
Reachability Analysis of Nonlinear Discrete-Time Systems Using
Polyhedral Relaxations and Constrained Zonotopes*

Brenner S. Rego1,2, Guilherme V. Raffo3, Marco H. Terra2, and Joseph K. Scott1

Abstract— This paper presents a novel algorithm for reacha-
bility analysis of nonlinear discrete-time systems. The proposed
method combines constrained zonotopes (CZs) with polyhedral
relaxations of factorable representations of nonlinear func-
tions to propagate CZs through nonlinear functions, which
is normally done using conservative linearization techniques.
The new propagation method provides better approximations
than those resulting from linearization procedures, leading to
significant improvements in the computation of reachable sets in
comparison to other CZ methods from the literature. Numerical
examples highlight the advantages of the proposed algorithm.

I. INTRODUCTION

Set-based computations have become important in many
fields of research in recent decades. Applications include
fault detection and diagnosis [1], [2], state and parameter
estimation [3], robot localization [4], [5], nonlinear model
predictive control with obstacle avoidance [6], tube-based
model predictive control [7], and reachability analysis [8].
Set-based methods are able to generate guaranteed enclosures
in applications affected by unknown-but-bounded uncertain-
ties, unlike stochastic strategies which require knowledge of
the stochastic properties of the uncertainties [9].

Reachability analysis of dynamical systems is a very
important topic in set-based computating. The reachability
problem consists of obtaining guaranteed enclosures of the
system states at future times given enclosures of the initial
states and any sort of uncertainties. Such computations
require algorithms for propagating sets through the system
dynamics, which are generally nonlinear. The enclosures
may be used to predict the behavior of the system for
different initial states and parameters, or even to evaluate
if the mathematical model is accurate by comparing with
measurements from a real plant.

For linear systems, accurate enclosures can be efficiently
computed using zonotope methods due to the computational
advantages of these sets for some important operations, such
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as the Minkowski sum [10]. Nevertheless, the computation of
good enclosures for nonlinear functions, and, consequently,
accurate reachability analysis of nonlinear systems, is still
an open problem [11], [12]. Several set representations
have been used in this context, such as convex polytopes
[13], intervals [14], zonotopes [11], [15], and generalizations
of zonotopes, such as constrained zonotopes (CZs) [12],
constrained polynomial zonotopes [16], and hybrid zono-
topes [17]. In this work, we focus on methods based on
zonotopes and constrained zonotopes, since well-established
and efficient complexity reduction algorithms are available
[18], [19], [20].

Existing nonlinear reachability methods based on zono-
topes and CZs often rely on a conservative linear ap-
proximation of the right-hand side function, with bounds
on the linearization error obtained from either the Mean
Value Theorem or Taylor’s Theorem [11], [12], [15]. These
approaches can provide accurate enclosures in cases where
the uncertainties are small enough that the true reachable set
never becomes too large. In such situations, the linearization
is done over a modest domain in each step and can be quite
accurate. However, if the true reachable sets become large,
then the linearization step can generate severe conservatism,
even if the current enclosure is very accurate. This proves
to be a major drawback in many applications, rendering
the computed enclosures unusable. Improved bounds on the
linearization error can be obtained in some cases using DC
programming [21], [22]. However, these algorithms have
exponential complexity and the results may not be accurate
for certain functional forms [23].

In this paper, we present a new algorithm for reachability
analysis of nonlinear discrete-time systems that uses lifted
polyhedral relaxations to propagate constrained zonotopes
through nonlinear functions. Constrained zonotopes [18] are
an extension of zonotopes capable of describing convex
polytopes with arbitrary complexity while retaining most of
the computational advantages of zonotopes [24]. In the new
propagation method, the nonlinear right-hand side function
is decomposed into a sequence of elementary operations,
known as a factorable representation. This representation is
then used to generate a polyhedral enclosure in an augmented
space. This approach is commonly used in the global op-
timization community for constructing linear programming
relaxations of nonlinear optimization problems [25], [26].
Properties of CZs are then employed to efficiently project
the enclosure into the function’s image space. The resulting
enclosure is a CZ, thus allowing the recursive computation
of CZ enclosures for reachability analysis. This propagation
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method causes only a linear increase in the complexity of
the enclosures, which is easily handled using well-known
complexity reduction algorithms for CZs [18], [20]. Compu-
tational results indicate that this approach offers significant
advantages over existing CZ methods based on conservative
linearization techniques [12].

Notation

Lowercase italic letters denote scalars, lowercase bold
letters denote vectors, uppercase bold letters denote matrices,
and uppercase italic letters denote general sets. The sets of
natural numbers and real numbers are denoted by N and
R, respectively. Moreover, 0n×m and 1n×m denote n × m
matrices of zeros and ones, respectively.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a class of discrete-time systems with nonlinear
dynamics described by

xk = f(xk−1,wk−1), (1)

where xk ∈ Rnx is the system state and wk ∈ Rnw is the
process uncertainty. The initial condition and uncertainty are
assumed to be bounded, meaning that x0 ∈ X0 and wk ∈ W ,
∀k ≥ 0, where X0 and W are known convex sets.

The objective of this work is to obtain convex enclosures
X̄k of the system states xk for any k ≥ 0 as accurately
as possible. With X̄0 ≜ X0, this is accomplished using the
recursive approach

X̄k ⊇ {f(xk−1,wk−1) : (xk−1,wk−1) ∈ X̄k−1 ×W}. (2)

With X0 and W described as CZs, the key step consists
of propagating constrained zonotopes through the nonlinear
function f : Rnx × Rnw → Rnx .

A. Interval analysis

Let IRn denote the set of all non-empty compact intervals
in Rn. For endpoints xL,xU ∈ Rn with xL ≤ xU, an interval
X ∈ IRn is defined as X ≜ {x ∈ Rn : xL ≤ x ≤
xU} ≜ [xL,xU]. In addition, mid(X) ≜ 1

2 (x
U + xL) ≜ xM,

rad(X) ≜ 1
2 (x

U − xL) ≜ xR, and Bn
∞ ≜ [−1n×1,1n×1].

Let X ≜ [xL, xU] ∈ IR and W ≜ [wL, wU] ∈ IR.
Then, for any of the four basic arithmetic operations ⊙ ∈
{+,−,×, /}, we define X ⊙ W ≜ {x ⊙ y : x ∈ X,w ∈
W} (division is undefined if 0 ∈ W ). Moreover, interval
extensions of elementary functions h : R → R, such as the
power, exponential, logarithm, and trigonometric functions,
are defined as h : IR → IR, h(X) ≜ {h(x) : x ∈ X}.
Simple formulas for computing all of these operations in
terms of the input endpoints can be found in [27].

B. Convex polytopes and constrained zonotopes

Convex polytopes are convex sets that can be described as
either the intersection of a finite set of halfspaces (H-rep) or
the convex hull of a finite set of vertices (V-rep). In this work,
we are interested in the former. In the following definition,
we extend the typical halfspace representation to explicitly
include linear equality constraints, which is a change in

notation only since any linear equality can be represented
as the intersection of two opposing halfspaces.

Definition 1: A set P ⊂ Rn is a convex polytope in
halfspace representation if there exists (Hp,kp,Ap,bp) ∈
Rnh×n × Rnh × Rncp×n × Rncp such that

P = {x ∈ Rn : Hpx ≤ kp, Apx = bp}. (3)
Constrained zonotopes are an extension of zonotopes [24]

that include linear equality constraints. The CZ representa-
tion (CZ-rep) defined next is an alternative representation
for convex polytopes that retains many of the computational
advantages of zonotopes.

Definition 2: [18] A set Z ⊂ Rn is a constrained
zonotope if there exists (Gz, cz,Az,bz) ∈ Rn×ng × Rn ×
Rnc×ng × Rnc such that

Z = {cz +Gzξ : ∥ξ∥∞ ≤ 1, Azξ = bz} . (4)
In (3), each inequality is a halfspace. In (4), each column

of Gz is a generator, cz is the center, and Azξ = bz

are the constraints. We use the compact notation P =
(Hp,kp,Ap,bp)P for convex polytopes in H-rep, Z =
(Gz, cz,Az,bz)CZ for CZs, and Z = (Gz, cz)Z for zono-
topes. The latter two are referred to as the constrained gen-
erator representation (CG-rep) and generator representation
(G-rep) of these sets, respectively. Moreover, (Hp,kp, _ , _ )P
and (_ , _ ,Ap,bp)P denote polytopes with only inequality
constraints and equality constraints, respectively. It is note-
worthy that an interval X ∈ IRn can be described in G-rep
as (diag(rad(X)),mid(X))Z.

Consider sets Z,W ⊂ Rn, Y ⊂ Rm, and a matrix
R ∈ Rm×n. Define the Cartesian product, linear image,
Minkowski sum, and generalized intersection, as Z ×W ≜
{(z,w) : z ∈ Z,w ∈ W}, RZ ≜ {Rz : z ∈ Z}, Z ⊕W ≜
{z+w : z ∈ Z, w ∈ W}, and Z∩RY ≜ {z ∈ Z : Rz ∈ Y },
respectively. If Z ≜ (Gz, cz,Az,bz)CZ ⊂ Rn, W ≜
(Gw, cw,Aw, bw)CZ ⊂ Rn, and Y ≜ (Gy, cy,Ay,by)CZ ⊂
Rm are constrained zonotopes, then

Z×W =

([
Gz 0
0 Gw

]
,

[
cz
cw

]
,

[
Az 0
0 Aw

]
,

[
bz

bw

])
CZ
, (5)

RZ = (RGz,Rcz,Az,bz)CZ , (6)

Z⊕W =

(
[Gz Gw], cz + cw,

[
Az 0
0 Aw

]
,

[
bz

bw

])
CZ
, (7)

Z∩RY =

[Gz 0], cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz

by

cy −Rcz


CZ

.

(8)

Define B∞(Az,bz) ≜ {ξ ∈ Rng : ∥ξ∥∞ ≤ 1, Azξ =
bz}. Then, (Gz, cz,Az,bz)CZ = cz ⊕ GzB∞(Az,bz)
holds, and (Gz, cz)Z = cz ⊕ GzB

n
∞. Additionally, if P ≜

(Hp,kp,Ap,bp)P ⊂ Rn and Q ≜ (Hq,kq,Aq,bq)P ⊂ Rn,
then

P ∩Q =

([
Hp

Hq

]
,

[
kp

kq

]
,

[
Ap

Aq

]
,

[
bp

bq

])
P
. (9)

Efficient methods to enclose a CZ by another one with
fewer generators and constraints are available in [18]. More-
over, the interval hull of a CZ, Z ⊂ Rn, denoted as □Z ∈
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IRn, can be computed by solving 2n linear programs (LPs)
[18], [28].

III. LIFTED HALFSPACE POLYHEDRAL ENCLOSURE OF A
NONLINEAR FUNCTION OVER AN INTERVAL

In this paper, we consider nonlinear functions that are
factorable as defined below. This definition refers to a library
L of intrinsic univariate functions, which typically contains
the functions in a standard math library in any programming
language, such as xa, ex, ln(x), sinx, etc.

Definition 3: A function h : Rn → Rm is said to be
factorable if it can be expressed in terms of a finite number
of factors z = (z1, . . . , znz ) such that, given x ∈ Rn,

1) zj = xj for all j ∈ {1, . . . , n},
2) for each j > n, zj = gj(z), where either

a) gj(z) ≜ za ⊙ zb with a, b < j and ⊙ ∈
{+,−,×, /}, or

b) gj(z) ≜ βj(za) with a < j and βj an intrinsic
univariate function in L,

3) h(x) = Ehz, where Eh ∈ Rm×nz is a matrix of zeros
except for a single 1 in each of its rows (i.e., each
output of h is an element of z).

For illustration purposes, let h(x) ≜ ex1

x2
2x3

. One possible

factorable representation for this function is: z1 ≜ x1,
z2 ≜ x2, z3 ≜ x3, z4 ≜ g4(z) ≜ ez1 , z5 ≜ g5(z) ≜ z22 ,
z6 ≜ g6(z) ≜ z5z3, and z7 ≜ g7(z) ≜ z4

z6
. Then, h(x) =

[01×6 1]z, so h is factorable. Note that the factorization
of h(x) is not unique. Assuming factorability is not very
restrictive, as any function that can be explicitly written in
computer code using a standard math library is factorable.

Given an interval X ∈ IRn and a factorable function h :
Rn → Rm, the objective of this section is to compute a
polyhedral enclosure P ∈ Rnz in the lifted space of the
factors z satisfying {h(x) : x ∈ X} ⊆ {Ehz : z ∈ P}.
To begin, we first compute an interval Z ∈ IRnz enclosing
all z by recursively taking the natural interval extension of
each zj = gj(z) [27]. Next, for each factor zj with j > n,
we derive a convex polytope Qj ⊂ Rnz in H-rep such that
Qj ⊇ {z ∈ Z : zj = gj(z)}. Finally, we define

P ≜
nz⋂

j=n+1

Qj . (10)

This set contains all possible z corresponding to x ∈ X .
Thus, for any x ∈ X , there must exist z ∈ P such that
h(x) = Ehz. It follows that {h(x) : x ∈ X} ⊆ {Ehz : z ∈
P} as desired.

The following subsections show how to obtain enclosures
Qj for some elementary operations. Once these are known,
the intersection (10) is computed trivially using (9), resulting
in a convex polytope in H-rep.

A. Arithmetic operations

a) Sum: Let zj = za + zb, with a, b < j, j > n. An
exact enclosure is given by Qj = (_ , _ , r+, 0)P, where r+
is a row vector of zeros, except for the ath, bth, and jth
columns, which are 1, 1, and −1, respectively.

b) Subtraction: Let zj = za− zb, with a, b < j, j > n.
An exact enclosure is given by Qj = (_ , _ , r−, 0)P, where
r− is a row vector of zeros, except for the ath, bth, and jth
columns, which are 1, −1, and −1, respectively.

c) Multiplication: Let zj = zazb, with a, b < j, j > n,
za ∈ [zL

a , z
U
a ], and zb ∈ [zL

b , z
U
b ]. The halfspace enclosure

Qj ≜ (R∗, s∗, _ , _ ) is derived by rearranging the four
inequalities obtained from the McCormick envelope of the
bilinear function zj = zazb, which are

zj ≥ zL
azb + zaz

L
b − zL

az
L
b ,

zj ≥ zU
a zb + zaz

U
b − zU

a z
U
b ,

zj ≤ zL
azb + zaz

U
b − zL

az
U
b ,

zj ≤ zU
a zb + zaz

L
b − zU

a z
L
b .

d) Division: Let zj = za
zb

, with a, b < j, j > n, za ∈
[zL

a , z
U
a ], and zb ∈ [zL

b , z
U
b ]. The halfspace enclosure Qj ≜

(R/, s/, _ , _ ), is derived by rewriting zj =
za
zb

as za = zbzj
and applying the multiplication enclosure accordingly.

Remark 1: For implementation purposes, simpler H-rep
descriptions Qj can be obtained for the case of arithmetic
operations with constants, such as vj = qva, with q ∈ R.

B. Univariate functions

Let zj = βj(za), where a < j, j > n, za ∈ Za ≜ [zL
a , z

U
a ],

and βj is an intrinsic univariate function in the library L.
For all such functions, we assume that convex and concave
relaxations on Za can be readily constructed. Specifically,
given any Za ∈ IR, we have convex and concave functions
βCV
j : Za → R and βCC

j : Za → R, respectively, such that

βCV
j (za) ≤ βj(za) ≤ βCC

j (za), ∀za ∈ Za. (11)

Such relaxations are tabulated for a wide variety of common
univariate functions in many global optimization references;
see e.g. Chapter 2 in [29].

Using these functions, we seek to compute a polyhedral
enclosure of the form Qj = QCV

j ∩QCC
j , where

QCV
j ⊇ {z ∈ Rnz : zj ≥ βCV

j (za), za ∈ Za}, (12)

QCC
j ⊇ {z ∈ Rnz : zj ≤ βCC

j (za), za ∈ Za}. (13)

Then, it holds that Qj ⊇ {z ∈ Rnz : zj = βj(za), za ∈ Za},
as desired. Since βCV

j is convex and βCC
j is concave, the

inequalities in (12)–(13) remain true if βCV
j and βCC

j are
replaced by their linearizations at any point in Za. Therefore,
our general strategy is to define QCV

j and QCC
j in terms of

linearizations of βCV
j and βCC

j at a set of reference points. In
many cases, these functions are linear, so no linearization is
needed. Otherwise, we use linearizations at zL

a , zM
a , and zU

a .
A few specific examples are given below.

a) Exponential: zj = eza . In this case, βj(za) is
convex, so βCV

j = βj . Thus, QCV
j is obtained by linearizing

βj at zL
a , zM

a , and zU
a , leading to the inequalities zj ≥

ez
L
a(za − zL

a) + ez
L
a , zj ≥ ez

M
a (za − zM

a ) + ez
M
a , and zj ≥

ez
U
a(za − zU

a ) + ez
U
a . The concave relaxation on Za is the

secant βCC
j (za) =

(
ez

U
a−ez

L
a

zU
a−zL

a

)
(za − zL

a) + ez
L
a . Thus, QCC

j is
defined by the single inequality zj ≤ βCC

j (za).
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b) Logarithm: zj = ln(za). In this case, βj(za) is
concave, so βCC

j = βj . Thus, QCC
j is obtained by linearizing

βj at zL
a , zM

a , and zU
a , leading to zj ≤ 1

zL
a
(za − zL

a) + ln(zL
a),

zj ≤ 1
zM
a
(za−zM

a )+ ln(zM
a ), and zj ≤ 1

zU
a
(za−zU

a )+ ln(zU
a ).

The convex relaxation on Za is the secant βCV
j (za) =(

ln(zU
a)−ln(zL

a)
zU
a−zL

a

)
(za − zL

a) + ln(zL
a). Thus, QCV

j is defined by
the single inequality zj ≥ βCV

j (za).
c) Even integer power: zj = zqa with q an even integer.

In this case, βj(za) is convex, so βCV
j = βj . Thus, QCV

j

is obtained by linearizing βj at zL
a , zM

a , and zU
a , leading to

the inequalities zj ≥ q(zL
a)

(q−1)(za − zL
a) + (zL

a)
q , zj ≥

q(zM
a )(q−1)(za − zM

a ) + (zM
a )q , and zj ≥ q(zU

a )
(q−1)(za −

zU
a ) + (zU

a )
q . The concave relaxation on Za is the secant

βCC
j (za) =

(
(zU

a)
q−(zL

a)
q

zU
a−zL

a

)
(za − zL

a) + (zL
a)

q . Thus, QCC
j is

defined by the single inequality zj ≤ βCC
j (za).

d) Odd integer power: zj = zqa with q an odd integer.
In this case, βj(za) is concave for za ≤ 0, and convex for
za ≥ 0. Therefore, for zU

a ≤ 0, the enclosures QCV
j and QCC

j

are obtained analogously to the logarithm, while for zL
a ≥

0, the enclosures they are obtained analogously to the even
integer power. If 0 ∈ [zL

a , z
U
a ], the procedure is significantly

more involved and can be found in Chapter 2 of [29].

IV. PROPAGATION OF CZS THROUGH NONLINEAR
FUNCTIONS USING THE HALFSPACE ENCLOSURE

Consider a factorable function h : Rn → Rm. The
objective of this section is to compute a constrained zonotope
enclosure H ⊂ Rm satisfying H ⊇ {h(x) : x ∈ X}, where
the domain X ⊂ Rn is now a constrained zonotope.

By using the method developed in Section III with interval
domain □X , it holds that {h(x) : x ∈ □X} ⊆ {Ehz : z ∈
P} with P given by (10). Let z ≜ (x, z̃), with z̃ ∈ Z̃, where
Z̃ ∈ IRnz−n is the interval corresponding to the nz − n
bottom rows of Z ∈ IRnz . The CZ enclosure H is readily
obtained by

{h(x) : x ∈ X} ⊆ {Ehz : z ∈ X × Z̃, z ∈ P}
= Eh((X × Z̃) ∩ P ) ≜ H. (14)

The Cartesian product in (14) is computed by first con-
verting Z̃ into G-rep and then using (5). The multiplication
by Eh is computed using (6), while the intersection of the
constrained zonotope X × Z̃ and the convex polytope P
is obtained by using the following proposition, which is a
generalization of the intersection method proposed in [20].

Proposition 1: Let Z = (Gz, cz,Az,bz)CZ ⊂ Rn be
a constrained zonotope and P ≜ (Hp,kp,Ap,bp)P be a
convex polytope in H-rep with nh halfspaces. Then,

Z ∩ P =

(
[Gz 0], cz,

[
Az 0

HpGz −Gq

ApGz 0

]
,

[
bz

cq−Hpcz

bp−Apcz

])
CZ

,

(15)
with Gq ≜ 1

2diag(kp − σ), and cq ≜ 1
2 (kp + σ) for any

σ ∈ Rnh satisfying σ ≤ Hz, ∀z ∈ Z.
Proof: Let P = Pineq ∩ Peq, where Pineq ≜

(Hp,kp, _ , _ )P, and Peq ≜ (_ , _ ,Ap,bp)P. Then, it is true
that Z ∩ P = Z ∩ (Pineq ∩ Peq) = (Z ∩ Pineq) ∩ Peq. By the

definition of σ and Pineq, z ∈ Z∩Pineq =⇒ Hpz ∈ [σ,kp].
Let Q ≜ [σ,kp] = ( 12diag(kp − σ), 1

2 (kp + σ))Z ≜
(Gq, cq)Z ⊂ Rnh . Then, Z ∩ Pineq = {z ∈ Z : Hpz ≤
kp} = {z ∈ Z : Hpz ∈ Q} = Z ∩Hp

Q. Therefore,
z ∈ (Z ∩ Pineq) ∩ Peq ⇐⇒ z ∈ (Z ∩Hp Q) ∩ Peq ⇐⇒
∃(ξz, ξq) ∈ B∞(Az,bz)×Bnh

∞ such that

z = cz +Gzξz, (16)
Hpz = cq +Gqξq, (17)
Apz = bp. (18)

Substituting (16) into (17) and (18), and gathering the
resulting equations with (16), leads to the CG-rep (15).

A. Reachability Analysis of Nonlinear Systems

Consider the nonlinear system (1) and let f be a fac-
torable function with factors z and Ef ∈ Rnx×nz satisfying
f(xk−1,wk−1) = Efz. Assuming that x0 ∈ X̄0 and wk ∈
W, ∀k ≥ 0, with X̄0 ⊂ Rnx and W ⊂ Rnw being con-
strained zonotopes, reachability analysis of (1) is performed
by recursively computing CZ enclosures X̄k satisfying (2)
using the developed propagation method (14). Specifically,
let Pk−1 ⊂ Rnz be the halfspace polytope computed as in
(10) for the function f on the interval □(X̄k−1×W ). Then,
xk = f(xk−1,wk−1) ∈ X̄k, where

X̄k ≜ Ef ((X̄k−1 ×W × Z̃k−1) ∩ Pk−1). (19)

Remark 2: Let X̄k−1 have ngk−1
generators, and nck−1

constraints. Moreover, let each Pk−1 given by (10) have
nhp

halfspaces and ncp equality constraints. Then, the CZ
enclosure X̄k obtained by (19) has ngk = ngk−1

+ngw+nz−
(nx+nw)+nhp generators and nck = nck−1

+ncw+nhp+ncp

constraints. Note that nz , nhp
and ncp are constant values,

which depend only on the (non-unique) factorization of f .
Therefore, similar to the CZ-based mean value extension in
[12], the complexity increase of the proposed CZ enclosure
is linear. This is in contrast to the CZ-based first-order
Taylor extension in the same reference, which has quadratic
growth. It is also in contrast to classical polytope-based
estimation methods, which suffer from exponential growth
in the number of halfspaces required at each sampling time.

Remark 3: Although the dependencies between states
are neglected when using □X̄k−1 to compute Pk−1, these
dependencies are recovered by the intersection in (19).

Algorithm 1 summarizes the new method for reachability
analysis of (1) for a given time horizon N ≥ 0. Due to the
complexity increase observed in Remark 2, the polynomial-
time complexity reduction methods for CZs proposed in [18]
are applied to X̄k at the end of each time step k. This
operation is denoted by red(·).

V. NUMERICAL EXAMPLES

This section demonstrates the results obtained by the
proposed CZ enclosure method (Algorithm 1, denoted as
Alg1), and compares with results obtained by applying
interval arithmetic to f (IA) [27] and using the CZ-based
mean value extension (CZMV) described in [12]. Numerical
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Fig. 1. Enclosures for Example 1 obtained by IA (dash-dotted lines), CZMV (solid blue), Alg1 with complexity reduction (solid yellow), and Alg1
without complexity reduction (dashed lines), along with uniform samples from X̄0 propagated through (20) (dots). Panels (a)–(c) show X̄1 for α = 0.1,
0.5, 1, respectively, while panels (d)–(f) show X̄2 for α = 0.1, 0.5, 1, respectively. This figure has been generated using the YALMIP function plot.

Algorithm 1 Proposed Reachability analysis of (1).
1: Let x0 ∈ X̄0 ⊂ Rnx and wk ∈W ⊂ Rnw , where X̄0 and W

are constrained zonotopes.
2: for k = 1, . . . , N do
3: X ← X̄k−1 ×W ;
4: Compute the interval hull □X;
5: Compute Z by natural interval extension of the factors zj

using □X;
6: Compute Qj for each factor zj , j > nx + nw, with Z as

domain;
7: P ←

⋂nz
j=nx+nw+1 Qj ;

8: Obtain Z̃ from Z;
9: X̄k ← Ef ((X̄k−1 ×W × Z̃) ∩ P );

10: X̄k ← red(X̄k);
11: end for

simulations were performed using MATLAB 9.1 with LPs
solved by Gurobi 10.0.1. For all methods, the number of
constraints and generators in the CZs is limited to 20 and 8,
respectively, using the reduction methods in [18].

A. Example 1

We first consider the computation of enclosures X̄k ⊇
{f(x) : x ∈ X̄k−1} with

f(x) ≜

[
x2(−0.7 + 0.1x2 + 0.1x1) + 0.1ex1

x1(1− 0.1x1 + 0.2x2) + x2

]
. (20)

The initial domain is X̄0 ≜ (αI2,02×1)Z with α ∈ (0, 1].
Fig. 1 shows the enclosures obtained by IA, CZMV, and

Alg1, for k = {1, 2} and α ∈ {0.1, 0.5, 1}, together with
uniform samples from X̄0 propagated through (20). When
X̄0 is small, Alg1 and CZMV provide similar enclosures,
which are both more accurate than IA. However, with larger
X̄0, the conservatism of CZMV can lead to worse enclosures
than even IA, while Alg1 computes significantly better
enclosures that approximate the propagated samples well.

B. Example 2

We now consider the reachability analysis of an isothermal
gas-phase reactor with dynamic equations discretized using
the forward Euler method [11], [28]:

x1,k = x1,k−1 + Ts

(
−2k1x

2
1,k−1 + 2k2x2,k−1

)
,

x2,k = x2,k−1 + Ts

(
k1x

2
1,k−1 − k2x2,k−1

)
,

(21)

where k1 = 0.16/60 s−1 atm−1, k2 = 0.0064/60 s−1, and
Ts = 6 s. The initial set is

X̄0 ≜

([
2.5 −0.2 0.1
0.5 0.5 0.1

]
,

[
2.5
1

]
,
[
1 −0.1 1

]
, 1

)
CZ

.

In this example, we also compare the results obtained by
the CZ-based first-order Taylor extension described in [12],
denoted as CZFO. For the analysis, we define the 1-norm
radius (1-radius, in short) as rad1(X̄k) ≜

∑nx

i=1 ζ
R
i , where

ζ ≜ □X̄k ∈ IRnx .
Fig. 2 shows the results obtained by IA, CZMV, CZFO,

and Alg1. The interval enclosures generated by IA diverge
after a few times steps, while the enclosures generated by
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Fig. 2. The 1-norm radii of the enclosures X̄k obtained by IA (dashed
purple), CZMV (dash-dotted blue), CZFO (dotted red), and Alg1 (solid
yellow) for Example 2.

Alg1 are less conservative than those generated by CZMV
and CZFO. Although CZFO produces reasonable enclosures,
it exhibits a quadratic increase in the number of generators
and constraints in each time step [12], whereas both CZMV
and Alg1 exhibit linear increases. This leads to increased
cost in the reduction step. In particular, once the maximum
allowable complexity is reached, the reduction step for CZFO
must eliminate 212 generators and 36 constraints from X̂k in
each step, compared to only 20 generators and 18 constraints
for Alg1, and only 2 generators and zero constraints for
CZMV (in this case, the obtained enclosure had the same
number of constraints as the previous CZ). On a laptop with
32 GB RAM and an Intel Core i7-12700H processor, the
average computational times of CZMV, CZFO, and Alg1, at
each k, were 6.4 ms, 23.5 ms, and 25 ms, respectively.

VI. CONCLUSIONS

This paper proposed a novel algorithm for reachability
analysis of nonlinear discrete-time systems using constrained
zonotope enclosures. By combining important properties of
CZs and polyhedral relaxations of factorable representations
of nonlinar functions, the new method was able to generate
outer-approximations that are less conservative than the ones
obtained by interval methods and other CZ methods from the
literature, while having only a linear complexity increase in
the computed enclosures.
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