) € R", wu(t) € R™, y(t) € R", represent
the state, input and output of the system, and f(¢) € R"s
and d(t) € R™ are the fault and disturbance, respectively,
and where the distribution matrices in (1) have appropriate
dimensions. We assume that the pair (A4, C) is detectable. To
detect the fault signal, an error-state observer is used, where
a residual signal is constructed to measure the difference
between the actual output and the estimated output, which
is sensitive to both the fault and disturbance signals. An
observer gain matrix £ € R™"*™v is therefore to be designed
to discriminate between these two signals:

&(t) = A&(t) + Bu(t) — L(y(t) — (1)),
(1) = C2(t) + Du(?),
r(t) =y(t) —9(0),
with Z(t) € R™ and §(t) € R™ denoting the estimation
vectors of the state and output, respectively, and where r(t) €
R™ is the residual signal.
At this point, some necessary definitions are introduced.
Definition 2.1: [15] For the transfer matrix G(s) = D +
C(sI — A)7'B, the Ho.-norm specified up to a finite
frequency is defined as
IGIR™ = sup 5(G(jw)),

we[0,@]

(D

2

3)
where o represents the maximum singular value. The H_-
index specified up to a finite frequency is defined as

1G9 = inf o(G(jw)),
w€[0,&]

B

“4)

where ¢ represents the minimum singular value.

Next, set Z(t) := z(t) — &(t) as the state of the residual
system, and combine (1) and (2) to have a representation of
the residual dynamics as:

i(t) = ACE(t) + BF f(t) + Bid(t),

. o)
r(t) = Cx(t)+ Dy f(t) + Dad(t),

where
[AL Bf Bcﬂz[A—kﬁC B+LDy Bd+£Dd].

According to [15], £ is designed to satisfy the following

conditions: 0
I1Tall 2% < v

1T 790 >
AL is stable

(6)
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where v and 5 denote the maximum #H..-norm and the
minimum H_-index, respectively, and where

Tr4(s) = Dy + C(sI — AF) "' BS

and
T,5(s) =Dy +C(sI — Aﬁ)fll’)’f

denote the transfer matrices from disturbances to residual and
from faults to residual, respectively. The first and second con-
ditions provide the upper and lower bound of the sensitivity
to disturbances and faults, respectively, which determine the
capability of the system to detect the fault signal effectively.
The third condition ensures observer stability.

We will use the following version of the Projection
Lemma:

Lemma 2.1: (Projection Lemma [16], [17], [18]) Given
Y € §" and W € R™"*™, assume that W has full column
rank. Let W, € R™*(»=™) be an orthogonal completion for
W such that [ w W, ] is nonsingular and WTW, = 0.
Then the following statements are equivalent:

H whyw, <o.

2) There exists a multiplier X € R"™*" such that V +

HWX) < 0.

We will also use the following two special cases of the
generalised KYP Lemma (gKYP):

Lemma 2.2: (generalised KYP Lemma[19], [20]) Let ma-
trices A€ R™*™ with no eigenvalues on the imaginary axis,
B e R" ", (C e RWw*" D ¢ R?®>*" and a scalar @ > 0
be given and let G(s) = D + C(sl, — A)~'B. Then, the
following statements are equivalent.

D [|G)% <.

2) There exist P, € S™ such that @ > 0 and
I, 0]"@*Q PI1[L, o0
A B P —-Q||A B

(7
0

I,
Yy

2Inu
0

0 I,
Cc D

T 0 I,
de BTl

Remark 1: Note that the original gKYP Lemma requires
P and @ to be Hermitian [19]. However, [21] showed that
for the frequency range [0, ], P and @ can be restricted to
be real without loss of generality.

Corollary 2.3: (gKYP Lemma for H_ index) [15]. Let
everything be defined as in Lemma 2.2. Then the following
statements are equivalent:

D G2 > .

2) There exist P, () € S™ satisfying Q > 0 and

<o

1, 017[&2Q P1[1, 0
A B P —-Q||A B ®)
U S OO I VP
C D 0 ~I,,||C D '
By virtue of the gKYP lemma, the fault detection observer

design specifications in (6) can now be formulated as non-
linear matrix inequalities (NLMIs).

Lemma 2.4: With everything as defined above, the fol-
lowing statements are equivalent:



D [[Trall%® <.
2) There exist Py, Qg4 € S™ satisfying Q4 > 0 and

[T &l s

[Aﬁ Bt | By AL BE
01[0 I,

fo B0 e 5

C Dy
3) There exist Py, Q4 € S™ satisfying Q4 > 0 and

I, 0 Py

—Qa
2Ind
0

I, O

©)
} <0

(10)

Ty +H(ELFF) — Fu£TQuLFT <0,
where
Py

4l 5]

0 ntn
wlle Bl
3
—Qu
Proof: The equivalence between statements 1 and 2

follows from the gKYP Lemma by substituting the state error
dynamics (5) into Lemma 2.2. It is easy to show by direct
substitution that (10) is equivalent to (9). |

Following the same approach, the corresponding result for
the H_-index is given next.

Corollary 2.5: With everything as defined above the fol-
lowing statements are equivalent:

D T2 > .
2) There exist Py, Qs € S™ such that Q¢ > 0 and

e sl [ )l &

A= BF| | Py AL B
0 1[0 I,

LERA L

C Dy
3) There exist Py, Qy € S™ such that Q7 > 0 and

I, 0
A By

0 I,
C Dy

’ ©?Qq
Py

T
I
CZ: c R(nJrnd)Xny’

T [22Qq
Py

QInd
0

(1, 0
|A B,

0

Ea= I,

} e ROHnan

I, 0 Py

—Qy

I, O

(1)
B2I,

: <o

Ty +H(EfLF]) — FfLTQgLF] <0, (12)

[ 5,
o 5o

I

where
I, O
Tf_[A By
0 Inf

J{C Dy
CT

Py
—Qy
0
—1I,,

I, 0
A By

0 Inf
C Dy

s
Py
] T{ﬁ?fnf

:| c R(n-{-nf ) ><ny7

T

0
I,

QQf
Py

Py

eR (nAn 5) xn
—Qf }
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ITII. MAIN RESULT
A. Problem formulation using the Projection Lemma

While the full-frequency fault detection synthesis problem
can be converted into LMIs with necessary and sufficient
conditions, the finite frequency H_/H., observer design
results in nonlinear matrix inequalities. In this section, with
the aid of the projection lemma, a novel way is proposed to
linearize the design problem.

Theorem 3.1: Let all variables be as defined in
Lemma 2.4. Then the following statements are equivalent:

D [|Tall & <,

2) There exist P;, Qg € S™ and multipliers Yy

R™*(n+na) and Z; € R™™ satisfying Q4 > 0 and
*

[Td _QJ 2 [—chT

ET I,
where * denotes terms readily deduced from symmetry.
Proof: We prove the equivalence of the statements by
showing that (10) and (13) are equivalent using the Projection
Lemma. Note that T,;, F; are linear in the variables while
F is constant. The inequality in (10) is then rearranged as

S

][Yd Z4]) <0, (13)

T )4 Wi
4% —
Ib * l}k%n
e R [ ) [ <o aw

which has the form W1 VW, < 0 with W, and V defined
in (14). It follows from Lemma 2.1 that (13) is equivalent
to (10) since W, is an orthogonal complement of

_chT] ‘
|

I
Although (13) is still nonlinear, the nonlinearities are in
the products £7Y; and LT Z,, since F is a constant, while
the variables Py, (g in T;, E, have been separated from
the other variables. In the next section, we investigate the
choice of the multipliers Y; and Z; to recover linearity and
provide an initial solution.

|

B. Linear formulation via restricting the multipliers

To enforce linearity of (13), we restrict the multipliers Yy
and Z; to have the form

[ Yy Zi |=R[Ya Za |, (15)

where R € R™*™ is a variable and Y, and Z,, are constants.
This restriction linearizes the original problem by defining
LT R as a variable; see (13).

To obtain suitable values of the constants Yy, and Z4,, we
proceed as follows. Suppose there exists an initial solution
to (10), where Py ,Qq4, € S", Qq4, > 0 and L, are given
and where T,,, Eq4, and Fy, are defined appropriately using
the definitions of Ty, F,; and F,; in Lemma 2.4, so that

Tuy +H(EayLoFg,) — Fay L5 QaoLoFyg, < 0. (16)

The initial solution for our analysis may be selected from
either the solution derived from the standard KYP lemma,



excluding the frequency constraint, or from the solution de-
rived from the generalized KYP lemma, which incorporates
the frequency constraint, using any other approach from the
literature. The next step is to propose a choice of Yy, and Z,
that ensures (13), with the definitions in (15), has a feasible
solution.

Substituting (15) into (13) gives

Ty H —Fy(LTR)
e ol

ET R
{ Ty —H(Fd(RTL')TYdO)

EY+RY,— 23 (RTL)F,"
which is linear in the variables if we define R”L as a
variable. Denoting the matrix in (18) by K, then effecting
the congruence 77 KT where

|

indicates the equivalence between inequality (18) and

THH(ELET ) -FaLTQuLF," *
EY — QuLFy"+RZY LF"+RYy, —Qa+H(RZo)

Note that the (1,1) block is exactly the same as (10).
Following the idea in [16] , [22] and [23], we set R = I,
Py = Py, Qa = Qq,, L = Lo and 7 = 7p. It is clear that
the (1,1) entry is then equivalent to the initial solution of
(16). Thus, Yy, and Z4, can be selected to make the (2, 1)
and (1,2) entries equal to zero and to make the (2,2) entry
negative definite. In that case, (13), with the definitions in
(15), is ensured to have at least one solution which is no
worse than the initial result of (16).

Next, set the (2,2) entry to be negative definite (with R =
I, Py = Pay, Qi = Qu,> L = Lo and v = p):

—Qad, + H(Zdo) < 0.

*

0, }[Ydo Za,]) <0, (A7)

*
—Qd+H(RZdO)}<O’ (1%)

Inin, O
cFT I,

This can be satisfied by choosing Zg, as

the negative definiteness of the (2,2) entry is therefore
enforced. Setting the (2,1) entry to zero with Z,;, given in
(19), Yy, is then given as

Ydo = _<_Qd0£0FdT + Zgz)'COFdT + Ezl;) (20)

The results are summarised in the following theorem.

Theorem 3.2: Let all variables be as defined in Theo-
rem 3.1. Suppose that (10) has an initial solution (16). Let
Zq, and Yy, be as defined in (19) and (20), respectively. Then
there exist Py, Qg € S™, non-singular matrix R € R™*"™ and
£ € R"*™ such that Q4 > 0 and

Td—H(Fd[:TYdO) *

d <0,
ET+RY;y—ZL LF)"  —Qu+H(RZa,)

2y

with £ = RT L. Furthermore, if (21) is satisfied then (13)
(and hence (10)) is satisfied.

R
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Remark 2: Note that the initial solution may represent
the most optimal solution identified in prior studies. If no
solution is given, methods from [15] could be used to
obtain an initial solution. This property allows for the use
of iterative algorithms to enhance the solution since it is
included in our solution when R = I,,. Note also that vy need
not be the same as the given ~, that is, the initial solution
need not be feasible. The degrees of freedom provided in R
may then be used to obtain a feasible solution.

The same approach can be applied to obtain corresponding
results for the H_ index.

Theorem 3.3: With everything as defined in Corol-
lary 2.5, the following statements are equivalent:

D [|T 12> .

2) There exist Pr,Qy € S™ and multipliers Y

R™*("+75) and Z; € R™*™ such that Q = 0 and

Tf * :| [—F f ﬁT
‘ +H
Furthermore, suppose there exist Py, Q s, € S™ with Q ¢, >
0 such that (12) has an initial solution

S

] [Yf Zf]) < 0. (22)

Ty + H(Ef LoF]) — Fro£§ Qo LoFf, <0, (23)
and let
[ Yy Zp |=R[Yy Zy |,
where R is a non-singular matrix variable and
Zgy = 0.5Qy¢, — Ip, . . 24)
Yy, = 7(7Qfo£0Ff + ZﬁﬁoFf + E};)

Then there exist Py,Qy € S", non-singular matrix R €
R™*™ and £ € R"*" such that Q¢ > 0 and

Tf—H(FfﬁTon> *

] <0,
ET+RYy,—Z] LFfT  —Qp+H(RZy,)

(25
with £ = RTL. Finally, if (25) is satisfied then (22) is
satisfied.

Proof: the procedures are similar to Theorem 3.1

and can be carried out by replacing all disturbance-related
matrices with fault-related matrices. [ ]

C. Stability

The standard KYP lemma inherently guarantees closed-
loop stability [24]. This is not the case for gKYP lemma
due to the additional variable. Nevertheless, stability can be
incorporated using the following result.

Theorem 3.4: The following statements are equivalent:

1) System (5) is stable.

2) There exists Qs € S™ such that Qs > 0 and

H(Q.A") < 0. (26)

3) There exist Qs € S™ and multipliers Yy, Z, € R™*™
such that Q5 > 0 and

g o]

-cTcT
In

*

0 } Yy Z])=<0. 2D



Furthermore, there exists @5, € S™ with @5, > 0 such that
(26) has an initial solution

H(QsyA) + H(Qs, LoC) < 0. (28)
Let
[YS ZS]:R[ YSO ZSo ]a
where R is a matrix variable and
Zso = _In7 Y;'o = EOC - Qso~ (29)

Then there exist Qs € S™, non-singular matrix R € R™*"
and £ € R"*™ such that Q5 = 0 and

H(ATQ,) — H(CTLTY,,)
Qs+ RY,—zLLC

*

Rz, <%

(30)

where £ = RTL. Finally, if (30) is satisfied then (27) (and
hence (26)) is satisfied.

Proof: The equivalence of statements 1 and 2 follows
from a straightforward application of Lyapunov stability.
The equivalence between statements 2 and 3 can be derived
through similar steps of Theorem 3.1 once (26) is arranged
in the following form:

1% Wi

wi

———=THQA) 1]
(I, CTLT] [H(g ) o} { Lg} < 0.

The existence of an initial stabilizing Lo, hence ()5, , follows
from the assumption that the pair (A4, C) is detectable. The
nonsingularity of R satisfying (30) follows from the (2,2)
entry which implies that R + RT = 0 since Z,, = —1I,,.
Finally, the proof of the sufficiency of (30) for (27) follows
along the lines of the development just before Theorem 3.2.
|
It follows that sufficient LMI conditions for (6) are for-
mulated in Theorem 3.2, Theorem 3.3, and Theorem 3.4. In
summary, given ~y, the fault detection observer gain £ can
be determined through the following optimization problem:
Given the initial solutions (16), (23) and (28), find

B
21), (25), (30)
Py, Pr,Q4,Qf,Qs €S™
Qa>0, Qf>0, Qs>0
R eR™ ", £ e R™"

mazx
s.t.
(31

with £ = RT L. Tt follows from the last part of Theorem 3.4
that R is non-singular, so £ can be recovered from L.

Note that we can use the solution of (31) as the new
initial solution and this will naturally define an iterative
algorithm which can be run until convergence. This approach
is summarised in Algorithm 1.
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Algorithm 1 General procedure for H.,/H_ fault detection
observer design

Result: L, 3

Step 1: Prepare initial solution

Get initial solutions from Theorems 3.2, 3.3 and 3.4: let
PfUZP}(;v Qfe = f'()>—07 Bos PdU:PC,l];)’ R,
Qi = 0, Qs, = QI > 0, v and Lo satisfy (16),
(23) and (28) Define Tfo? Ffo? Efo? Tdo, Fdo and Edo
from the expressions in Lemma 2.4 and Corollary 2.5. Set a
maximum number of iterations ¢,,,, and a minimum update
error tolerance toly.

Step 2: Update 1

Evaluate Zy,, Yy, Za,, Ya,, Zs, and Yy, using (24), (20)
and (29).

Step 3: Update 2

Given Zy,, Yy, Zay, Ya,, Zs, and Ys,, perform the
optimisation in (31), record new R, L, [ and update
Zys, Yy, Zg, Yq and Y. Define update error tol = |Bpew —
Botdl-

Step 4: Stopping condition

Stop if i > ipmqae Or tol < toly and retrieve L, 3. Otherwise,
set Py, = Py, Qp, = Q. Zy, = Zy, Yy, = Yy, Py,
Py, Qay = Qa, Zay = Za, Ya, = Yqg and Y, = Y,
subsequently update T¢, E¢, T; and E4. Go to Step 2.

IV. SIMULATION

The simulations were implemented in MATLAB R2023b
using the CVX package [25].

A well-studied linearized longitudinal dynamic of VTOL
aircraft system originating from [26], and subsequently in-
vestigated in [15], is used to examine the performance of the
proposed approach.

We consider the same design specification as in [15],
namely, for the frequency range [0,&] with @ 0.1,
design a fault detection observer £ such that the H_-index
from fault to residual is maximized while the H.,-norm
from disturbance to residual are required to be smaller
than 0.3017. We perform the optimisation (31) subject to
v < 0.3017, taking the observer from [15] as our initial
solution. The best value of 3 is given as B,,; = 16.08 and
the corresponding L is given as:

—0.7093  1.4133 0.0008 —1.8386
r— —5.2857  0.5997  —0.0039  1.6298 |
5.5274 —11.0383 —3.3360 12.0093
—-0.5087 1.0183  —0.0001 -1.0769

By forming the closed-loop, it can be verified that the
system is stable and the H..-norm constraint is met. It can
be seen from the plot in Figure 1 that the H., constraint
is satisfied by our L. In addition, our method increased the
H _-index significantly from 4.17 (as given in [15]) to 16.08
within the specified frequency range. The maximized H_-
index will greatly amplify the fault and therefore differentiate
the fault from disturbance. Furthermore, it can be noticed
from Figure 1 that our computed § is equal to ||Trf||[9’w],
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Fig. 1. Plot of the largest singular value for T}.4 (64) and the smallest
singular value of T’y (g,.) for two designs

indicating the tightness of the solution.

V. CONCLUSION

In this paper, we presented an innovative design approach
to the problem of designing fault detection observers. By
employing the generalised KYP and Projection Lemmas in
a novel manner, we derived sufficient conditions for the
mixed H_/H o fault detection observer design problem over
a finite frequency range. Sufficient conditions are derived to
convert the synthesis problem into LMIs. We then provided
iterative algorithms to optimize the solution towards a local
optimum. Additionally, solution algorithms were outlined to
encapsulate the contribution. Lastly, a numerical example
was presented to demonstrate the effectiveness of the pro-
posed method.
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