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Abstract— This note addresses the problem of state estim-
ation for a class of local Lipschitz nonlinear systems under
the effect of noise/disturbances. An observer structure based
on Hilbert projection is used to handle the same class of
nonlinearities. The boundedness of the state estimation error of
the proposed observer is guaranteed by deploying the input-to-
state stability (ISS) property. Based on ISS stability criterion,
the new LMI condition is derived by combining a well-known
LPV approach with a variant of Young inequality and novel
matrix multipliers. The proposed LMIs have more decision vari-
ables than the methodologies presented in the literature, which
provides extra degrees of freedom, and hence enhances LMI
feasibility. Further, the effectiveness of the developed approach
is highlighted through a numerical example. The performance
of the observer is validated through the application of slip angle
estimation in a nonlinear autonomous vehicle.

Index Terms— Nonlinear observer design, Input-to-state sta-
bility (ISS) property, Linear Matrix Inequalities (LMI), Local
Lipschitz nonlinearities

I. INTRODUCTION

Designing observers to estimate system states in the pres-
ence of noise and disturbances is one of the challenging tasks
in control theory. Due to noisy measurements and external
disturbances, it is difficult to obtain the plant states precisely.
In such circumstances, it is essential to develop observers that
perform within specified performance thresholds. Thus, the
observers become an indispensable component in modern-
day applications, for example, the state-of-charge (SoC)
estimation of the lithium-ion battery model [1], the control
of glucose levels in type-2 diabetic [2], and so on.

The development of state estimation tools for nonlinear
systems is a complex task. Authors of [3] had deployed high-
gain observer methodology, while the sliding-mode observer
approach is used in [4] for the state estimation. LMI-based
nonlinear observers have recently received a lot of attention
in the control domain [5], [6], [7]. All these LMI-based
methods remain conservative and subject to improvement.

In [5] and [6], an essential condition for the observer
design is that the nonlinearities are assumed to be glob-
ally Lipschitz. However, in many practical cases, it can
be restrictive. A solution for tackling the locally Lipschitz
nonlinearities was proposed in [8]. Due to the judicious use
of Hilbert transformation, the proposed nonlinear observer
performs efficiently for the same class of nonlinearities. The
authors of [5] and [6] used an H∞ criterion in the observer
design for the estimation of the state in the presence of
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noise. An alternative for an H∞ criterion is the use of the
input-to-state stability (ISS) property. In [9], an ISS notion
was introduced in the control system domain. Further, the
authors of [10] had proposed an ISS-Lyapunov function
to use the ISS property for the stability of systems. An
observer based on the ISS-Lyapunov function was proposed
in [11] and [12]. All these cited papers provide efficient
state estimation. Along with this, an ISS-Lyapunov function
aids to obtain an LMI condition.Hence, in this paper, the
ISS property along with the ISS-Lyapunov function are
used to obtain a novel LMI condition. The proposed LMI
is based on reformulated Lipschitz property, newly defined
matrix multipliers and a variant of Young inequality. Thus,
it contains additional decision variables than the existing
LMI methods. These variables add extra degrees of freedom
and improve LMI feasibility. Further, the effectiveness of
the proposed matrix multipliers is investigated in MATLAB
using a numerical example.In addition to this, the developed
observer is implemented for slip angle estimation in the case
of a nonlinear autonomous vehicle model.

The remainder of the letter is organized as follows: Sec-
tion II includes some notations and mathematical tools which
are used throughout the paper. The system description and
observer structure are illustrated in Section III. Further, Sec-
tion IV is devoted to the formulation of the LMI condition.
The efficiency of the proposed methodology is highlighted in
Section V through a numerical example and an application.
Section VI draws some concluding remarks.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Throughout the article, the following notations are used:
||e|| and ||e||L2 indicate the euclidean norm and the L2 norm
of a vector e, respectively. For any L∞ bounded function
e(t), we can define ||e||∞ = ||e||(0,+∞) = esssupt∈(0,+∞)||e(t)||.
The symbol (⋆) represents the blocks inside a symmetrical
matrix. The transpose of matrix A is expressed as A⊤. For a
matrix A ∈Rn×n, A > 0 (A < 0) indicates that A is a positive
definite matrix (a negative definite matrix). Similarly, a pos-
itive semi-definite matrix (a negative semi-definite matrix)
is given by A ≥ 0 (A ≤ 0). A = block-diag(A1, . . . ,An) is a
diagonal matrix having elements A1, . . . ,An in the diagonal.
I denotes an identity matrix. λmin(A) and λmax(A) describe
the minimum and maximum eigenvalues of matrix A, re-

spectively. es(i) = (0, . . . ,0,
ith︷︸︸︷
1 ,0, . . . ,0︸ ︷︷ ︸

s components

)⊤ ∈ Rs, s ≥ 1 is a

vector of the canonical basis of Rs. For any two vectors

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7495



X =
(
x1 . . . xn

)⊤
, and Y =

(
y1 . . . yn

)⊤, an auxiliary
vector XYi ∈Rn,∀i = {1, . . . ,n} corresponding to X and Y is
defined as

XYi =


(

y1 . . . yi xi+1 . . . xn

)⊤
, for i = 1, . . . ,n

X , for i = 0.

B. Preliminaries

Definition 1 (Input-to-State stability [10]): Let us con-
sider a generalized class of nonlinear systems:

ζ̇ = f (ζ ,u). (1)

The system (1) is input-to-state stable if there exist a class
KL function β and a class K function γ such that for any
initial state ζ (0), and any bounded input u(t), solution ζ (t)
exists for all t ≥ 0 and satisfies:

||ζ (t)|| ≤ β (||ζ (0)||, t)+ γ(||u||∞),∀t ≥ 0. (2)
Definition 2 (ISS-Lyapunov function [10]): A smooth

function V (ζ ) : Rn → R is called as an ISS-Lyapunov
function for the system (1) if there exist class K∞ functions
αi, i ∈ {1, . . . ,4} such that it holds

α1(||ζ ||)≤V (ζ )≤ α2(||ζ ||), (3)
V̇ (ζ ,u)≤−α3(||ζ ||)+α4(||u||). (4)

Definition 3 (Hilbert Projection [8]): Let Ω ⊂ Rn be a
convex closed and nonempty set. Let us define the linear
application πΩ : Rn → Ω such that:

πΩ(x) = argmin
y∈Ω

||x− y||.

Such an application is called the projection on convex set Ω.
The authors of [8] have mentioned the following important

properties of projection πΩ, which will be useful for the
observer design:

1) The projection πΩ is idempotent, i.e., πΩ ◦πΩ = πΩ.
2) πΩ is a 1-Lipschitz function:

∀x,u ∈ Rn, ||πΩ(x)−πΩ(y)|| ≤ ||x− y||. (5)
Lemma 1 ([8]): Let us consider a nonlinear function γ :

Rn →Rn. Assume that γ is Lipschitz on a convex closed and
non-empty set Ω. Then, there exist functions γΩ

i j : Rn×Rn →
R, and constants γΩ

i jmin
and γΩ

i jmax
such that ∀X , Y ∈Rn, X ̸=

Y ,

γ(X)− γ(Y ) =
n

∑
i=1

n

∑
j=1

γ
Ω
i j Hi j(X −Y ), (6)

where Hi j = en(i)e⊤n ( j), and γΩ
i j ≜ γΩ

i j (X
Y j−1 ,XY j). The func-

tions γΩ
i j (.) are globally bounded as follows:

γ
Ω
i jmin

≤ γ
Ω
i j ≤ γ

Ω
i jmax

. (7)
Lemma 2 ([5]): If there exist two vectors X ,Y ∈ Rn and

a matrix Z = Z⊤ > 0 ∈ Rn×n, then the following matrix
inequalities hold:

X⊤Y +Y⊤X ≤ X⊤Z−1X +Y⊤ZY, (8)

X⊤Y +Y⊤X ≤ 1
2
(X +ZY )⊤Z−1(X +ZY ). (9)

III. PROBLEM FORMULATION

Consider the class of nonlinear systems described by the
following equations:

ẋ = Ax+G f (x)+Bu+Eω,

y =Cx+Hh(x)+Dω,
(10)

where x ∈ Rn and y ∈ Rp are the system states and outputs
respectively. u ∈Rs is the system input. A ∈Rn×n, B ∈Rn×s,
G ∈Rn×m, C ∈Rp×n, H ∈Rp×r, E ∈Rn×q and D ∈Rp×q are
known constant matrices. ω ∈Rq is L2 bounded disturbances
affecting the process dynamics and the measurements.

Nonlinear functions f (·) and h(·) are written in the fol-
lowing detailed form:

f (x) =

 f1(F1x)
...

fm(Fmx)

 ; h(x) =

h1(H1x)
...

hr(Hrx)

 , (11)

where Fi ∈ Rn̄×n, Fix ∈ Ω fi ∀i ∈ {1, . . . ,m} and Hi ∈
R p̄×n, Hix ∈ Ωhi ∀i ∈ {1, . . . ,r}. fi(·) and hi(·) are locally
Lipschitz-continuous functions in Ω fi and Ωhi , respectively.
It is assumed that both sets Ω fi and Ωhi are convex and
positively invariant in a compact non-empty sets (Ω ̸=∅).

For the state estimation purpose, the following standard
Luenberger observer is extensively used in the literature:

˙̂x = Ax̂+Bu+G f (x̂)+L(y− (Cx̂+Hh(x̂))), (12)

where x̂, ŷ are estimated states and outputs of the observer,
respectively, and L is the gain matrix. One of the major
drawbacks of this observer is that the nonlinearities present in
the systems are assumed to be globally Lipschitz. Therefore,
it can not be used for the system (10).

By using the properties of Hilbert projection, locally
Lipschitz functions can be extended to globally Lipschitz in
Rn. For more details, one can refer to [8]. Hence, by using
the definition of Hilbert projection, we obtain:

f ◦πΩ f (x̂) =


f1 ◦πΩ f1

(F1x̂)
...

fm ◦πΩ fm
(Fmx̂)

 , h◦πΩh (x̂) =


h1 ◦πΩh1

(H1x̂)
...

hr ◦πΩhr
(Hr x̂)

 , (13)

such that each fi◦πΩ fi
(·) and hi◦πΩhi

(·) is globally Lipschitz
in Rn.

Let us now consider the following observer form:

˙̂x = Ax̂+G( f ◦πΩ f (x̂))+Bu+L(y− ŷ),

ŷ =Cx̂+H(h◦πΩh(x̂)),
(14)

where f ◦πΩ f (x̂) and h◦πΩh(x̂) are defined in (13).
From (10) and (14), the estimation error dynamic (x̃ =

x− x̂) is given by

˙̃x = (A−LC)︸ ︷︷ ︸
A

x̃+G∆ f −LH∆h +(E −LD)︸ ︷︷ ︸
E

ω,
(15)

where ∆ f = f (x)− f ◦πΩ f (x̂) and ∆h = h(x)−h◦πΩh(x̂).
As system state x(t)∈Ω, ∀t ≥ 0, we have f (x)= f (πΩ(x))

and h(x) = h(πΩ(x)). It means that applying Hilbert projec-
tion πΩ(·) does not modify the system behaviour. Further,
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implementing Lemma 1 on the nonlinearities f and h leads
to: There exist functions f

Ω fi
i j : Rn̄ ×Rn̄ → R, h

Ωhi
i j : R p̄ ×

R p̄ →R and constants f Ω
i j min

, f Ω
i j max

, hΩ
i j min

, hΩ
i j max

such that
for all Fix ∈ ΩFi , Hix ∈ ΩHi and x̂ ∈ Rn, x ̸= x̂, we have:

∆ f =
m,n̄

∑
i, j=1

f
Ω fi
i j Fi jFix̃, and ∆h =

r,p̄

∑
i, j=1

h
Ωhi
i j Hi jHix̃, (16)

where f
Ω fi
i j ≜ f Ω

i j (X
X̂ j−1
i ,X

X̂ j
i ), h

Ωhi
i j ≜ hΩ

i j(X
X̂ j−1
i ,X

X̂ j
i ), Fi j =

em(i)e⊤n̄ ( j) and Hi j = er(i)e⊤p̄ ( j). The functions f
Ω fi
i j , h

Ωhi
i j

hold f Ω
i j min

≤ f
Ω fi
i j ≤ f Ω

i j max
and hΩ

i j min
≤ h

Ωhi
i j ≤ hΩ

i j max
,

respectively.
For simplicity, f Ω

i j and hΩ
i j are used to denote f

Ω fi
i j and

h
Ωhi
i j , respectively. Without loss of generality, let us assume

that f Ω
i j min

= 0 and hΩ
i j min

= 0, i.e.,

0 ≤ f Ω
i j ≤ f Ω

i j max, and 0 ≤ hΩi j ≤ hΩ
i j max. (17)

For more details, one can refer to [5].
Therefore, the error dynamic is obtained as:

˙̃x = Ax̃+
m,n̄

∑
i, j=1

f Ω
i j GFi j x̃−

r,p̄

∑
i, j=1

hΩ
i jLHHi j x̃+Eω. (18)

The principal objective is to compute the observer gain L
such that the system (18) is ISS with respect to ω .

IV. OBSERVER DESIGN

For the simplicity of presentation, this section is divided
into two parts: First, we enumerate the conditions which
guarantee the ISS stability of the system (18) with respect
to ω . Further, an LMI approach is derived based on these
conditions.

A. ISS stability

The following theorem establishes necessary conditions
for the ISS stability of system (18).

Theorem 1: The system (18) is ISS with respect to ω if
it admits an ISS-Lyapunov function

V (x̃) = x̃⊤Px̃, P = P⊤ > 0 ∈ Rn×n. (19)

In addition, the trajectories of the system (18) satisfies the
following bound:

||x̃(t)|| ≤

√
λmax(P)
λmin(P)

e−
σ

2 t ||x̃(0)||+

√
δ

σλmin(P)
||ω(.)||∞, (20)

for any L∞ bounded ω ∈Rq. Further, x̃(t) is bounded when
t → ∞, i.e.,

||x̃(∞)|| ≤

√
δ

σλmin(P)
||ω(.)||∞. (21)

Proof: From (19), it is easy to note that function V (x̃)
fulfils:

λmin(P)||x̃||2 ≤V (x̃)≤ λmax(P)||x̃||2. (22)

Further, the derivative of the Lyapunov function V (x̃) is
computed as:

V̇ (x̃) = x̃⊤
[

PA+A⊤P+
m,n̄

∑
i, j=1

(
f Ω
i j PGFi jFi +( f Ω

i j GFi jFi)
⊤P

)

−
r,p̄

∑
i, j=1

(
hΩ

i jPLHHi jHi +(hΩ
i jLHHi jHi)

⊤P
)]

x̃+ x̃⊤PEω

+ω
⊤E⊤Px̃.

By using inequality (8),

x̃⊤PEω +ω
⊤E⊤Px̃ ≤ δ x̃⊤(PE)⊤(PE)x̃+δω

⊤
ω,

where δ > 0.
Hence,

V̇ (x̃)≤ x̃⊤
[

PA+A⊤P+δ (PE)⊤(PE)

]
x̃+δω

⊤
ω

+ x̃⊤
[

m,n̄

∑
i, j=1

(
f Ω
i j PGFi jFi +( f Ω

i j GFi jFi)
⊤P

)
−

r,p̄

∑
i, j=1

(
hΩ

i jPLHHi jHi +(hΩ
i jLHHi jHi)

⊤P
)]

x̃.

(23)

Then, we can write V̇ (x̃) as:

V̇ (x̃)≤ x̃⊤Qx̃+δω
⊤

ω, (24)

where

Q = PA+A⊤P+δ (PE)⊤(PE)

+
m,n̄

∑
i, j=1

(
f Ω
i j PGFi jFi +( f Ω

i j GFi jFi)
⊤P

)

−
r,p̄

∑
i, j=1

(
hΩ

i jPLHHi jHi +(hΩ
i jLHHi jHi)

⊤P
)
.

(25)

Let us consider that Q satisfies Q ≤−σP, σ > 0.
Then, (24) is rewritten as:

V̇ (x̃)≤−σV (x̃)+δ ||ω||2, (26)

and it provides the following inequality:

V̇ (x̃)≤−σλmax(P)||x̃||2 +δ ||ω||2. (27)

From (22) and (27), V (x̃) fulfils the conditions (3) and (4).
Hence, the Lyapunov function (19) is an ISS-Lyapunov
function with α1(x̃) = λmin(P)||x̃||2, α2(x̃) = λmax(P)||x̃||2,
α3(x̃) =−σλmax(P)||x̃||2 and α4(ω) = δ ||ω||2.
Further, from (26), the trajectories of V (x̃) satisfies:

V (x̃(t))≤V (x̃0)e−σt +
δ

σ

(
1− e−σt) sup

s∈[0,t]
∥ω(s)∥2

2. (28)

Since 0 ≤ 1− e−σt ≤ 1, sup
s∈[0,t]

∥ω(s)∥2
2 ≤ ∥ω∥2

L∞
,

V (x̃(t))≤V (x̃0)e−σt +
δ

σ
∥ω∥2

L∞
. (29)

By using (22), we obtain:

||x̃(t)||2≤ V (x̃,t)
λmin(P)

≤ e−σt λmax(P)||x̃(0)||2+δσ−1||ω(.)||2∞
λmin(P)

. (30)
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From (30), we get the inequality (20) which is in the form
of (2).

Since the system (18) admits an ISS-Lyapunov func-
tion (19), it is ISS with respect to ω . It is easy to obtain (21)
from (20) by considering t → ∞. Hence, x̃(t) is bounded
when t → ∞ for any bounded ω .
This ends the proof.

Remark 1: In the absence of disturbances, i.e., ω = 0,
inequality (26) becomes V̇ (x̃)≤−σV (x̃), which ensures the
exponential stability of x̃.

B. LMI design

This subsection is devoted to the development of an LMI
formulation. Let us define R= L⊤P. From (25), the condition
Q ≤−σP is written as:

L1︷ ︸︸ ︷[
A⊤P+PA−R⊤C−C⊤R+σP PE −R⊤D

(⋆) −δ I

]
+

[ m,n̄

∑
i, j=1

([
PGFi j

0

]
︸ ︷︷ ︸

U⊤
i j

Vi j︷ ︸︸ ︷
f Ω
i j
[
Fi 0

]︸ ︷︷ ︸
Fi

+V⊤
i jUi j

)]
+

[ r,p̄

∑
i, j=1

([
−R⊤HHi j

0

]
︸ ︷︷ ︸

M⊤
i j

Ni j︷ ︸︸ ︷
hΩ

i j
[
Hi 0

]︸ ︷︷ ︸
Hi

+N⊤
i jMi j

)]
≤ 0.

(33)

For simplicity of representation, let us consider the following
notations:

U=
[
U⊤

11 . . . U⊤
1n̄ . . . U⊤

m1 . . . U⊤
mn̄
]⊤

, (34)

V=
[
V⊤

11 . . . V⊤
1n̄ . . . V⊤

m1 . . . V⊤
mn̄
]⊤

, (35)

M=
[
M⊤

11 . . . M⊤
1 p̄ . . . M⊤

r1 . . . M⊤
r p̄
]⊤

, (36)

N=
[
N⊤

11 . . . N⊤
1p̄ . . . N⊤

r1 . . . N⊤
r p̄
]⊤

, (37)

where Ui j, Vi j, Mi j and Ni j are described in (33).
With these notations,

m,n̄

∑
i, j=1

(
U⊤

i jVi j +V⊤
i jUi j

)
= U⊤V+V⊤U, (38)

r,p̄

∑
i, j=1

(
M⊤

i jNi j +N⊤
i jMi j

)
=M⊤N+N⊤M. (39)

The following inequalities are derived by applying inequal-
ity (9) on (38) and (39):

U⊤V+(V)⊤U≤ 1
2
[(
U+ZV

)⊤Z−1(U+ZV
)]
, (40)

M⊤N+N⊤M≤ 1
2
[(
M+SN

)⊤S−1(M+SN
)]
, (41)

where Z and S are defined in (31) and (32), respectively.
Therefore, inequality (33) holds if

L1 +
1
2
[(
U+ZV

)⊤Z−1(U+ZV
)]

+
1
2
[(
M+SN

)⊤S−1(M+SN
)]

≤ 0.
(42)

From (17), each element inside U and N is bounded and
belongs to convex sets, and their sets of vertices are given
by

VFm =
{
{F11, . . . ,F1n̄, . . . ,Fm1, . . . ,Fmn̄} : Fi j ∈ [0, f Ω

i jmax
]
}
,

VHr =
{
{H11, . . . ,H1p̄, . . . ,Hr1, . . . ,Hr p̄} : Hi j ∈ [0,hΩ

i jmax
]
}
.

Hence, (42) is rewritten as:

L1 +
1
2
[(
U+ZV

)⊤Z−1(U+ZV
)]

∀V∈Fm

+
[1

2
(
M+SN

)⊤S−1(M+SN
)]

∀N∈Hr
≤ 0.

(43)

Theorem 2: The system (18) is ISS with respect to ω .
if it holds the following optimization problem:
minimize δ subject to,

L1
(
U+ZV

)⊤ (
M+SN

)⊤
⋆ −2Z 0
⋆ ⋆ −2S

<0,∀V∈Fm,∀N∈Hr (44)

where P = P⊤ > 0 ∈ Rn×n, R ∈ Rp×n, Z under the form
of (31), S described in (32), and σ ,δ > 0. The matrices
L1, U, V, M and N are defined in (33), (34), (35), (36)
and (37), respectively. The observer gain is computed as L =
P−1R⊤.

Proof: The Schur’s compliment of (43) yields the
LMI (44). From convexity principal [13], the system (18)
holds (26) if the LMI (44) is solved for all V ∈ Fm and
N ∈ Gr. Further from Theorem 1, the system (18) is ISS
with respect to ω .

V. IMPLEMENTATION

In this section, a numerical example is provided to demon-
strate the effectiveness of the proposed methodology. Further,
observer performances are evaluated by implementing it
to the slip angle estimation for the nonlinear autonomous
vehicle model.

A. Example 1: Numerical example

Consider the system under the form of (10) with:

A =

0 1 0
0 0 1
0 0 −5

 ,G =

0 0
0 0
1 1

 ,B =

0
0
2

 ,E =

 0
0

0.5

 ,

C =

[
1 0 0
0 1 0

]
,H =

[
1 0
0 1

]
,D =

[
0
1

]
, f1(x) = x2

2, f2(x) =

x2x3, h1(x) = sin(x1) and h2(x) = sin(x3). Hence, m = 2,r =
2. Let us consider n̄ = 3, p̄ = 3.

For initial condition x(0) =
[
−1 −1 −1

]⊤ and input
u = square(2t), the states are bounded in the following sets:

x ∈ {−10.2929 ≤ x1 ≤−1,−1.0739 ≤ x2 ≤ 0.2935,
and −1 ≤ x3 ≤ 0.4686} ∀t ∈ [0,30].

Let us consider that system dynamics and measurements
are corrupted with the Gaussian noise (ω ⇝ (0,1)). The
feasibility of LMI (44) is tested in each of the following
cases:
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Z=



Z1 Zb1
2

. . . Zb1
m

⋆ Z2 . . . Zb2
m

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zm

,where Zi=



Zi1 Za1
i2

. . . Za1
in̄

⋆ Zi2 . . . Za2
in̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Zin̄


∀i∈{1,...,m}, Z

b j
i
=



Z
b j1

i1
Z

b j1
i2

. . . Z
b j1

in̄
Z

b j2
i1

Z
b j2

i2
. . . Z

b j2
in̄

...
...

. . .
...

Z
b jn̄

i1
Z

b jn̄
i2

. . . Z
b jn̄

in̄


∀i∈{2,...,m}, j∈{1,...,m−1}, (31)

such that Z=Z⊤ > 0 and Zi j = Z⊤
i j ∈Rn̄×n̄, Zak

i j
= Z⊤

ak
i j
∈Rn̄×n̄∀i,k ∈ {1, . . . ,m},& j ∈ {1, . . . , n̄}; Z

bk j
i j
= Z⊤

bk j
i j
∈Rn̄×n̄,∀i∈ {2, . . . ,m},k ∈ {1, . . . ,m−1},& j ∈

{1, . . . , n̄}

S=


S1 Sb1

2
. . . Sb1

r
⋆ S2 . . . Sb2

r

⋆ ⋆
. . .

...
⋆ ⋆ . . . Sr

 ,where Si =


Si1 Sa1

i2
. . . Sa1

ip̄
⋆ Si2 . . . Sa2

ip̄

⋆ ⋆
. . .

...
⋆ ⋆ . . . Sip̄

 ∀i∈ {1, . . . ,r}, S
b j

i
=


S

b j1
i1

S
b j1

i2
. . . S

b j1
ip̄

S
b j2

i1
S

b j2
i2

. . . S
b j2

ip̄

...
...

. . .
...

S
b j p̄

i1
S

b j p̄
i2

. . . S
b j p̄

in̄

 ∀i∈ {2, . . . ,r}, j ∈ {1, . . . ,r−1}, (32)

such that S= S⊤ > 0 and Si j = S⊤i j ∈R p̄×p̄, Sak
i j
= S⊤

ak
i j
∈R p̄×p̄∀i,k ∈ {1, . . . ,r},& j ∈ {1, . . . , p̄}; S

bk j
i j
= S⊤

bk j
i j
∈R p̄×p̄,∀i ∈ {2, . . . ,r},k ∈ {1, . . . ,r−1},& j ∈

{1, . . . , p̄}

TABLE I: Optimal values of γ,δ and gain matrix L for different cases

Case 1 Case 2 Case 3
δ 5.5499×10−18 0.6160 0.4237

γ =
√

δ

λmin(P)
3.0326×10−12 2.4819 2.0585

Gain matrix L

260.7229 0.0000
149.7926 0
−17.8321 0.5000

  0.8643 1.4132
0.9302 1.7084
−0.2009 −0.3696

  4.4501 1.1749
2.4572 0.7608
−0.6503 0.1732



1) Case 1: LMI (44) with proposed matrix multipliers,

Z=


Z11 Zb21 Zb22
Zb21 Z21 Za22
Zb22 Za22 Z22

;S=

[
S11 Sb21
Sb21 S21

]
, (45)

where Zi j,Zbi j ,Zai j ∈ Rn̄×n̄, Si j,Sbi j ∈ R p̄×p̄,∀i, j ∈
{1,2} are symmetric matrices such that Z > 0 and
S> 0.

2) Case 2: LMI (44) with the following matrices which
are similar to [7]:

Z=


Z11 αZ21 αZ22

αZ21 Z21 αZ22
αZ22 αZ22 Z22

;S=

[
S11 βS21

βS21 S21

]
, (46)

where α,β = 0.5, and all other matrices are described
in (45).

3) Case 3: LMI (44) with block-diagonal matrix (same
as in [5]), i.e.,

Z= block-diag(Z11,Z21,Z22);S= block-diag(S11,S21), (47)

where all matrices are defined in (45).
All LMIs defined in the above cases are solved by using

MATLAB toolbox. The estimated optimal values of δ , γ

and gain matrix L are summarized in Table I. It emphasizes
that the LMI (44) provides the best ISS gain with the
proposed matrix multipliers as compared to other cases. The
proposed matrix multipliers contain more decision variables
than the other multipliers described in [5], [6] and [7]. Hence,
it is obvious that the solution provided by the matrices
of (45) is more general than other cases. Therefore, the
introduction of general matrix multipliers relaxes the existing
LMI conditions from a feasibility point of view.

TABLE II: RMSE values of x̃ for different cases

Time Case 1 Case 2 Case 3

15 ≤ t ≤ 30
x̃1 2.1450×10−9 0.0454 0.0252
x̃2 5.5216×10−7 0.0254 0.0126
x̃3 5.5216×10−7 0.0254 0.0126

Further, the proposed observer (14) is simulated in MAT-
LAB. For each case, RMSE values of state estimation errors
are calculated in steady state and presented in Table II. It in-
terprets that the designed observer performs more efficiently
in Case 1 as compared to the other cases.

B. Example 2: Application to slip angle estimation

In this subsection, the proposed observer is implemented
for the estimation of the slip angle of a nonlinear autonomous
vehicle model. The nonlinear vehicle model is represented

in the form of (10) with the following parameters: x =
[

α f
αr

]
,

A =

−( ux
a+b +

a2c1 f
Izux

) ( ux
a+b +

abc1r
Izux

)

−( ux
a+b −

abc1 f
Izux

) ( ux
a+b −

b2c1r
Izux

)

, B =

[
ux

a+b 1 −1
ux

ux
a+b 0 −1

ux

]
,

G =

[
a2

Izux
− ab

Izux

− ab
Izux

b2

Izux

]
, C =

[
− ux

a+b
ux

a+bc1 f
m

c1r
m

]
, H =

[
0 0
−1
m

−1
m

]
,

E =

[
1
1

]
and D =

[
1
1

]
. f (x) =

[
−η(α f )
−η(αr)

]
and h(x) =[

−η(α f )
−η(αr)

]
are the nonlinearities present in the dynamics

and outputs, respectively, where, η(ζ ) = −c2ζ 2 sgn(ζ ) +
c3ζ 3. The state vectors α f and αr denote the front slip
angle and rear slip angle of the tires of a vehicle. u =[
δ δ̇ ȧy

]⊤
is input of the system, where δ is the steering
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angle and ay is the lateral acceleration of the vehicle.
The slip angle β of the vehicle is computed as follows:
β = rb

ux
− αr. The values of the parameters of the model

are illustrated as m (mass of the vehicle): 1573kg; Iz
(Inertia of the vehicle): 2873kg ·m2; a (distance of front
tires from c.g.): 1.1m; b (distance of rear tires from c.g.):
1.58m; ux (longitudinal velocity): 10 m · s−1; r (Yaw rate) :
0.8rad · s−1; c2,c3 = 8000; c1 f ,c1r = 80000.

Let us consider that both dynamics and measurements
are contaminated by the Gaussian noise (ω ⇝ (0,1)). The
proposed LMI (44) is solved in MATLAB toolbox for
the above system, and we obtain: δ = 1.969× 10−20, γ =

9.7954×10−15 and L =

[
0.0535 0.9465
0.3580 0.6420

]
.

0 1 2 3 4 5 6 7
-0.2

0

0.2

0.4

0.6

0.8

Fig. 1: Behaviour of estimation error (x̃)

In MATLAB, the observer (14) is simulated for the vehicle
model. The graph of the estimation error of vehicle states x̃
is presented in Figure 1. It emphasises the efficient noise
attenuation which is achieved by the proposed observer.
Further, the plots of the estimation of slip angle β and its
error are shown in Figure 2. The estimation accuracy is
illustrated in Figure 2a and 2b. All these figures highlight
the precise estimation of the slip angle of the vehicle with
efficient noise compensation.

0 1 2 3 4 5 6 7
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0

0.5

1

(a) Estimation of (β )

0 1 2 3 4 5 6 7
-0.8

-0.6

-0.4

-0.2

0

0.2

(b) Estimation error of slip angle (β̃ = β − β̂ )

Fig. 2: Estimation of slip angle (β )

VI. CONCLUSION

A new LMI-based observer approach for the class of
a locally Lipschitz nonlinear system is proposed in this
paper for the state estimation purpose. A recently proposed
Hilbert transformation is used in the observer structure to
handle the same class of nonlinearities. An ISS notion is
employed to ensure the boundedness of the estimation error.
Further, the LPV approach is combined with the reformulated
Lipschitz property, a variant of Young inequality, and newly
defined matrix multipliers to derive a new LMI condition.
The use of newly defined matrix multipliers allows the
inclusion of additional decision variables as compared to the
methods proposed in the literature. The effectiveness of the
developed LMI is highlighted through a numerical example.
The proposed methodology is evaluated by implementing it
for slip angle estimation in the autonomous vehicle model.
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