
Weighted Prioritization of Constraints in
Optimization-Based Control

Axton Isaly, Sage C. Edwards, Zachary I. Bell, Warren E. Dixon

Abstract—Optimization-based control laws are an effective
method for developing controllers that simultaneously accom-
plish multiple tasks. Inspired by control barrier function
methods, we focus on a framework where the control tasks are
encoded as state-dependent inequality constraints on the control
input and optimal control inputs satisfying the constraints are
synthesized at each state. Some applications feature constraints
that cannot be simultaneously satisfied at every state, which
leads to infeasibilities in optimization-based control laws. Given
a prioritized ranking of each control task, this paper develops
an optimization-based control law that is always feasible while
satisfying a mathematically-defined notion of the best possible
combination of constraints based on an exponential weighting
of the priority levels. The control law is implemented by solving
two optimization problems in sequence, which for most control
systems are a mixed integer linear program and a quadratic
program.

I. INTRODUCTION

For controlled dynamical systems, one interpretation of
Lyapunov stability principles for controlled dynamical sys-
tems is that any given Lyapunov function defines a state-
dependent inequality constraint on the control input [1].
Stability is guaranteed when a control law satisfies this
constraint at each point in the state space. Using opti-
mization to select inputs that satisfy constraints has seen
growing prevalence with the recent interest in control barrier
functions (CBF). The CBFs in this work, originating from
the zeroing CBFs of [2], are a generalization of control
Lyapunov functions that define constraints on the control
input which, when satisfied, ensure the forward invariance or
asymptotic stability of a set of states. The key novelty is that
CBF problems typically focus on complex task specifications
defined by multiple CBFs and additional state-dependent
input constraints. Such task specifications lead to a feasibility
problem where it must be determined whether inputs that
simultaneously satisfy all of the constraints exist at each state
[3].

Axton Isaly and Zachary I. Bell are with the Munitions Directorate,
Air Force Research Laboratory, Eglin AFB, FL, USA. Email: axton-
isaly1013@outlook.com, zachary.bell.10@us.af.mil.

Sage C. Edwards and Warren E. Dixon are with the Department of
Mechanical and Aerospace Engineering, University of Florida, Gainesville
FL 32611-6250, USA. Email: {sageedwards, wdixon}@ufl.edu

This research is supported in part by the Air Force Office of Scientific Re-
search grant FA9550-19-1-0169, Air Force Research Laboratory Munitions
Directorate Task Order FA8651-21-F-1025, Office of Naval Research grant
N00014-21-1-2481, and an appointment to the NRC Research Associateship
Program at the Air Force Research Laboratory Munitions Directorate, ad-
ministered by the Fellowships Office of the National Academies of Sciences,
Engineering, and Medicine. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the sponsoring agency.

When multiple constraints are present in a task specifica-
tion, conflicts can arise that lead to an infeasible problem
at certain states. The presence of infeasibility is inherent to
some control designs. For example, in adaptive cruise control
[4], infeasibility arises when a controlled vehicle can’t travel
at the desired speed while avoiding a collision with another
vehicle. This is an example of a situation where it is benefi-
cial to include potentially infeasible constraints. To manage
such control designs, a method is needed that prioritizes
constraints based on some user-specified ranking. While the
adaptive cruise control solution in [4] achieves prioritization
between one high-priority constraint and one low-priority
constraint, this paper studies general task specifications with
an arbitrary number of priority levels and an arbitrary number
of constraints in each level.

In the setting of prioritizing constraints, one approach that
has received attention in [5] and [6] takes the view that high-
priority constraints are infinitely more important than the
lower-priority ones. If a high-priority constraint is infeasible,
a solution is found that minimally violates the constraint.
Hierarchical quadratic programs (QP) [5] implement this
strategy by solving a cascade of QPs for each priority level.
However, the lack of weighting between priorities can lead to
situations where both high- and low-priority constraints are
sacrificed, even though the lower-priority constraints could
be satisfied.

This paper presents a prioritization scheme for
optimization-based control that is considerate of low-
priority constraints by using an exponential weighting
between priority levels where each level is weighted double
that of the previous one. A method for selecting control
inputs that conform to our notion of best-prioritization is
developed that uses a dual-step optimization where a mixed
integer program is first solved to determine the best set
of active constraints, and then the optimal control input is
found using a second program where slack variables are
added to the inactive constraints to guarantee feasibility of
the optimization problem. For many practical applications,
the resulting optimization problems are a mixed integer
linear program (MILP) and a QP, respectively. Alternative
prioritization methods are discussed with theoretical and
computational comparisons between the approaches. A
Monte-Carlo simulation is conducted for a target-tracking
scenario with randomized trajectories. The alternative
methods frequently produce inputs that do not satisfy the
best prioritization of constraints (less than 60% of the
simulation time), leading to between 3% and 19% less time

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2731

spent tracking targets versus the developed method.
Notation: For vectors x ∈ Rn, y ∈ Rm, ∥x∥ denotes

the Euclidean norm, ∥x∥∞ = max{|x1| , |x2| , . . . , |xn|}
denotes the infinity norm, and (x, y) ≜

[
x⊤, y⊤

]⊤
. The

shorthand [d] ≜ {1, 2, . . . , d} is used. For vector-valued
function B : Rn → Rd, we index each component as
B (x) =

(
B(1) (x) , B(2) (x) , . . . , B(d) (x)

)
and the inequal-

ity B (x) ≤ 0 means that B(i) (x) ≤ 0 for all i ∈ [d].

II. PRELIMINARIES

This section provides a summary of the CBF methods from
[3] to motivate the forthcoming development. A constrained
differential inclusion with constraints on the state x ∈ Rn

and input u ∈ Rm is modeled as

ẋ ∈ F (x, u) (x, u) ∈ Cu,

where Cu ⊂ Rn × Rm is the flow set and the flow map
F : Rn ×Rm ⇒ Rn is a set-valued mapping that associates
every point (x, u) ∈ Rn × Rm to a set F (x, u) ⊂ Rn.
Differential inclusions can model uncertainty by allowing
trajectories to move in a variety of directions for a given
state and control input (x, u). The flow set can model
physical limitations on the state, and represents arbitrary
state-dependent constraints on the control input defined by
the mapping Ψ(x) ≜ {u ∈ Rm : (x, u) ∈ Cu}. To
define the input constraints analytically, we assume the
existence of a function ψ : Rn × Rm → Rku such that
Ψ(x) = {u ∈ Rm : ψ (x, u) ≤ 0}.

CBFs are vector-valued functions B : Rn → Rd that en-
code control tasks by defining a safe set of states S ⊂ Π(Cu)
as S = {x ∈ Π(Cu) : B (x) ≤ 0}, where Π(Cu) ≜ {x ∈
Rn : ∃u ∈ Rm s.t. (x, u) ∈ Cu} is the projection of the flow
set onto the state space. Each component of the CBF defines
a constraint on the control input. Assuming that B is continu-
ously differentiable, consider the function Γ : Cu → Rd with
components Γi (x, u) ≜ supf∈F (x,u) ⟨∇Bi (x) , f⟩, which
specifies the worst-case growth of Bi (x) for any possible
direction of flow in F (x, u). The set of safety-ensuring
control inputs is defined as

Kc (x) ≜ {u ∈ Ψ(x) : Γ (x, u) ≤ −γ (x)} , (1)

where γ : Π (Cu) → [−∞,∞]d is a performance function
that specifies the desired convergence properties (e.g., for-
ward invariance or asymptotic stability). A CBF candidate
is called a CBF when the set Kc (x) is nonempty for all x
in a neighborhood of the boundary of the safe set. Under
the assumptions of [3, Thm. 2], selections of the mapping
Kc (i.e., control laws κ : Rn → Rm with κ (x) ∈ Kc (x))
render the safe set S forward invariant. Forward invariance
is associated with safety because it implies that trajectories
of the closed-loop dynamics starting in S remain in S for
all time.

The set Kc (x) can be considered the feasible set in an
optimization problem. Specifically, it is the feasible set for

the following optimization-based control law

κ∗ (x) ≜ arg min
u∈Rm

Q (x, u) (2)

s.t. Γ (x, u) ≤ −γ (x) ,
ψ (x, u) ≤ 0,

where Q : Rn × Rm → R is a user-defined cost function
often selected as Q (x, u) = ∥u− unom (x)∥2 for some
nominal control law unom. It is assumed that the problem
in (2) has a unique minimizer for each x ∈ Rn, while
many applications feature additional regularity that leads to
the continuity of the minimizer as a function of the state
[3, Thm. 3]. The constraints in Γ are affine in the control
input if the dynamics are affine in the control input with the
form F (x, u) = Fd (x) + gd (x)u, where Fd is a set-valued
mapping and gd is single-valued (i.e., a function). However,
the control law is only well-defined if the set Kc (x) is
nonempty at every state.

III. BEST PRIORITIZATION OF CONSTRAINTS

A. Motivation

Given a hierarchy of P control tasks, with level P being
the highest priority, each level is associated with a CBF
candidate Bp : Rn → Rdp . The CBF candidate for each
level is vector-valued so that a single level could have
multiple CBFs in it. The CBF candidate Bp defines a safe
set Sp ≜ {x ∈ Rn : Bp (x) ≤ 0} and a set of feasible
controls Kp (x) ≜ {u ∈ Ψ(x) : Γp (x, u) ≤ γp (x)}. Ideally,
the safe set defined by all of the CBFs S[P] ≜ ∩P

p=1Sp

can be rendered forward invariant. However, following the
discussion in Section II, this is only possible if the mapping
K[P] (x) ≜ ∩P

i=1Kp (x) is nonempty nearby the boundary
of S[P]. A test can be performed to determine whether
K[P] (x) is nonempty using the tools in [3, Sec. V]. If the
nonemptiness of K[P] (x) cannot be verified, compromises
in the objectives are required.

Applications that motivate this paper are subject to addi-
tional input constraints defined by the set-valued mapping
Ψ. Depending on the application, these input constraints
may not have the highest priority. For example, it may be
necessary to use excessive control effort to avoid collisions
by performing an evasive maneuver. We thus generalize
our development to consider arbitrary constraints defined by
functions Cp : Rn × Rm → Rkp , for 1 ≤ p ≤ P , that
define state-dependent constraints on the control input as
Kp (x) ≜ {u ∈ Rm : Cp (x, u) ≤ 0}. Note that each priority
level, with P being the highest, can have an arbitrary number
(kp) of constraints sharing the same priority.

B. Problem Statement

With the intent of developing a prioritization scheme that
is considerate of low-priority levels, the best option for which
set of constraints should be solved at a given state x ∈ Rn

can be described in the following way. Consider the cost
function W (I) ≜

∑
i∈I 2

i−1, where I ⊂ {1, . . . , P} is a set
representing the inactive levels. An inactive level is a priority

2732

level whose constraints are not strictly enforced. The inactive
constraints could be removed from the problem entirely,
although we will instead make them soft constraints by
relaxing them with slack variables. The cost W corresponds
to the base 10 representation of a binary number with the i-th
digit being set to 1 when level i is inactive (e.g., the number
0110 corresponds to the inactive index set I = {2, 3}).
According to the cost W , making a high priority level
inactive is weighted more than deactivating all of the levels
below it combined. Thus, the best possible combination of
inactive levels is the one that minimizes W (I) subject to
the active constraints being feasible. For example, with 3
levels, the best option is clearly for all levels to be active
(W (I) = 0), the second best option is to relax the lowest
priority level 1 (W (I) = 1), the third best is to relax
level 2 with level 1 active W (I) = 2, and so on. For
convenience, we define the active constraints for set I as
A (I) = {1, . . . , P}\I . We then define the best possible set
of inactive constraints at state x as

I (x) ≜ arg min
I⊂{1,...,P}

∑
i∈I

2i−1 (3)

s.t. ∩a∈A(I) Ka (x) ̸= ∅.

Then, the set of best-prioritized control inputs is defined
as P (x) ≜ ∩a∈A(I(x))Ka (x) = {u ∈ Rm : Ca (x, u) ≤
0, ∀a ∈ A (I (x))}. Note that P (x) is always nonempty
because all of the constraints can be made inactive in (3).
Thus, the controls problem motivated in Section III-A can
be generalized in the following way.

Problem 1. Consider a prioritized set of constraint functions
Cp : Rn × Rm → Rkp , for 1 ≤ p ≤ P , with the constraints
in level P having the highest priority and where each level
can have an arbitrary number (kp) of constraints sharing the
same priority. The constraints define state-dependent input
constraints as Kp (x) = {u ∈ Rm : Cp (x, u) ≤ 0}. Find a
control law κ : Rn → Rm that is a selection of the mapping
P of best-prioritized control inputs, meaning that κ (x) ∈
P (x) for all x ∈ Rn.

Remark 1. The weighting scheme in (3) ensures that the
satisfaction of higher-priority constraints is never sacrificed
to satisfy lower-priority constraints. One could consider a
prioritization scheme where it is acceptable to satisfy numer-
ous lower-priority levels at the expense of a higher-priority
one, which could be accomplished, for example, by using a
cost function

∑
i∈I w

i−1 for some w ∈ [1, 2]. In particular,
choosing w = 1 weights each priority tier equally, so that
the problem in (3) always satisfies the maximum possible
number of constraints.

C. Control Law Guaranteeing Best Prioritization

A naive approach to making a selection of P is to simply
attempt to solve numerous optimization problems in the order
of their suitability (as defined by the cost function in (3))
until one is found that is feasible. However, this approach
requires attempting to solve up to 2P optimization problems.

An alternative optimization scheme can be formulated to
solve the same problem. It involves solving two optimization
problems. The first is a mixed integer program that solves

(U∗ (x) , d∗ (x)) ≜ arg min
u∈Rm, d∈RP

P∑
p=1

2p−1dp (4)

s.t. Cp (x, u) ≤ Ddp,

dp ∈ {0, 1} , ∀p ∈ [P]

where D is a large positive constant. The optimization
problem in (4) relaxes the constraints in level i when di = 1.
Analogous to the set I (x) in (3), the solution d∗ (x) there-
fore represents the best possible inactive constraints. Next,
we take the binary variables d∗ (x) from (4) and solve for
the control input using the program

(κ∗ (x) , δ∗ (x)) ≜ arg min
u∈Rm, δ∈RP

Q (x, u) + kδ ∥δ∥2 (5)

s.t. Cp (x, u) ≤ d∗p (x) δp, ∀p ∈ [P] ,

where kδ is a penalization for the slack variables and we have
assumed that the minimizer of (5) is unique. In (5), the slack
variables δi are applied only to the constraints in levels that
were made inactive by the first program. The slack variables
ensure that the inactive constraints are always feasible, while
the cost function minimizes the slack variables for minimal
violation of the inactive constraints. Such an application of
slack variables is common in the CBF literature [2], [7].

Remark 2. For CBF problems with constraints that are affine
in u, (4) is a mixed integer linear program (MILP), and
provided the cost is quadratic with the form Q (x, u) =
uTH (x)u + uT c (x), (5) is a QP. The minimizer d∗ (x)
in (4) is always unique because the cost function takes a
unique value for each combination of binary variables. When
(5) is a QP and H (x) is positive definite, the minimizer
(κ∗ (x) , δ∗ (x)) is unique [8]. The developed programs could
be applied in a more general setting where the problems are
nonlinear programs, in which case conditions for (5) to have
a unique minimizer are well-characterized [9].

The following result shows that the controller κ∗ resulting
from the multi-step optimization described above is a selec-
tion of the mapping P of best-prioritized control inputs, and
the best active constraint set is defined by d∗ (x). The only
requirement is that the constant D in (4) be large enough to
ensure feasibility, as indicated in the following assumption.

Assumption 1. The constant D in (4) is large enough so
that the following set is nonempty:

PD (x) =

{
u ∈ Rm : Ca (x, u) ≤ 0, ∀a ∈ A (I (x))

Ci (x, u) ≤ D, ∀i ∈ I (x)

}
.

Theorem 1. Given x ∈ Rn, let Assumption 1 hold. Then
I (x) = {i ∈ [P] : d∗i (x) = 1} and the solution κ∗ of (5) is
such that κ∗ (x) ∈ P (x). In particular, the feasible set for
(5) is equivalent to P (x).

2733

Proof: The solution with di (x) = 1 if and only if
i ∈ I (x) minimizes the cost function in (4) by def-
inition of I (x). Under Assumption 1, a feasible input
u ∈ Rm exists for this choice of binary variables so
that (4) correctly identifies the best inactive constraints as
I (x) = {i ∈ [P] : d∗i (x) = 1}. Equivalently, a ∈
A (I (x)) = {1, . . . , P}\I (x) if and only if d∗a (x) = 0.
Thus, the solution κ∗ (x) to (5) is a selection of P (x)
because Ca (x, κ∗ (x)) ≤ 0 whenever d∗a (x) = 0. Since
the slack variables can relax the inactive constraints to an
arbitrary extent, equivalence between the feasible set of (5)
and P (x) follows.

IV. ALTERNATIVE METHODS

The feasible set for the prioritization method in Section
III is the largest possible in that it is exactly equal to P (x).
A possible limitation of the developed approach is that the
control input is generally discontinuous because the set P (x)
may change abruptly when the set of active constraints
changes. In this section, we discuss other methods from
the literature and some novel methods that will be used
for comparison in the next section. The first two methods
produce continuous control laws under some continuity and
convexity conditions imposed on the constraints and cost
function (see [3, Thm. 3]). However, none of the methods
are guaranteed to yield selections of P , thereby not providing
the best prioritization according to the exponential weighting
scheme developed in this paper.

The following prioritization scheme is discussed in [10].
It consists of giving slack variables priorities relative to each
other through constraints. In the following, we drop the
optimal slack variables from the left-hand side of the mini-
mization problem for brevity, and assume that the minimizer
κ∗ (x) for the decision variables u ∈ Rm is unique.

κ∗ (x) ≜ arg min
u∈Rm, δ∈RP

Q (x, u) + kδ ∥δ∥2 (6)

s.t. Cp (x, u) ≤ δp, ∀p ∈ [P],

δp ≤ δp−1, ∀p ∈ {2, . . . , P}.

The outcome of (6) is that the constraints in higher-priority
levels are only relaxed if the ones in lower-priority levels
have been relaxed. However, a disadvantage is that certain
situations necessitate that higher-priority constraints are re-
laxed, in which case the lower-priority constraints will be
forced to be relaxed. To see this numerically, consider a
case where the constraints in levels 4 and 5 are incompat-
ible so that any input satisfying the higher-priority level 5
constraint requires that δ4 = 200 at a minimum. Necessarily,
δ1 ≥ δ2 ≥ δ3 ≥ 200 so that the feasible set for (6) contains
control inputs that do not satisfy the constraints in levels 1-
3, even though the best prioritization in P (x) could satisfy
levels 1-3 and 5 simultaneously.

A more heuristic approach could be considered where the
slack variables are prioritized in the cost function of the

optimization:

κ∗ (x) ≜ arg min
u∈Rm, δ∈RP

Q (x, u) + kδ

P∑
i=1

wi−1
c δ2i (7)

s.t. Cp (x, u) ≤ δp, ∀p ∈ [P] .

where wc ≥ 1 is a weighting factor for the slack variables.
Such a weighting scheme is heuristic for two reasons. First,
there is a blending between the control cost Q and the
slack variable cost, thus neither objective will be minimized
in general. Even if only the slack cost were included in
the cost function, it is not possible to guarantee a proper
prioritization using continuous slack variables due to the
scaling between variables. The method in Section III is
inspired by a lexicographic solution [11] to problem (7),
where constraining the slack variables to be binary removes
the scaling issues in the first step of the solution.

As mentioned in Section I, the hierarchical prioritization
scheme of [5] does not aim to satisfy the best configuration
of constraints defined by P (x), but rather aims to relax
the high-priority constraints by a minimal amount. However,
we include the hierarchical approach to obtain performance
comparisons in the next section. In general, the hierarchical
programming problem can be represented recursively by a
cascade of P optimization problems, which is solved in the
order of p = (P, P − 1, . . . , 1),

δ∗p (x) ≜ arg min
u∈Rm, δ∈R

δ2 (8)

s.t. Cp (x, u) ≤ δ

Cq (x, u) ≤ δ∗q (x) , ∀q ∈ {p+ 1, . . . , P}.

Analogous to (5), it is beneficial to determine the optimal
control input according to some user-defined cost function
by solving a final program κ∗ (x) ≜ arg minu∈Pδ(x)

Q (x, u),
where Pδ (x) ≜ {u ∈ Rm : Cp (x, u) ≤ δ∗p (x) , ∀p ∈ [P]}.
The minimizer κ∗ may not be continuous even in the special
case of quadratic programming, as discussed in [5, Sec. 4]. It
should be noted that the methods in (6) and (7) generally do
not produce the optimal choice of slack variables as defined
by (8) (i.e., the solution κ∗ (x) is not necessarily an element
of Pδ (x)).

V. SIMULATION STUDY

This section provides numerical comparisons between the
best-prioritization method in Section III and the alternative
methods in Section IV. The study uses an example dynamical
system that models a single controlled agent equipped with
a camera with a fixed viewing box that must track a number
of moving agents. The moving agents are each assigned a
priority level. Because the motivation of this simulation is to
demonstrate differences between prioritization schemes, the
priority levels of the agents are randomly assigned. A more
sophisticated solution to the problem could assign priorities
dynamically based on clustering of the agents.

2734

Table I
SIMULATION RESULTS

Method 1 Method 2 Method 3 Method 4
Solve Time (s) 4.49 2.67 2.76 17.19

Tracking Time (Agent 9) 5.71 3.96 4.41 5.85
Tracking Time (Agent 1) 4.18 3.80 3.81 3.76
Weighted Tracking Time* 2680 1950 2130 2610

Input Difference** 5.05 0.46 0.57 0.60
Time in P (x) (%) 100 36.0 32.2 58.5

Distance from P (x) 0 20.4 19.1 16.4
Distance from Pδ (x) 20.5 18.3 4.97 0

* Computed as
∑P−1

p=1 2p−1tp, where tp is the time in seconds spent tracking
agent p.

** Computed as the average value of dt ·
∑tf ·dt

k=1 ∥κ∗ (xk)− κ∗ (xk−1)∥ over
each run.

A. Model
The leader agent has state xL ∈ R2 with fully actuated

dynamics ẋL = u. There are P other agents, each having
the dynamics ẋp = vp (t), where vp : R≥0 → R2 is the
agent’s unknown velocity. The flow set for this example
is (z, u) ∈ Cu ≜ R2(N+1) × R≥0 × R2, where z ≜
(xL, x1, . . . , xP , t) is a concatenated state vector. The leader
agent is equipped with a camera that has a square viewing
box of side length 2d̄, with d̄ = 5. Thus, the ideal control
objective is to design a trajectory for the leader agent that
keeps the leader agent within a distance of d̄ from all of
the remaining agents. This objective is encoded by defining
a vector-valued CBF Bp : Π (Cu) → R4 for each agent
p ∈ [P] as Bp (z) ≜

(
(xp − xL)− d̄,− (xp − xL)− d̄

)
. An

asymptotic tracking constraint is imposed on each agent of
the form

Γ̄p (z, u) ≜

[
v̄p − u
v̄p + u

]
≤ −KbBp (z) , (9)

where v̄p ≥ ∥vp (t)∥ for all t ≥ 0 so that Γ̄p is an
upper bound of the unknown function Ḃp (z, u) = (vp (t)−
u,−vp (t) + u). The constants were Kb = 13 and v̄p = 4
for every agent p. Whenever the control input is such that
Ḃp ≤ Γ̄p ≤ −KbBp along a trajectory of the closed-loop
dynamics, asymptotic stability of the set Sp ≜ {z ∈ Π(Cu) :
∥xp − xL∥∞ ≤ d̄} is guaranteed (see [2], [3]). Note that
asymptotic stability implies forward invariance, meaning that
if an agent is being tracked it will continue to be tracked as
long as the constraint in (9) is enforced. It can be verified
analytically that for a single agent p ∈ [P], there exist control
inputs at every state and for any trajectory vp that satisfy
the four constraints in (9). Thus, the highest-priority agent
can always be tracked. However, for an arbitrary number
of agents and most trajectories, the leader will not be able
to simultaneously track all of the agents. Nonetheless, it
is useful to enforce the constraints for all agents so that
the leader is aware of the lower-priority agents and tracks
them when this objective does not conflict with tracking the
highest-priority one.

B. Methods & Results
A Monte-Carlo simulation was conducted with 500 runs

to study the difference between five optimization methods,

where Method 1 is the best prioritization approach in Section
III, Method 2 prioritizes slack variables according to (6),
Method 3 weighs slack variables only in the cost function
according to (7), and Method 4 is the hierarchical approach
in (8). In each of the 500 runs, the leader agent was initialized
at the origin, and a set of initial conditions and continuous
velocity trajectories vp were randomly generated for the
remaining agents. The same initial conditions and trajectories
were used to test all five methods. The initial condition
for each agent is selected to ensure each agent is initially
visible. A trajectory for the leader agent was computed for
each method where the control input was determined at each
timestep by the specified control law.

For all methods, a min-norm control law was used by
setting the cost function as Q (x, u) = ∥u∥2. Some method-
specific parameters were kδ = 103 for Methods 1 and
2, and kδ = 10 and wc = 3 for Method 3. Given this
cost function and the control-affine constraints in (9), the
optimization problem in (4) is a MILP and the remaining
programs are QPs. The simulation was implemented in
MATLAB (2019b), while the optimization problems were
solved using Gurobi (v10.0) [12]. The simulations were
implemented on a workstation running Windows 10 with a
3.2 GHz Intel Core i5-4570 processor and 8 GB of RAM.
Each test featured P = 10 agents aside from the leader,
and was run for tf = 10s with a timestep of dt = 0.01s.
As explained in Section V-A, tracking the highest-priority
constraints corresponding to Agent 10 are guaranteed to be
feasible in this example. Consequently, slack variables were
never applied to the constraints corresponding to that agent.
Simulation results are tabulated in Table I, and explained
in the following paragraph. All statistics are averaged over
every run.

The solve time statistic in Table I represents the time
spent solving optimization problems (i.e., calling methods
from the Gurobi core library) for each control law as a
summation over the entire simulation. Because each run
included tf/dt = 1000 iterations, the results indicate an
average solve time per iteration of approximately 5ms for
Method 1, 3ms for Methods 2 and 3, and 17ms for Method
4. The tracking time in Table I represents the total time over
the 10-second simulation that was spent tracking the second

2735

-10 -5 0 5 10 15
x

-10

-5

0

5

10

15

y
Time: 6.85s

10

9

8

7

6

5

4

3

2

1

Method 1
Method 2
Method 3
Method 4

Figure 1. This image depicts a time instant where Method 1 tracked
the optimal configuration of agents while the other methods failed. Each
method tracked the same agent trajectory. The numbered vectors represent
the position (tail of vector) and velocity of an agent, with Agent 10 being
the highest priority. The solid lines indicate the leader trajectory (center
of box) for the remaining time in the 10s simulation, and the dashed lines
indicate the trajectories for the remaining agents. Method 1 was able to keep
high-priority Agents 5 and 7 in its viewing box, while the other methods
were pulled towards other agents that either could not be tracked or had
lower priority.

highest-priority Agent 9 and the lowest-priority Agent 1.
Agent 9 is tabulated since Agent 10 was always tracked for
the entire 10s duration. The weighted tracking time in Table
I scores the agent tracking performance of each method by
weighting the higher-priority agents more heavily. In terms
of average tracking time over every experiment, Method 1
had a higher tracking time than Methods 2 and 3 on an agent-
by-agent basis ranging from a 3% to 19% improvement.
Method 4 had a 1.4% higher tracking time for Agent 9, while
Method 1 outperformed Method 4 for all other agents by 3%
to 5%. As discussed in Section IV, Method 4 is designed to
provide minimal relaxation of the second priority level at the
expense of the lower levels. The input difference indicates
the smoothness of the control input by measuring the change
in the input at each timestep. The time in P (x) in Table I
represents the percentage of simulation time that the control
input was a selection of the best feasible set P (x), which is a
measure of how well each method prioritized the constraints.
The distances from P (x) and Pδ (x) were computed by
solving a QP to project the control input from each method
onto the respective sets.

C. Discussion

The simulation results show that the best-prioritization
method led to improved tracking and significantly better
prioritization of lower-priority constraints. Method 1 is the
only method with a guarantee of producing the optimal
prioritization of constraints. Methods 2-4 selected control
inputs from the best-prioritized set P (x) less than 40% of
the time, while Method 4 selected from P (x) 58.5% of the

time. Figure 1 shows a typical example when Method 1 led to
better tracking than the other methods. Method 1 was more
responsive to changes in the set P (x), which shifts abruptly
when the active constraint set changes. The responsiveness
of Method 1 is reflected in large input differences in Table I,
indicating a discontinuous control input. Future work will
investigate the possibility of obtaining continuous control
laws that are selections of the best-prioritized set P (x).
Such an approach would involve finding a subset of P (x)
with better continuity properties (in the sense of set-valued
mappings), if such continuous subsets exist.

The computation time for Method 1 was approximately
twice that of Methods 2 and 3. This is not surprising because
two optimization problems are solved in Method 1. Similarly,
the hierarchical programming of Method 4 was significantly
slower than the other methods because of the need to solve
11 QPs. The authors of [5] develop a more computationally
efficient solution method for hierarchical QPs. Method 1
appears to scale well compared to Method 4. During a 10-
simulation run where the number of agents was increased to
P = 100, the average solve time for Method 1 was 12.6s,
8.1s for Method 2, 2.4s for Method 3, and 163.0s for Method
4.

REFERENCES

[1] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design:
State-Space and Lyapunov Techniques. Boston, MA: Birkhäuser,
1996.

[2] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of con-
trol barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[3] A. Isaly, M. Ghanbarpour, R. G. Sanfelice, and W. E. Dixon, “On the
feasibility and continuity of feedback controllers defined by multiple
control barrier functions,” in Proc. Am. Control Conf., Jun. 2022.

[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[5] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[6] N. Somani, M. Rickert, A. Gaschler, C. Cai, A. Perzylo, and A. Knoll,
“Task level robot programming using prioritized non-linear inequality
constraints,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 430–437.

[7] J. Usevitch, K. Garg, and D. Panagou, “Strong invariance using control
barrier functions: A Clarke tangent cone approach,” in Proc. IEEE
Conf. Decis. Control. IEEE, 2020, pp. 2044–2049.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[9] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis for
nonlinear programming,” Annals of Operations Research, vol. 27,
no. 1, pp. 215–235, 1990.

[10] G. Notomista, S. Mayya, Y. Emam, C. Kroninger, A. Bohannon,
S. Hutchinson, and M. Egerstedt, “A resilient and energy-aware task
allocation framework for heterogeneous multirobot systems,” IEEE
Transactions on Robotics, vol. 38, no. 1, pp. 159–179, 2021.

[11] M. J. Rentmeesters, W. K. Tsai, and K.-J. Lin, “A theory of lexi-
cographic multi-criteria optimization,” in Proceedings of ICECCS’96:
2nd IEEE International Conference on Engineering of Complex Com-
puter Systems (held jointly with 6th CSESAW and 4th IEEE RTAW).
IEEE, 1996, pp. 76–79.

[12] I. Gurobi Optimization, “Gurobi optimizer reference manual (version
10.0).”

2736

