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Abstract— Efficient methods to provide sub-optimal solutions
to non-convex optimization problems with knowledge of the
solution’s sub-optimality would facilitate the widespread appli-
cation of nonlinear optimal control algorithms. To that end,
leveraging recent work in risk-aware verification, we provide
two algorithms to (1) probabilistically bound the optimality
gaps of solutions reported by novel percentile optimization
techniques, and (2) probabilistically bound the maximum op-
timality gap reported by percentile approaches for repetitive
applications, e.g. Model Predictive Control (MPC). Notably,
our results work for a large class of optimization problems.
We showcase the efficacy and repeatability of our results on
a few, benchmark non-convex optimization problems and the
utility of our results for controls in a Nonlinear MPC setting.

I. INTRODUCTION

Optimal controllers have emerged in recent years as the
preeminent choice for controller synthesis as they offer a
natural way of expressing (perhaps) disparate control objec-
tives [1]–[3], e.g. as in Model Predictive Control (MPC) [4]–
[6], control-barrier-function based quadratic programs [7]–
[9], and optimal path planning [10]–[12], among others.
Specifying to the first two examples, optimal controllers
in this vein leverage existing system models to inform
controller choice at the current or successive time-steps, e.g.
the predictive aspect of MPC references the utilization of a
system model to predict how a given input will affect system
evolution and uses that prediction to determine optimal input
choice for the next few time-steps. Notably, one-step control-
barrier-function-based quadratic programs ensure convexity
for nonlinear system models, though predicting over these
models remains a non-convex problem [13]–[16].

The utility of these controllers inspired efforts to develop
and exploit rapid solution techniques for these non-convex
optimization problems, though some improvement avenues
still exist. For example, typical approaches in the literature
include Model Predictive Path Integral Control (MPPI) [17],
[18], Collocation methods [19], [20], Bayesian Optimiza-
tion [21], [22], Learning-based methods [23], [24], and more
recently, percentile-based methods [25], [26]. In specific
for the latter three learning-based methods, both bayesian
optimization and other learning-based methods guarantee
eventual convergence to an optimal solution but do not
provide sample complexity bounds. Percentile methods offer
robust sample complexity bounds and have seen considerable
success at efficiently providing sub-optimal solutions to
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Fig. 1. An overview of our proposed method. Sampling methods employed
in risk-aware verification provide decent results to non-convex optimization
problems, though their optimality gaps are not well-understood. By defining
a variance function around the previously generated sample set, we can
implicitly identify decisions (orange on the bottom) whose variances exceed
the optimality gap of our reported sampling solution and identify such an
optimality gap via a second application of the same sampling methods.

constrained nonlinear optimal controllers. However, unlike
the first two methods, they fail to provide even probabilistic
bounds on the optimality gap between the reported percentile
solution and the true optimal value.
Our Contribution: We aim to provide probabilistic guar-
antees on the optimality gap of percentile solutions — the
deviance in cost evaluation of the percentile solution and the
minimum function value — for their respective optimization
problems. In doing so, we hope to develop the first in a
line of algorithms that provide robust sample complexity
bounds for efficient identification of sub-optimal solutions
with knowledge of the solution’s sub-optimality. To that end,
our contributions are twofold:

• Subject to a fairness assumption, we provide sample-
complexity bounds for the identification of the opti-
mality gap for percentile solutions to a large class of
optimization problems.

• For optimization problems to be solved repeatedly, e.g.
MPC, we provide a method to determine the probability
of percentile solutions exhibiting optimality gaps lower
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than a determined upper bound.
We develop such a procedure to offer efficient solutions
to constrained optimal control problems with known sam-
ple complexity and sub-optimality bounds. This procedure
would deviate from existing approaches insofar as it would
consider general (perhaps) nonlinear constraints for optimal
controllers, and provide sample-complexity results on the
sub-optimality of the provided solution — a discrepancy
with existing methods, e.g. MPPI, Collocation, Bayesian
Optimization, and other, learning-based approaches.
Structure: Section II reviews percentile optimization. Sec-
tion III-A outlines our solution to bound the optimality
gaps of percentile solutions. Section III-B extends these
results for optimization problems to be solved repeatedly,
e.g. Nonlinear MPC. Finally, Section IV provides examples
to validate our theoretical results. Specifically, Section IV-A
validates the probabilistic bounding results of Section III-
A, and Section IV-C illustrates the utility of the results in
Section III-B in a Nonlinear MPC setting.

II. A REVIEW OF PERCENTILE OPTIMIZATION

To facilitate the statement of our contributions, we first
review percentile optimization in this section. Consider the
following optimization problem:

J∗ = min
s∈S

J(s), (1)

subject to the following assumption:

Assumption 1. The decision space S is a set with bounded
volume, i.e.

∫
S 1 ds = VS < ∞ or S has a finite number of

elements. Furthermore, the cost function J is bounded over
S, i.e. ∃ m,M ∈ R, s. t. m ≤ J(s) ≤ M, ∀ s ∈ S.

This assumption permits us to define two functions, V ,
which corresponds to the volume fraction occupied by a
subset A of S, and F , which corresponds to the set of strictly
better decisions for a provided decision s′ ∈ S (we assume
continuous spaces for notational ease):

V(A) =

∫
A

1 ds∫
S 1 ds

, (2)

F (s′) = {s ∈ S | J(s) < J(s′)}.

Naturally then, for a given decision s′ ∈ S, were V(F (s′)) ≤
ϵ for some ϵ ∈ (0, 1], i.e. s′ is such that the volume fraction of
strictly better decisions is no more than ϵ, then s′ would be in
the 100(1− ϵ)%-ile with respect to minimizing J . Likewise,
the associated minimum cost of such a decision J(s′) should
also be a probabilistic lower bound on achievable costs. Both
of these notions are expressed formally in the theorem below,
which combines similar results from [25], [27]. To facilitate
the statement of results to follow, we will first state the
assumption, then the theorem.

Assumption 2. Let I1 = {(si, J(si))}
Np

i=1 be a set of Np

decisions and costs for decisions si sampled independently
via U[S], with ζ∗Np

the minimum sampled cost and s∗Np
the

(perhaps) non-unique decision with minimum cost.

Theorem 1. Let Assumptions 1 and 2 hold. Then ∀ ϵ ∈ [0, 1],
the probability of sampling a decision whose cost is at-least
ζ∗Np

is at minimum 1− ϵ with confidence 1− (1− ϵ)Np , i.e.

PNp

U[S]

[
PU[S]

[
J(s) ≥ ζ∗Np

]
≥ 1− ϵ

]
≥ 1− (1− ϵ)Np . (3)

Furthermore, ∀ ϵ ∈ (0, 1], s∗Np
is in the 100(1− ϵ)%-ile with

minimum confidence 1− (1− ϵ)Np , i.e.

PNp

U[S]

[
V(F (s∗Np

)) ≤ ϵ
]
≥ 1− (1− ϵ)Np .

III. BOUNDING THE OPTIMALITY GAP

To formally bound the optimality gap, we must first define
it. To that end, consider the same general optimization
problem as per (1). The optimality gap is defined as follows.

Definition 1. For general optimization problems of the form
in (1), the optimality gap of a decision s ∈ S, denoted
as G(s), is the deviance between the decision and optimal
values, i.e. G(s) = J(s)− J∗.

Then our formal problem statement follows.

Problem 1. Let Assumption 2 hold, and let the optimality
gap G be as per Definition 1. Identify an upper bound to
G(s∗Np

) and the probability with which this bound holds.

A. Results for Bounded Optimization Problems

First, we note that if Assumption 2 holds, we can define
the following variance function V over the set I1:

V : S → R s. t. V(s) = min
si∈D⊆I1

|J(s)− J(si)|. (4)

The restriction of s ∈ D ⊆ I1 in the definition of V above is
purely for practical purposes. From a theoretical standpoint,
one could use the entire information set I1 to define V,
but this tends to increase sample requirements as will be
discussed in sections to follow (e.g. Figure 3)

Intuitively then, we aim to maximize V via a percentile
method to identify a variance that supersedes the optimality
gap G(s∗Np

) of our chosen decision. To do so, we first require
the following fairness assumption — that it is possible to
sample variances at least as large as the optimality gap,
as otherwise, it would be impossible to take a percentile
approach. To formally state this assumption, we first define
Ωr to be the r-level set of V:

Ωr = {s ∈ S | V(s) ≤ r}. (5)

Assumption 3. Let the variance function V be as per (4),
let the optimality gap G be as per Definition 1, let V be as
per (2), let Ωr be as per (5), and let Assumption 2 hold. The
level set ΩG(s∗Np

) of decisions whose variance is at most the
optimality gap of s∗Np

does not encompass S, i.e.

V
(
S \ΩG(s∗Np

)

)
> 0. (6)

Second, we have the following result regarding level sets Ω.

Lemma 1. Let Ωr be as defined in (5) and let V be as
per (2). The following statements are all equivalent.
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(a) r ≥ s,
(b) Ωr ⊇ Ωs,
(c) V(Ωr) ≥ V(Ωs),
(d) PU[S][Ωr] ≥ PU[S][Ωs].

Proof: The equivalency between (a) and (b) stems via the
definition of Ωr in (5). The equivalency between (b) and
(c) stems via the definition of the volume fraction function
in (2). Finally, the equivalency between (c) and (d) stems
via the uniform distribution assigning probabilistic weight to
subsets of A ⊆ S equivalent to V(A).
Third, based on our fairness assumption, we know there
exists a non-zero probability of sampling decisions such that
their variances are at least the optimality gap.

Lemma 2. Let Assumption 3 hold, then there exists p >
0 corresponding to the probability of uniformly sampling a
decision s ∈ S \ΩG(s∗Np

), i.e.

PU[S]

[
S \ΩG(s∗Np

)

]
= p > 0. (7)

Proof: The result holds by definition of the uniform
distribution over S and equation (6).

Then the main result in the utilization of a percentile
approach to upper bound the optimality gap stems from the
prior lemmas and assumption. Formally, we aim to take a
percentile approach to the following optimization problem:

max
s∈S

V(s), (8)

which results in the following theorem.

Theorem 2. Let Assumptions 1 and 3 hold, let p satisfy (7),
let I2 = {(si,V(si))}Nv

i=1 be a set of Nv decisions si
independently sampled from U[S] with their corresponding
variances as per (4) and with V∗

Nv
the maximum sampled

variance. Then, ∀ϵ ∈ [0, p], V∗
Nv

exceeds the optimality gap
of the percentile solution with confidence 1− (1− ϵ)Nv , i.e.

PNv

U[S]

[
V∗

Nv
≥ G(s∗Np

)
]
≥ 1− (1− ϵ)Nv . (9)

Proof: First, we know there exists a p > 0 satisfying (7)
via Lemma 2. Second, we know that for the optimization
problem (8), the decision space S and objective function V
are bounded — this stems via Assumption 1. This permits us
to take a percentile approach to solving (8). Via Theorem 1
and looking at (8) as a minimization, we have the following
result substituting terms for (3) and for all ϵ ∈ [0, 1]:

PNv

U[S]
[
PU[S]

[
V(s) ≤ V∗

Nv

]
≥ 1− ϵ

]
≥ 1− (1− ϵ)Nv .

The set in the interior probability corresponds to the level
set of V∗

Nv
, i.e.

PNv

U[S]

[
PU[S]

[
ΩV∗

Nv

]
≥ 1− ϵ

]
≥ 1− (1− ϵ)Nv .

Finally, via (7), we know that the probability of sampling
a decision in the level set corresponding to the optimality
gap is 1 − p. Restricting to ϵ ∈ [0, p] which implies that

1− ϵ ≥ 1− p and substituting terms in the inequality above,
we have the following result.

PNv

U[S]

[
PU[S]

[
ΩV∗

Nv

]
≥ PU[S]

[
ΩG(s∗Np

)

]]
≥ 1− (1− ϵ)Nv .

Then, the final result holds due to Lemma 1.
In summary, Theorem 2 tells us that if we wish to bound

the optimality gap of a percentile solution, we need to
evaluate the variance of Nv uniform samples s from S with
respect to a subset of the information set I1 utilized to
generate the percentile solution. In practice, however, the
exact probability p of sampling decisions with large enough
variance will be unknown to the practitioner apriori. In
these cases, it suffices to assume a small enough value for
ϵ, i.e. 10−2 or smaller, is smaller than p. Examples along
this vein will be provided in the following section. Notably,
this result implies that we can utilize percentile methods to
both identify decisions that outperform a large fraction of
the decision space and also determine their optimality gap.
Indeed, this result holds even for non-convex optimization
problems, provided they satisfy Assumption 1.

B. Producing Solutions with Maximum Optimality Gaps

The prior section provides a method to determine the upper
bound on the optimality gap of a provided solution via a
secondary sampling scheme. This section provides a method
to remove the secondary sampling requirement for similar
optimization problems to be solved successively. In other
words, consider the following general form of optimization
problems, where each instance l satisfies Assumption 1:

J l∗ = min
s∈Sl

J l(s), (Sl, J l) ∈ O, l ∈ L. (10)

Furthermore, we assume that it is possible to randomly
sample indices l from L, e.g. via the uniform distribution.
Example Setting: Here, O is a set containing pairs of ob-
jective functions and decision spaces. To provide an example
consistent with the sections to follow, consider the following
nonlinear dynamical system with state x and input u:

xk+1 = f(xk, uk), x ∈ X , u ∈ U (11)

Provided a cost function over states and inputs, state con-
straints, and torque bounds, we can construct the following
finite-time optimal controller with horizon H for the afore-
mentioned system. Here, all state constraints are projected
to input constraints through prediction over the model (11):

argmin
u=(u0,u1,...,uH−1)∈UH

J(u, xk), (FTOCP)

subject to u ∈ U(xk) ⊆ UH .

The aforementioned finite-time optimal controller (FTOCP)
collapses to the form in (10) if we consider an optimality set
O indexed by states x ∈ X — a specific form of indexing
more generally referred to via l ∈ L in (10).
Key Insight: The critical insight for this section then is as
follows. If we were to randomly sample via a distribution
π over O, optimization problems of the form in (10) and
calculate the optimality gap Gl of percentile solutions for

81



that problem, the corresponding gap is a sample of some
real-valued random variable. By taking multiple independent
samples of this random variable, we can provide, using recent
results on risk-measure estimation, a probabilistic upper
bound on this random variable, i.e. a probabilistic upper
bound on achievable optimality gaps. Phrased formally, an
existing theorem in the literature we will utilize is as follows.

Theorem 3. Let X be a real-valued random variable with
(perhaps) unknown distribution π, let {xi}Ni=1 be a set of N
independent samples of X , and let x∗

N be the maximum such
sample. ∀ ϵ ∈ [0, 1], the following statement holds:

PN
π [Pπ[x ≤ x∗

N ] ≥ 1− ϵ] ≥ 1− (1− ϵ)N .

Proof: This follows from a scenario argument, see [28],
and is a re-phrasing of Theorem 4 in [25].

To employ Theorem 3, we require the following definition.

Definition 2. Let G(Np) be a real-valued random variable
with distribution πG and samples g defined as follows: (1)
Uniformly sample an index l ∈ L, (2) Take a percentile
approach to solve (10) corresponding to this sampled index
l, producing the solution sl∗Np

, (3) Calculate and report as a

sample g, the optimality gap Gl
(
sl∗Np

)
.

Then, we can upper bound the optimality gaps of percentile
solutions to all optimization problems formed in the set O, to
some minimum probability. The formal statement will follow.

Theorem 4. Let G(Np) be as per Definition 2, and let
{gi}Ri=1 be a set of R independent samples of G(Np) with
g∗
R the maximum such sample. Then ∀ ϵ ∈ [0, 1], percentile

solutions to optimization problems of the form in (10) will
exhibit optimality gaps less than g∗

R with minimum proba-
bility 1− ϵ and confidence 1− (1− ϵ)R, i.e.

PR
πG

[PπG [g ≤ g∗
R] ≥ 1− ϵ] ≥ 1− (1− ϵ)R.

Proof: Stems via Theorem 3.
In short, if we wish to remove the secondary sampling

requirement for the determination of optimality gaps, we
need to be able to calculate the optimality gap for at
least R independently chosen optimization problems of the
form (10). Doing so permits us to make a general statement
on the maximum achievable optimality gaps, to some mini-
mum probability. Now, we will provide a few examples.

IV. EXAMPLES

A. Validating Theorem 2 — Traveling Salesman
The Traveling Salesman Problem (TSP) is a classic non-

convex path planning problem referencing the identification
of the path of the shortest distance traversing each node
in a set once. Mathematically, consider a set of waypoints
W = {w1, w2, . . . , w|W |} wi ∈ R2 and the set of all
paths over these waypoints P = {(i1, i2, . . . , i|W |) | ij ∈
{1, 2, . . . , |W |}, ij ̸= ik, ∀ j ̸= k}. Then formally, the
Traveling Salesman Problem is to

min
p∈P

|W |−1∑
i=0

∥pi − pi+1∥+ ∥p0 − p|W |∥.

Fig. 2. Validation Data for Section IV-A corresponding to Theorem 2.
(Top) 100 reported upper bounds V∗

Nv
using Theorem 2 with desired

confidence for (9) equal to 0.7. (Middle) 100 reported upper bounds V∗
Nv

with confidence 0.999. (Bottom) Running fraction over 2000 trials of
reported upper bounds V∗

Nv
exceeding the true optimality gap G(p∗Np

) at
confidence level 0.999. Notice how the fraction of upper bounds exceeding
the optimality gap increases as we increase confidence (top to middle), and
the running fraction of upper bounds exceeding the optimality gap converges
to our desired confidence (bottom), corroborating Theorem 2.

For a graph with 10 nodes and 3628800 possible paths,
evaluating Np = 5000 paths and picking the best one
identifies a path p∗Np

in the 99.9%-ile with at least 99%
confidence according to Theorem 1. Using a subset D of
the corresponding information set I1 for the determination
of such a percentile solution (see Assumption 2 for the
definition of I1), we define a variance function V as per
equation (4). Finally, to validate the probabilistic results of
Theorem 2, we can also calculate the true probability p of
uniformly sampling paths that exhibit a variance higher than
the optimality gap of our proposed solution G(p∗Np

) — this is
the minimum probability assumed to exist via Assumption 3
and defined in equation (7). For this particular node set and
percentile solution p∗Np

the probability p = 0.1083.
Figure Analysis: To validate the results of Theorem 2, we
solved for the minimum number of samples Nv required
to determine an upper bound V∗

Nv
to G(p∗Np

) with mini-
mum confidence 0.7 — top figure in Figure 2 requiring 11
samples— and minimum confidence 0.999 — middle figure
in Figure 2 requiring 61 samples. Both of these minimum
sample requirements were identified by setting ϵ = p in (9)
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Fig. 3. Validation data for Section IV-B. We claim that by varying the amount of information used to generate the variance function V in equation (4),
we can change the baseline probability p of sampling a decision whose variance exceeds the optimality gap of a given solution G(s∗N ) (such decisions
are highlighted in orange). Notice that as the volume fractions χ occupied by the chosen information set D decreases, we see a corresponding increase in
the baseline probability p. Section IV-B discusses why this inverse relationship holds.

Name Np Nv expected
success

probability (9)

true success
probability

average
runtime (ms)

R-2 300 300 0.95 ≈ 1 5.18
R-10 300 300 0.95 ≈ 1 5.17
Ack 300 300 0.95 ≈ 1 5.28
Ble 300 300 0.95 ≈ 1 5.17
Levi 300 300 0.95 ≈ 1 5.31
Himm 300 300 0.95 ≈ 1 5.30

TABLE I
DATA FOR SECTION IV-B FOR THE (R-2) RASTIGRIN 2-D, (R-10)

RASTIGRIN 10-D, (ACK) ACKLEY, (BLE) BEALE, LEVI, AND (HIMM)
HIMMELBLAU BENCHMARK OPTIMIZATION PROBLEMS.

and solving for the minimum integer Nv required to make
the right-hand side greater than or equal to our desired
confidence. For each confidence level, we performed 100
separate trials and reported the maximum variance V∗

Nv

produced by each trial according to Theorem 2. As can be
seen in the corresponding data, increasing the confidence
increases the likelihood that the corresponding reported result
V∗

Nv
exceeds the true optimality gap G(p∗Np

) — the red x’es
in the middle figure are all above the black, dashed line,
whereas a few dip below the same line in the top figure when
we report solutions with lower confidence. Furthermore, by
repeating the procedure once more at confidence 0.999,
taking 2000 separate verification runs, and recording whether
V∗

Nv
≥ G(p∗Np

) per run, we can get a sense of the true,
running probability that V∗

Nv
≥ G(p∗Np

). As can be seen in
the bottom figure, this probability converges to 0.999 — the
lower bound expected by Theorem 2. Notably, though, this
result implies that we were able to identify a path in the
99%-ile that was no more than 1.12 times the length of the
optimal path, by only evaluating 5061 uniformly chosen path
samples, less than 0.14% of the overall decision space.

B. Increasing Success Probabilities — Benchmark Functions

In a brief remark after defining the variance function in
equation (4), we mentioned that by specific choice of a subset
D, one could increase the baseline probability p of uniformly
choosing samples that exhibit a higher variance than the
optimality gap of the reported percentile solution. This

section provides evidence in support of that statement for a
few benchmark optimization problems. The one referenced
in Figure 3, the 2-d Rastigrin function [29], is as follows:

min
x∈[−5.12,5.12]2

20 +

2∑
i=1

(x2
i − 10 cos(2πxi)). (12)

Both the decision space and objective function are bounded,
permitting a percentile solution to (12). Following Theorem 1
and taking Np = 100 samples for such an approach, we
generate the information set I1 and percentile solution x∗

Np
.

Then, by choice of a subset D of I1 for the definition of the
variance function in (4), we claim we can vary the baseline
probability p of sampling decisions that exhibit a higher
variance than the true optimality gap. To show this, define
χ to be the volume fraction the subset D in (4) occupies of
I1, i.e. χ = 1 implies D = I1 and χ = 0.05 implies that D
contains 1/20-th as many elements as I1.
Figure Analysis: Figure 3 portrays the results of varying
the volume fraction χ of decisions D utilized to generate
the variance function V per equation (4). The decisions
highlighted in orange are those that exhibit a higher variance
than the optimality gap of the reported solution. Notice that
as χ decreases, p increases as indicated in the titles. This
inverse relationship arises as if we consider two sets D1 ⊂
D2 utilized for generation of the variance functions V1,V2,
respectively, then ∀ s ∈ S, V1(s) ≥ V2(s) by definition
of V as a minimization problem. In other words, decreasing
the amount of information provided to the variance function
increases the corresponding conservativeness of the resulting
function, which increases the likelihood of sampling a, now
more conservative, upper bound on the optimality gap. In
practice, and in the examples provided in the prior section,
using a dilation χ = 0.1 proved most effective, though
studying if there exists an optimal volume fraction remains
an open problem and the subject of future work.
Table Description: By increasing the success probability p
of sampling decisions whose variance exceeds the optimality
gap, we can “blindly” use Theorem 2 to bound the optimal-
ity gap of percentile solutions to benchmark optimization
problems. Table I shows our data in this vein. For each

83



Fig. 4. Validation data for Section IV-C in support of Theorem 4.
We claim that we can upper bound the optimality gap of successive
applications of percentile methods to solve optimization problems of the
form in (10). Shown above in red are the calculated upper bounds for the
black lines corresponding to the 99% cutoff value of optimality gaps for
percentile solutions to (NMPC-B). For the three separate percentile methods
shown, we’re able to upper bound the true value every time, corroborating
Theorem 4. This information is further discussed in Section IV-C.

benchmark optimization problem, we produced a percentile
solution using Np = 300 samples, constructed a variance
function V using 10% of the information set I1 generated
via the percentile method, and took Nv = 300 samples
to identify the probabilistic maximum variance V∗

Nv
. Under

the assumption that p ≥ 0.01, Theorem 1 tells us that
V∗

Nv
≥ G(x∗

Np
) with 95% probability — column 4 in Table I.

Indeed, over 5000 trials following the above procedure for
each optimization problem, we were successfully able to
identify a valid upper bound every time. Additionally, as the
sampling method only requires the evaluation of sampled
points, which is relatively quick, the procedure takes very
little time to implement, as seen in the rightmost column.

C. Validating Theorem 4 — Nonlinear MPC

To validate the results of Theorem 4, we require a series
of optimization problems of the form in (10). Keeping with
the example provided in Section III-B, we aim to bound the
optimality gap of percentile solutions for a Nonlinear MPC
controller steering the Robotarium robots [30] — a collection
of agents modelable via unicycle dynamics. Formally, let

x ∈ X = [−1.6, 1.6] × [−1.2, 1.2] × [0, 2π] be the system
state, and let u ∈ U = [−0.2, 0.2] × [−π, π] be the control
input. Then, our model is as follows:

xk+1 = xk +

cos (xk[3]) 0
sin (xk[3]) 0

0 1

uk(∆t = 0.033)

︸ ︷︷ ︸
f(xk,uk)

.

Furthermore, each agent has a Lyapunov controller U steer-
ing it to a provided waypoint w ∈ W:

U : X ×W ≜ [−1.6, 1.6]× [−1.2, 1.2] → U .

We will use U to construct our MPC algorithm, which
provides waypoints to steer the system around static and
moving obstacles toward at least one goal. Formally, we
overlay an 8×5 grid on W and define the space of operating
environments D as those environments that: (1) have 8
static obstacles (SO) and 3 goals (g), (2) have controlled
(xa) and uncontrolled (xo) agent starting positions outside
static obstacles and goals, and (3) have at least one feasible
path from the controlled agent’s starting location to one
of the three goals. A vector d = [xa, xo,SO, g] ∈ D
corresponds to one such environmental setup. To account for
collisions, consider the following barrier function h, where
P = [I2×2 02×1] projects system states to the plane [7]:

h(xa, xo, d) =

{
−5 in SO cell,
∥P (xa − xo)∥ − 0.18 else.

Then the nominal NMPC algorithm minimizes S : W →
R — a function outputting the shortest path distance from
a waypoint to the closest goal — while ensuring that the
existing Lyapunov controller U renders the barrier h positive
for the next 5 time steps, i.e., ∀ j = 1, 2, . . . , 5,

w∗
k = argmin

w∈W
S(w), (NMPC-A)

subject to xj
k = f(xj−1

k , uj−1), (a)

x0
k = xk, (b), (c) (b)

h(xj
k,a, xo, d) ≥ 0 (c)

uj−1 = U
(
xj−1
k , w

)
, (d)

0.05 ≤ ∥w − xk∥ ≤ 0.2.

To ease sampling requirements, we consider an augmented
cost J that outputs 100 whenever a waypoint w fails to sat-
isfy constraints (a)-(d) in (NMPC-A), yielding the following:

wd∗ = argmin
w∈W

J(w, d), (NMPC-B)

subject to 0.05 ≤ ∥w − x∥ ≤ 0.2.

Finally, we note that (NMPC-B) is equivalent to (10), if we
consider as index set L, the environment set D.
Figure Analysis: To validate the results of Theorem 4 we
uniformly sample R = 459 different environments d ∈ D
and calculate a percentile solution to (NMPC-B) with Np =
200 samples, Figure 4-(a); Np = 300 samples, Figure 4-
(b); and Np = 500 samples, Figure 4-(c). We calculate
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the optimality gap for each solution by performing gradient
descent on the best out of 2000 uniformly chosen samples
and reporting the final value as the true optimal value.
According to Theorem 4, in each case, we should produce
an upper bound on optimality gaps g∗

R that exceeds sample-
able optimality gaps g with at least 99% probability and 99%
confidence. To validate this statement, we uniformly sampled
50000 more environments d ∈ D and followed the prior
scheme for each percentile case to determine the distribution
of sample-able optimality gaps. This data is reflected as the
distributional data you see in each subfigure in Figure 4.
As can be seen, in each case the reported upper bound g∗

R

exceeds the true 99% cutoff. Furthermore, as the number
of samples taken for the percentile solution increases, the
upper bound decreases. This is expected as we are providing
a solution in a higher percentile each time. To emphasize
the utility of this result for controls, say we wished to
implement a percentile procedure with Np = 300 samples to
provide “good” waypoints optimizing for (NMPC-B). Offline
calculation of this optimality gap would provide confidence
that in practice, we would, with 99% probability and with
99% confidence, be choosing waypoints within 0.03m of
the optimal waypoint at every iteration. Notably, we would
not have to solve the non-convex program and repetitively
sample variances at each time step to make this statement.

V. CONCLUSION

We provide a method to bound the optimality gaps of per-
centile methods to a wide class of non-convex optimization
problems and explore the utility of such approaches for con-
trol in an NMPC setting. We also verify our mathematical re-
sults on several benchmark optimization problems including
the traveling salesman problem. In future work, we hope to
decrease the conservatism of our bounds and formally prove
the existence of a baseline probability for certain classes of
optimization problems, i.e. remove the requirement on our
fairness assumption preceding our theoretical statements.
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