
Automated Formation Control Synthesis from

Temporal Logic Specifications

Shuhao Qi†, Zengjie Zhang†, Sofie Haesaert, Zhiyong Sun

Abstract— In many practical scenarios, multi-robot systems
are envisioned to support humans in executing complicated
tasks within structured environments, such as search-and-
rescue tasks. We propose a framework for a multi-robot
swarm to fulfill complex tasks represented by temporal logic
specifications. Given temporal logic specifications on the swarm
formation and navigation, we develop a controller with runtime
safety and convergence guarantees that drive the swarm to
formally satisfy the specification. In addition, the synthesized
controller will autonomously switch formations as necessary
and react to uncontrollable events from the environment.
The efficacy of the proposed framework is validated with a
simulation study on the navigation of multiple quadrotor robots.

I. INTRODUCTION

Multi-robot system control with complex tasks is challeng-

ing due to the high dimensions and the substantial amount

of constraints [1]. Taking the search-and-rescue task as an

example, the robots have to sequentially achieve a series of

subtasks, including locating the survivors, navigating to the

rescue spots, and transporting the survivors to a designated

safe zone. In this type of complex task, robot swarms should

autonomously change formations to cooperatively execute

sensing and communication operations or to traverse narrow

spaces. Such practical tasks involve complex navigational

requirements imposed by the sequential subtasks in combi-

nation with formation control requirements on the robots.

While the former navigational requirements have been suc-

cessfully solved by first specifying them with Linear-time

Temporal Logic (LTL) and using related tools [2], [3], there

is not much work that explicitly incorporates the formation

requirements. This paper studies the control synthesis of

multi-robot systems for complex tasks represented by LTL

specifications with automated formations.

For constrained control of multi-robot systems, problems

such as obstacle avoidance and reachability in complex

environments can be solved with recently developed control

methods that also give runtime guarantees. These methods

include control barrier functions (CBF) [4] and finite-time

control Lyapunov function (CLF) [5]. CBFs can ensure the

strict satisfaction of state-dependent constraints for dynamic

systems by imposing the set invariance property [4]. In

addition, fixed-time CLF [5] can ensure that the system

† The authors contributed to this paper equally.
This work was supported by the European project SymAware under the

grant No. 101070802, and by the European project COVER under the grant
No. 101086228.

S. Qi, Z. Zhang, S. Haesaert, Z. Sun are with the Department of Elec-
trical Engineering, Eindhoven University of Technology, The Netherlands.
{s.qi, z.zhang3, s.haesaert, z.sun}@tue.nl

converges to a given equilibrium point or a set within user-

defined time. Also, in practice, it is convenient to incorporate

CBF and CLF constraints in optimization-based controllers,

like quadratic programming (QP), which can balance safety

and convergence without massive computation [6], [5]. In

this sense, CBF-CLF QP has been employed to ensure the

safety and convergence of multi-robot systems [7], [8] and

the satisfaction of the spatio-temporal constraints of temporal

logic specifications [9], [10].

LTL specifications have been used to enable the collective

behavior of multi-robot systems [2], [11], [12]. The alloca-

tion numbers of robots or systems to specific regions in space

and time can be represented by counting temporal logic [13]

and graph temporal logic [14]. Alternatively, when each

agent in a system has been individually assigned a distinct

temporal logic specification, local cooperation of agents has

been developed in [15] where the least violating control

is used in case of conflicting specifications. In contrast,

in [12], the collective behavior of multi-robot systems is

achieved, where the mean and variance features of the

robot swarm are employed to control arbitrarily large swarm

systems to satisfy temporal logic specifications. In some

practical problems, multi-robot systems are expected to not

only exhibit simple collective behaviors but also to achieve

specific formations to traverse special terrain and to execute

sensing and communication tasks. In contrast to [12], we aim

at the explicit specification for automated formations in the

navigation control of a robot swarm.

More precisely in this paper, we propose a formal frame-

work for a multi-robot swarm system to solve a complicated

autonomous navigation task with automated formations. A

linear temporal logic (LTL) formula is used to specify

this complicated navigation task and a symbolic model is

abstracted to characterize the behavior of the swarm system.

Based on this model, a symbolic controller is synthesized

to generate the waypoints and desired formations subject

to the LTL specification incorporating the influence of the

environmental signals. Then, a QP-based control refinement

method with CBFs and fixed-time CLFs is developed to

ensure the satisfaction of the LTL specification with runtime

guarantees. In such a way, the developed control method

enables the swarm system to succeed in the navigation task

with automated formations. Such a framework holds vast

potential for real-world robotic swarm applications. The main

contributions of this paper include 1) a framework for au-

tonomous navigation and formation switching of multi-robot

systems under LTL specifications, including finite abstrac-

tions, symbolic control synthesis, and control refinement;

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5165

2) an efficient QP-based control refinement with runtime

guarantees on the task specification (autonomous navigation

with automated formations) and collision avoidance.

The rest of the paper is organized as follows. Sec. II gives

the preliminary knowledge and the main problem. The main

results are given in Sec. III.In Sec. IV, we validate our

framework and solutions with a simulation case on robot

swarm navigation. Finally, Sec. V concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Multi-Robot System

Consider a multi-robot swarm system with r robots, where

each robot is described by the following dynamic equation,

Ri : ẋi(t) = g(xi(t), ui(t)), i = 1, . . . , r, (1)

where xi(t) ∈ X ⊂ R
n, ui(t) ∈ U ⊂ R

m are the state

and the control input of the i-th robot at time t ∈ R≥0,

respectively, and g : Rn×R
m → R

n is a smooth function

that describes the dynamic model of the robot. For brevity,

we use vectors x(t) = [xT1 (t), x
T
2 (t), · · · , x

T
r (t)]

T ∈ X
r ⊂

R
rn and u(t) = [uT1 (t), u

T
2 (t), · · · , u

T
r (t)]

T ∈ U
r ⊂ R

rm

to denote the state and control input of all robots in the

system. Especially, the initial system state is denoted by

x(0) = [xT1 (0), x
T
2 (0), · · · , x

T
r (0)]

T .

In this paper, the interaction among the robots is described

by an undirected and completed graph, in the sense that all

robots in the swarm are fully connected by local commu-

nication. We define xc = 1

r

∑r
i=1

xi as the centroid, or the

geometric center of the swarm and xij = xi − xj as the

relative displacement between two robots i 6= j. A certain

formation of the swarm system is described by all the relative

displacements, i.e., f = {fij} r(r−1)
2

, where fij ∈ R
n, for

i, j ∈ {1, 2, · · · , r}, i 6= j, denotes the desired displacement

between two robots. We define F as the formation space

that contains all possible formations f of the swarm system.

Similarly, we define W ⊂ R
n as the workspace of the swarm

that contains all possible positions w of the centroid xc.

B. LTL Specification for Navigation Task

We first introduce Linear Temporal Logic (LTL) [16], [17]

as follows.

Syntax. The syntax of LTL is recursively defined as,

ψ ::= ⊤ | p | ¬ψ | ψ1 ∧ ψ2 | ©ψ | ψ1Uψ2, (2)

where ψ1, ψ2 and ψ are LTL formulas, p ∈ AP is an atomic

proposition, ¬ is the negation operator, ∧ is the conjunction

operator that connects two LTL formulas, and © and U

represent the next and until temporal operators, respectively.

Based on these essential operators, other logical and temporal

operators, namely disjunction ∨, implication →, eventually

♦, and always � can be defined as, ψ1 ∨ψ2 := ¬(ψ1 ∧ ψ2),
ψ1 → ψ2 := ¬ψ1 ∨ ψ2, ♦ψ := ⊤Uψ, and �ψ := ¬♦¬ψ.

Semantics. Consider a set of atomic propositions AP =
{p1, . . . , pN} which defines an alphabet 2AP, where each

letter ω ∈ 2AP contains the set of atomic propositions

that are true. An infinite string of letters is a word ωωω =
ω0ω1ω2 . . . , where ωi ∈ 2AP, i ∈ N≥0, with a suffix

ωωωk = ωkωk+1ωk+2 . . . , k ∈ N≥0. For a given word ωωω, basic

semantics of LTL are given as ωωωk |= p, if p ∈ ωk; ωωωk |= ¬p,

if p /∈ ωk; ωωωk |= ψ1 ∧ ψ2, if ωωωk |= ψ1 and ωωωk |= ψ2;

ωωωk |= ©ψ, if ωωωk+1 |= ψ; ωωωk |= ψ1Uψ2, if ∃ i ∈ N such

that ωωωk+i |= ψ2, and ωωωk+j |= ψ1 holds ∀ 0 ≤ j < i.

Reactive LTL formulas for robot swarm. In this paper,

we use an LTL formula to specify whether the swarm

system achieves the navigation task with automated for-

mation. Motivated by [12], we select to use the centroid

position and formation as essential features to respectively

characterize the navigation and interaction behaviors of the

swarm system. Therefore, we introduce atomic propositions

for the swarm centroid in the workspace APw based on

a labeling function Lw : W → 2APw and those for the

formation APf with a labeling function Lf : F → 2APf .

Moreover, to specify how the swarm system should react to

external signals from the environment, we use a finite set E
to denote all possible states of the environmental signal and

the set of atomic propositions APe to describe the property of

the signal. Their correspondence is described by a labeling

mapping Le : E → 2APe . In this sense, the overall set of

atomic propositions of the swarm system for the navigation

task is AP :=APe ∪ APw ∪ APf . Then, we can use an LTL

formula ψ defined on the output word of the swarm system

ωωω = ω0ω1ω2 . . . , where ωk ∈ 2AP, k ∈ N, to specify the

navigation task. We say that the robot achieves the navigation

task if its output word satisfies the specification, i.e., ωωω � ψ.

In this sense, the overall labeling mapping of the swarm

system is the combination of all mappings Lw, Lf , and Le,

i.e., L : W×F×E → 2AP. The subset LTL formulas known

as Generalized Reactive(1) (GR(1)) [18], is specifically well

fitted to deal with both external and internal variables. GR(1)

formulas are of the form ψ := ψe → ψs, where ψe constrains

the allowed behavior of the uncontrolled propositions APe

and ψs constrains the desired behaviors of the system with

the controlled propositions APw ∪ APf .

C. Problem Statement

Given the multi-robot system in (II-A) and the task speci-

fication ψ defined in (II-B), the navigation task studied in

this paper can be formulated as a synthesis problem for

the specification ψ. Before we give the formal problem

statement, we explain how automated formation is addressed

for the navigation task. The main objective of the naviga-

tion task is that the centroid of the swarm system should

ultimately reach the navigation goal along a feasible path in

the environment (navigation). Meanwhile, the environmental

terrain requires that certain spots must be passed by certain

formations. Therefore, the swarm system should also auto-

matically switch to the feasible formations when passing the

corresponding spots (automated formation). Also, the swarm

system should always react to the environmental signals and

perform the correct response (reaction). Besides, all robots

in the swarm should avoid collisions with each other and

the obstacles in the environment (collision avoidance). The

formal problem statement is given as follows.

5166

Main Problem 1 (Navigation with Automated Formation).

For a multi-robot swarm system R = {R1,R2, · · · ,Rr}
as defined in Eq. (1) with a state space X

r, a workspace

W, a formation space F, an environmental signal space E , a

labeling mapping L : W×F×E → AP, and a GR(1) formula

ψ := ψe → ψs defined on the alphabet 2AP specifying the

requirements on navigation, automated formation, reaction,

and collision avoidance, find a provably-correct reactive

control policy to ensure that the output word ωωω satisfies the

specification ψ, i.e, ωωω � ψ.

III. FRAMEWORK AND CONTROLLER DESIGN

A. The Control Design Framework

To capture behaviors of the dynamic system in Eq. 1, an

abstract system can be defined in the following formulation,

Definition 1. (Deterministic Finite Transition System,

DFTS): A deterministic finite transition system is a tuple

T = (S, s0, A, δ, AP, L), where S and A are finite sets of

states and actions, s0 is the initial state, δ :S×A→S is a

transition function that prescribes the state transition under

a certain input, AP is a finite set of atomic propositions, and

L :S→2AP is a labeling function.

Given a sequence of actions a= a0a1a2 · · · with ai ∈A,

a DFTS T initiated at s0∈S generates a trajectory or a run

sss= s0s1s2, . . ., where si+1 = δ(si, ai), i ∈N. Accordingly,

the output word of the DFTS ωωω = ω0ω1ω2 · · · is uniquely

defined for a given initial state s0 ∈ S, where ωi ∈ 2AP,

i ∈ N. Let a history hk = s0a0s1a1s2a2...sk be given at

time k with hk ∈H , we can then define a control strategy

as a map µ from the set of histories to the action set, i.e.,

µ : H →A. A control strategy in the form µ : S→A is a

Markov strategy as it only depends on current state of T .

In the next subsection, we will show that we can exactly

develop a symbolic model as the abstraction of the swarm

system in Eq. (1) using a DFTS with the same atomic propo-

sition sets APw and APf . More specifically, let us denote two

finite sets W :={w1, w2, . . .}⊂W and F :={f1, f2, . . .}⊂F

with waypoints in the workspace W and the formation space

F of the swarm system. The state set of the DFTS S := W×F
is an abstraction of the feature space of the swarm system

W×F. As a consequence, the task specification ψ defined for

the swarm system can now be specified for the abstract model

with labeling map L :W×F×E→2AP. Consider the history

signal hEk := s0e0a0s1e1a1s2e1a2...sk ∈ HE extended with

the uncontrolled variables ek ∈ E . Then, we can decompose

the main problem into two sub-problems with one being the

control synthesis for the abstract model T and the other as

control refinement to guarantee the soundness of the output

words ωωω for the concrete swarm system.

Sub-Problem 1 (Symbolic control synthesis). Consider a

DFTS T defined in Def. 1 as the abstraction of the swarm

system given in Eq. (1). Synthesize a symbolic control

strategy, µ : HE → A, such that for any feasible environ-

mental signal from E and for the initial state s0, the LTL

specification ψ is satisfied.

Given the control strategy µ for the abstract system T , we

should also make sure there is a refined control policy for the

swarm system that drives the multi-robot system to satisfy

the navigation specification ψ without collisions inside and

outside the swarm.

Sub-Problem 2 (Control refinement). For the swarm system

given in Eq. (1) and its abstract model, a DFTS T defined

in Def. 1, with a symbolic control strategy µ solved in Sub-

Problem 1, design a controller that maps the symbolic state

action pairs to a continous control map π : Xr×S×A→ U
r,

such that the output word of the swarm system ωωω assigned

by the labeling mapping L satisfies the LTL specification

defined in Sec. II-B, i.e., ωωω |= ψ.

B. Symbolic Control Synthesis

This subsection discusses the synthesis of the symbolic

control strategy in Sub-Problem 1. The synthesis process is

performed in three steps:

1) Step 1: Determining Waypoint Sets: The first step is

to determine the sets of waypoints in the workspace and

the formation, namely W and F which are important to

construct the abstraction model T , as introduced in Sec. III.

A waypoint is a desired position w ∈ W for the swarm

centroid to reach or a desired formation f ∈ F for the

swarm to achieve. In this work, the waypoints are selected

by fully incorporating the physical property of the swarm,

the practical conditions of the environment, and the specific

requirements of the tasks. For example, there might exist

some narrow spaces where the swarm can only pass with

a certain formation. Also, the number of the waypoints

is selected as possibly small while maintaining a dense

distribution to make a balance between the scale of the

abstraction model and the feasibility of the navigation task.

2) Step 2: Realization of the DFTS: After determining

the finite sets of waypoints W and F , the next step is to use

them to construct a DFTS T ={S, s0, A, δ,AP,L} to realize

an abstract model for the swarm system. Directly, the state

set is S=W×F . The action set A is also a finite symbolic

set that contains all possible actions for state transitions. The

atomic proposition set AP and labeling mapping L are the

same as Sec. II-B. Thus, the most critical part of this step

is to determine the transition function δ which describes

to which waypoint the system transits given the current

waypoint. We first assume a full transition and then eliminate

the infeasible transitions by looking into the environmental

conditions and the dynamic model of the swarm system.

For example, we eliminate a transition from one waypoint

to another if it forces the swarm to pass an area with an

impractical formation. Moreover, the transition should also

incorporate the feasibility of the control refinement process

described by Sub-Problem 2, which will be discussed in the

next subsection.

3) Step 3: Synthesis of Control Strategy: Given the ab-

stract, symbolic model, we can use an off-the-shelf tool to

solve the control synthesis problem. More precisely, we use

the Omega solver [19] in Tulip [20], [21]. Internally, it con-

structs an enumerated transducer that ensures the satisfaction

5167

of the GR(1) formula for any admissible behavior of the

uncontrolled variables ek. For the overall synthesis procedure

can be referred to [18], [21]. Note that if the environment

variable takes a value other than the imposed assumptions,

no guarantees can be provided on the system behavior.

C. Control Refinement with Runtime Guarantees

In this subsection, we design a QP-based control refine-

ment to solve Sub-Problem 2. Let the symbolic state s =
(w, f) ∈ S and the symbolic action a ∈ A be given for which

the next symbolic state should be s+ = δ(s, a). The refined

control inputs u(t) should control the robot swarm such

that the desired waypoints (w, f) defined by the symbolic

control are reached. Additionally, different constraints are

added concerning the runtime safety requirements.

1) Computing Robot Control Inputs Via Solving QP:

Without losing generality, we consider a swarm with single

integrator models, i.e., ẋi(t)=ui(t) for i∈{1, 2, · · · , r}. For

Sub-Problem 2, we need to solve the following QP problem

formulated in Eq. (3), for all i 6=j, i, j∈{1, 2, · · · , r},

min
z
zTHz +QTz (3a)

s.t. ‖ui‖ ≤ umax, (3b)

∂hW(xc, w)

∂xc
uc≤ δ1hW(xc, w)

− α1maxγ1{0, hW(xc, w)}

− α2maxγ2{0, hW(xc, w)},

(3c)

∂hF (xij , fij)

∂xij
uij≤ δ1hF (xij , fij)

− α1maxγ1{0, hF (xij , fij)}

− α2maxγ2{0, hF (xij , fij)},

(3d)

∂hD(xij)

∂xij
uij ≥− δ2hD(xij), (3e)

∂hO(xi)

∂xi
ui ≥− δ2hO(xi), (3f)

where z = [uT , δT]T ∈ R
2×r+2 are decision variables, in

which δ=[δ1, δ2] ∈ R
2 are slack variables, H is a diagonal

matrix with positive constant elements, Q= [02×r, wδ1 , 0]
where wδ1 ∈R

+ is a penalizing scalar of the slack variable

δ1, umax ∈ R
+ defines the control limit of the system,

and uij = ui − uj for any i, j ∈ {1, 2, · · · , r}, denote

the control difference between two robots i 6= j. Sublevel

sets of hW(x,w) = ‖x − w‖2 − d2G and hF (xij , fij) =
‖x−fij‖

2−d2F represent desired centroid position w ∈ W

and swarm formation f ∈F for the robot swarm respectively,

where dG, dF ∈ R
+ are tolerance thresholds. Superlevel sets

of hD(x)=‖x‖2−d2O and hO(x)=1−(x−η)TP (x−η) denote

collision-free sets with other robots and local obstacle-free

sets respectively, where dO ∈ R
+ is the minimal distance

among agents and η∈R
n and P ∈ R

n×n are constant param-

eters determined by the environment. Constant parameters

α1, α2, γ1, γ1 are chosen as α1 = α2 =
µπ

2Tud
, γ1 = 1+ 1

µ
,

γ2=1− 1

µ
with user-defined constants µ > 1 and Tud.

To achieve the desired waypoints w and f , fixed-time

CLF ensures the convergence to a given set within user-

defined time Tud, and the concrete formulation can be found

in [5]. Constraints (3c) and (3d) are formulated in the

form of fixed-time CLF, which respectively drive the swarm

system to reach a waypoint w∈W and achieve a formation

f={fij} r(r−1)
2

that corresponds to the chosen next abstract

state (w, f), with w ∈ W , f ∈ F . As for runtime safety,

CBF is an effective tool to ensure the set invariance of

a dynamic system in a given set, which is often used to

ensure system safety of collision avoidance. In the form of

control inputs condition for CBF [4], constraints (3f) and (3e)

attempt to keep the robots within the safety sets D and O
to avoid collisions with each other and with the obstacles in

the environment. This corresponds to the collision avoidance

objective in Sec. II-C. Note that the reactivity objective has

been achieved already in the symbolic control in Sec. III-B.

2) Specification Satisfaction Analysis: If the QP in Eq. (3)

has a feasible solution u(t) and the slack variable δ1 remains

negative, the obtained control inputs u(t) guarantee that the

swarm reaches the given waypoint (w, f) within a maximum

time Tud [5]. This indicates that, for any waypoints and

desired formations that satisfy the specification ψ, the swarm

can track them within a finite predefined timing bound.

Although the swarm may traverse other positions and forma-

tions between two waypoints, it ultimately reaches the next

waypoint (w, f) within a strict timing. This means that, with

the tolerance of the transient states of the swarm with a strict

timing bound, the behavior of the swarm satisfies the given

task specification ψ. Moreover, the constraints (3e) and (3f)

guarantee that the system never traverses to dangerous re-

gions. Therefore, we can claim that Sub-Problem 2 is solved

if the QP in Eq. (3) is feasible.

If the QP in Eq. (3) is infeasible, it might be caused

by the constraints encoding the impractical waypoints or

formations. In this case, the infeasibility can be resolved by

pruning the transition function δ of the abstraction model

T as developed in Sec. III-B. Specifically, the waypoints

leading to the infeasible QP are recognized as infeasible

transitions in the abstraction model T and are eliminated

from δ. This is iteratively performed until all transitions in

a synthesized strategy ensure the feasibility of the QP.

IV. CASE STUDY

In this section, we use a swarm navigation control case

in simulation to validate the efficacy of our proposed frame-

work and solution. Consider a homogeneous swarm system

that contains r = 3 quadrotor robots moving in a two-

dimensional planar environment X ⊂ R
2, where X is a 5m

×5m square area. The dynamic model of the i-th robot of

the swarm system is given as the following single integrator

ẋi(t) = ui(t), i = 1, 2, 3, where xi(t), ui(t) ∈ R
2 are the

position and control input of robot i at time t ∈ R≥0. In this

setting, the workspace containing the possible positions of

the centroid is also X, i.e., W := X.

The terrain of the environment is illustrated in Fig. 1.

The environment is split into a 5 × 5 grid which generates

25 even square blocks, each with a size of 1m ×1m. The

yellow block is the starting point of the robot swarm. The

5168

(a) “battery”: True (b) “battery”: True (c) “battery”: True (d) “battery”: False (e) “battery”: True

Fig. 1: The planar view of the environment and the robot trajectories in a simulation run, as time changes (left to right).

blue block is the navigation goal that the swarm needs

to reach ultimately. The red blocks are the obstacles that

the robots should avoid. All waypoints in W are assigned

as the center of the accessible square partitions. Also, we

determine an abstract formation set including three different

formations F = {f1, f2, f3} by partitioning F, where f1, f2,

f3 represent a horizontal formation (as shown in Fig. 1b

and Fig. 1d), a vertical formation (as shown in Fig. 1a

and Fig. 1e), and a triangle shape formations (Fig. 1c),

respectively. The definitions of W and F can be found in

our online document on [22].

The DFTS T ={S, s0, A, δ,AP,L} as the abstract model

of the quadrotor swarm is realized as follows. The state space

S = W×F , where W , F are realized as finite sets with

25 and 3 elements, respectively. The transition relation δ is

represented as a matrix and can also be found in our Github

repository [22]. The main principles we use to construct the

transition relation are as follows.

• When the swarm passes by a narrow corridor, it should

switch to the thinnest formation to fit its direction.

• The swarm should not enter an obstacle (red) region.

The atomic proposition set is AP = APw∪APf∪APe, where

APw = {freespace, home, goal, obstacle}, APf = {horizon,

vertical, triangle}, and APe = {battery}. The label mapping

is L= {Lw,Lf ,Le}. Mapping Lw labels the yellow block

in Fig. 1 as “home”, the blue block as “goal”, the red blocks

as “obstacle”, and all other blocks as “freespace”. Mapping

Lf is defined such that Lf (f1) = “horizon”, Lf (f2) =
“vertical”, and Lf (f3) = “triangle”. Then, mapping Le

gives “battery” if all the batteries of the robots are charged.

The abstract model is visualized in Fig. 2, where the x-y
planes along the formation axis show the planar view of the

environment for different formations. Thus, Fig. 2 clearly

shows the transition between the 25× 3 states of the DFTS.

The task is interpreted in the following natural language.

1) The swarm should infinitely visit “goal” in “triangle”

formation, as long as “battery” is true.

2) All robots should avoid entering regions with obstacles.

3) The swarm should go back “home” to recharge once

“battery” becomes false.

It can be specified as an LTL formula ψ=ψe →ψs, where

ψe := �(¬battery ∧ home → ©battery) ∧ �(¬battery ∧
¬home → ©¬battery) and ψs := �¬obstacle∧�♦(goal∧
triangle)∧�♦battery. The runtime safety requirements are

Fig. 2: The visualization of the states of the abstract model.

The three planes distributed along the z-axis are the envi-

ronment with waypoints corresponding to three formations.

Each small square block is an abstract state. The blue line

denotes the transition of the abstract states in a simulation

run. The passing waypoints are marked as red dots.

formulated as bounded sets defined in Sec. III-C and encoded

in the QP problem (3) for which the parameters can be

found in our Github repository [22]. We give two important

parameters Tud = 4 s and umax = 5m/s. The synthesis of

the symbolic control strategy is solved using an off-the-

shelf LTL toolbox, TuLiP [21]. The QP problem is solved

using the CasADi library [23] with the ipopt solver on a

commercial laptop with CPU i7-10750H.

The trajectories of the robots in a simulation run are

shown in Fig. 1. The swarm starts at “home” with the

“vertical” formation. After leaving “home”, the swarm goes

along the horizontal corridor in the “horizon” formation,

as shown in Fig. 1a, since the narrow space does not

allow other formations. In Fig. 1b, the robot turns right

and switches to the “horizon” formation to pass the short

horizontal corridor. After reaching the “goal” in the open

space, it switches to the “triangle” formation as specified by

ψ, as shown in Fig. 1c. When any robots have low power

(“battery” signal is false) as shown in Fig. 1d, the swarm

goes back to “home” to recharge. Once it gets charged at

“home” and the “battery” signal is true again, the robot

resumes its previous task to navigate itself to the “goal”

again, as shown in Fig. 1e. From Fig. 1, we can see that

5169

the controlled swarm ensures an obstacle-free trajectory

when approaching the desired task. Also, proper formations

are automatically switched to traverse narrow areas. The

resulting behavior of the robot swarm completely satisfies

the LTL specifications. This is also reflected by Fig. 2 which

visualizes the trajectory of the robot swarm in the abstract

space. A video demonstration of this use case is accessible

at https://www.youtube.com/watch?v=r1aecBOeDq0.

Fig. 3 indicates the satisfaction of runtime safety require-

ments, where the robot trajectories given a new waypoint and

a desired formation are shown. In this case, a robot swarm

from the initial position O is required to achieve a “triangle”

formation and its center simultaneously reaches the green

rounded region within Tud = 4 s. During this period, all

robots should avoid collision with the red rounded obstacle.

In Fig. 3, the trajectories of the robots are drawn as solid

lines and the formation of the swarm is in dotted lines. It

is shown that the robots successfully avoid the obstacle and

finally reach the waypoint at a tolerable range. The ultimate

formation is “triangle” and the reaching time is within Tud.

This study shows that the robot controller solved from the

QP problem strictly ensures not only the runtime safety

requirements but also the fixed-time convergence condition.

O

Obstacle

Waypoint

Fig. 3: The satisfaction of the runtime safety requirements.

V. CONCLUSION

In this paper, we develop a formal-method-based frame-

work for multi-robot swarm systems to design a reactive

controller for the autonomous navigation task with automated

formations. Under the synthesized symbolic controller for the

abstract model, the QP-based control refinement approach

can ensure that the behavior of the swarm system satisfies

the LTL specification with runtime guarantees. In the future,

the framework will be expected to extend to more robotic

applications with more complicated specifications.

REFERENCES

[1] L. Chen and Z. Sun, “Gradient-based bearing-only formation control:
An elevation angle approach,” Automatica, vol. 141, p. 110310, 2022.

[2] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on

Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.
[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier

function based quadratic programs for safety critical systems,” IEEE

Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[5] K. Garg, E. Arabi, and D. Panagou, “Fixed-time control under spa-
tiotemporal and input constraints: A quadratic programming based
approach,” Automatica, vol. 141, p. 110314, 2022.

[6] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE

Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[7] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multi-robot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[8] X. Tan and D. V. Dimarogonas, “Distributed implementation of control
barrier functions for multi-agent systems,” IEEE Control Systems

Letters, vol. 6, pp. 1879–1884, 2021.
[9] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for

signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[10] M. Srinivasan and S. Coogan, “Control of mobile robots using barrier
functions under temporal logic specifications,” IEEE Transactions on

Robotics, vol. 37, no. 2, pp. 363–374, 2021.
[11] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion plan-

ning from signal temporal logic specifications,” IEEE Robotics and

Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.
[12] M. Kloetzer and C. Belta, “Temporal logic planning and control of

robotic swarms by hierarchical abstractions,” IEEE Transactions on

Robotics, vol. 23, no. 2, pp. 320–330, 2007.
[13] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with

counting temporal logics,” IEEE Transactions on Robotics, vol. 36,
no. 4, pp. 1189–1206, 2020.

[14] F. Djeumou, Z. Xu, and U. Topcu, “Probabilistic swarm guidance
subject to graph temporal logic specifications.” in Robotics: Science

and Systems, 2020.
[15] L. Lindemann and D. V. Dimarogonas, “Control barrier functions

for multi-agent systems under conflicting local signal temporal logic
tasks,” IEEE control systems letters, vol. 3, no. 3, pp. 757–762, 2019.

[16] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[17] C. Belta, B. Yordanov, and E. Gol, Formal Methods for Discrete-Time

Dynamical Systems. Springer, 01 2017, vol. 89.
[18] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,

“Synthesis of reactive(1) designs,” Journal of Computer and System

Sciences, vol. 78, no. 3, pp. 911–938, 2012, in Commemoration of
Amir Pnueli.

[19] I. Filippidis and R. M. Murray, “Symbolic construction of gr (1)
contracts for systems with full information,” in 2016 American Control

Conference (ACC). IEEE, 2016, pp. 782–789.
[20] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,

“Tulip: a software toolbox for receding horizon temporal logic plan-
ning,” in Proceedings of the 14th international conference on Hybrid

systems: computation and control, 2011, pp. 313–314.
[21] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Mur-

ray, “Control design for hybrid systems with tulip: The temporal logic
planning toolbox,” in 2016 IEEE Conference on Control Applications

(CCA), 2016, pp. 1030–1041.
[22] S. Qi, “Ltl-formation-control,” GitHub, 2023, available at

https://github.com/Miracle-qi/LTL-Formation-Control.
[23] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,

“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

5170

