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Abstract— Meeting demand for automotive battery resources
is predicted to be costly from both economic and environmental
perspectives. To minimize costs, battery resources should be
deployed as efficiently as possible. A potential source of ineffi-
ciency in battery deployment is that the batteries of personal
vehicles are typically much larger than necessary to meet most
daily mobility needs. In this paper, we consider whether battery
resources can be used more efficiently in a setting where drivers,
in addition to having personal vehicle batteries, have access
to a shared battery resource. More precisely, we consider the
problem of minimizing aggregate battery capacity in settings
with and without a shared resource subject to the requirement
that driver commuting needs are met with high reliability. To
assess capacity reduction potential, we quantify the difference
in deployed battery capacity in settings with and without a
shared resource in a case study using real-world longitudinal
mobility data from Puget Sound, Washington. We find that
access to a shared battery resource can substantially reduce
deployed battery capacity. Furthermore, relative reductions in
battery capacity increase with number of drivers and the level
of reliability desired.

I. INTRODUCTION

Meeting growing demand for electric vehicle (EV) batter-
ies is predicted to be costly from both economic and envi-
ronmental perspectives [1], [2]. In 2015, global automotive
battery production was less than 40 GWh/year. By 2020, pro-
duction had increased four-fold to over 150 GWh/year [3].
Increases in battery production are driven by multiple factors.
First, the number of EVs on the road is growing, propelled by
government incentives, increasing environmental concerns,
and decreasing vehicle costs. Secondly, vehicle battery sizes
are themselves becoming larger: the average range of a new
BEV increased by 43% between 2015 and 2020 [3].

Demand for large battery capacities stems from range
anxiety, the fear that an EV’s battery will be insufficient
to satisfy mobility needs. That is, because of the sparsity of
EV charging stations and the long charging times associated
with most stations, drivers tend to chose their battery sizes
to minimize the likelihood of exhausting their battery mid-
trip. As a result, typical commuting distances of EV owners
tend to be small relative to battery size [4], [5]. For example,
while average battery range exceeds 200 miles [3], a study
of driving behavior in the United States found that 75% of
drivers traveled fewer than 100 miles daily during 96% of
the year [6].

Instead of sizing batteries to meet infrequent long-distance
travel needs, EV drivers can use range extenders. Range
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extenders (REs) are auxiliary devices which provide addi-
tional energy to the EV to supplement its battery and increase
range [7]. REs can be used to reduce vehicle battery sizes
while ensuring that both long and short distance commuting
needs are met. It is important to note that although REs
can offset personal vehicle battery sizes, their impact on
the system as a whole (e.g., in terms of environmental or
economic benefits) can be difficult to measure because of
the diversity of RE technologies available. For example,
range extender powertrains vary widely, including internal
combustion engines, hydrogen fuel cells, and gas turbines
[7]–[9]. Of particular relevance to this paper are range
extenders consisting of a trailer-mounted battery which can
be plugged into the EV through its charging port [10].
Because these REs use the same powertrain as the vehicles
themselves, their capacity can be compared directly with
personal vehicle battery capacity.

When personal vehicle batteries are sized to meet typical
commuting needs and when driver commuting distances are
not strongly correlated, the probability that many drivers
will simultaneously require range extension is low. This
suggests that a modestly sized RE resource could be shared
across drivers without compromising reliability. Furthermore,
providing drivers with a shared battery resource (in addition
to personal batteries) could reduce the total (i.e., personal
and shared RE) amount of battery capacity deployed relative
to a setting where drivers only have personal batteries. The
focus of this paper is to quantify the potential reduction in
total battery capacity achievable through the introduction of
a shared RE resource. In particular, we consider the problem
of determining the amount of battery capacity required
to meet driver commuting needs with high probability in
settings with and without a shared resource and show that
the presence of a shared resource can reduce total battery
capacity without reducing reliability.

The concept of using a shared resource to reduce system-
wide risk is related to the concept of diversification in
financial risk management. Diversification refers to the phe-
nomenon where financial assets with varying risk profiles
are combined into a portfolio whose aggregate level of risk
is lower than the sum of its component assets [11], [12].
In the context of power systems, risk aggregation (with
the objective of improving system robustness) has received
considerable attention, e.g., in the context of wind generation
[13], [14] , photovoltaics [15], [16], and mini-grids [17], [18].
Closest in spirit to our work is that of Abdolmaleki et al.,
which considers increasing vehicle range using a network of
vehicles able to share power through wireless transfer [19].
Although the authors mention the potential of their proposed
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methodology to reduce battery capacity, the discussion is
brief and focuses on quantifying reliability under a specific
alternative battery capacity size. This differs from the more
general framework presented in our paper, which aims to
characterize the capacity-reliability tradeoff for a wider range
of capacity sizes.

A. Contributions

In this paper, we explore how the presence of a shared
battery resource can reduce the total amount of battery
capacity deployed across a system of EV drivers while
guaranteeing that every driver’s mobility needs are met with
high reliability. We formulate the battery capacity planning
problem as a chance-constrained optimization problem and
derive a conservative approximation of this problem. Our
approximation offers two key advantages over the original
problem. First, the constraint function is convex in the deci-
sion variables and thus amenable to solution using scenario
approximation. Second, while the original problem involves
a number of constraints equal to the number of drivers in
the system, our reformulation has only a single constraint.
To demonstrate the practical utility of the proposed frame-
work, we assess the potential for capacity reduction through
sharing using real-world mobility data from Puget Sound,
Washington. Our empirical results suggest that access to a
shared resource can significantly reduce the required battery
capacity, and that the potential for reduction increases with
desired reliability levels and the number of drivers in the
system.

B. Notation and organization

We briefly describe notation used throughout the paper.
Vectors are denoted using lowercase letters in boldface, such
as x. We write (x)+ := max {x, 0} for the positive part
of a scalar. We write Pr(E) for the probability of an event
E , and E [X] for the expectation of random variable X .
Finally, given a positive integer N , we write [N ] for the
set {1, 2, . . . , N}.

The remainder of the paper is organized as follows.
Section II introduces the system model and presents the
optimization problems in the shared and non-shared settings.
Section III presents the conservative reformulation of the
battery capacity planning problem and discusses approximate
solutions to the reformulated problem. Section IV presents
results from an empirical study on real-world commuting
data, and Section V concludes and discusses potential future
directions.

II. FORMULATION

A. System model

We consider a setting in which a central decision maker
selects a set of electric vehicle battery capacities to serve
the mobility needs of a group of EV drivers. The decision
maker’s objective is to minimize the total amount of EV
battery capacity deployed (in order to minimize the economic
or environmental costs of battery capacity production) while
ensuring that each driver’s daily energy requirements are

satisfied with high probability. We index the set of drivers
according to i ∈ [N ] := {1, . . . , N} and denote their
personal battery capacity by xi. Each driver’s daily energy
requirements ξi are distributed according to a probability
distribution Pi, and they require that the amount of battery
capacity available to them exceed their daily energy require-
ment with probability at least αi ∈ (0, 1).

In the setting without a shared resource, each driver’s
personal battery capacity must exceed their daily energy
requirement with high probability and the decision maker
selects capacities according to the solution of the following
optimization problem:

minimize
x

N∑
i=1

xi

subject to Pr (xi ≥ ξi) ≥ αi ∀i ∈ [N ].

(P-NS)

The optimal solution to Problem (P-NS) sets each driver’s
battery capacity according to the quantile of their daily
energy distribution, i.e.,

xi = F−1i (αi) := inf{x ∈ R : Fi (x) ≥ αi}. (1)

where Fi denotes the cumulative distribution function asso-
ciated with driver i’s energy requirement distribution Pi. In
aggregate, the total amount of battery capacity required to
meet everyone’s driving needs is given by

opt∗ns =

N∑
i=1

F−1i (αi). (2)

When the target reliability αi is high, driver batteries
tend to be under-utilized in the sense that battery capacities
are much larger than required to meet mobility needs on
most days. Furthermore, when energy requirements are not
strongly correlated across drivers, the probability that a large
fraction of drivers have high energy requirements on the
same day is small. Together, these observations suggest that
under certain circumstances, diverting resources from per-
sonal batteries to a shared battery may allow for significant
reductions in the total battery capacity needed to satisfy
driver reliability constraints.

B. Battery sharing as a chance constrained problem

As an alternative to the setting where drivers must rely
exclusively on their personal batteries, we consider a setting
in which drivers have access to a shared battery resource of
capacity s. We assume that this resource can be divided into
units of arbitrary size and distributed to the individual drivers
at no cost. In this setting, the decision maker must chose
both the personal battery sizes xi for i ∈ N and the size of
the shared resource s. In the presence of a shared resource,
the probability with which a driver’s needs are satisfied is a
function of both their personal battery size and the portion
of shared resource allocated to them. In this setting, the
decision maker chooses shared and personal battery sizes
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as the solution to the following:

minimize
s,x

s+

N∑
i=1

xi

subject to Pr (xi + fi(x, ξ, s) ≥ ξi) ≥ αi ∀i ∈ [N ]
(P-S)

where fi : RN × RN × R 7→ R is an allocation rule
determining the quantity of shared resource allocated to
driver i as a function of the personal battery capacities,
shared resource capacity, and realized energy requirements
of all drivers. At a slight abuse of terminology, we will refer
to both fi and the collection f ≡ (fi)

N
i=1 as allocation rules

in the sequel.
Problem (P-S) belongs to a class of problems known as

chance constrained programs. Chance constrained problems
can be non-convex even in simple settings (e.g., when
the constraint functions are affine in the decision variables
s, x and uncertain parameters ξ). In settings where little is
known about the underlying distribution or the distribution
is intractable to analyse directly, scenario-based approxima-
tions to chance constrained problems are particularly useful
[20], [21]. Scenario approximations involve replacing chance
constraints with a set of sampled constraints. In order to
produce a convex problem whose solution is feasible for the
original problem with high confidence, scenario approxima-
tions require only that the constraint function is convex in
the decision variable. In our setting, the convexity of the
constraint function depends on the rule according to which
the shared resource is allocated. In the sequel, we discuss
allocation rules of practical interest and their implications
for the convexity of the constraint functions.

C. Shared resource allocation model

The amount of resource available to a driver is the sum of
their personal battery and the quantity of shared resource
allocated to them. We assume that the allocation rule is
structured to ensure that the sum over each driver’s shared re-
source allocation does not exceed the total quantity of shared
resource, i.e,

∑N
i=1 fi(x, ξ, s) ≤ s. Furthermore, we assume

that allocations must be non-negative, i.e., fi(·) ≥ 0. Beyond
these mild assumptions, the structure of the allocation rule
is highly flexible.

However, even simple allocation rules (e.g., proportional
allocation) can result in intractable reliability constraints,
rendering Problem (P-S) unamenable to scenario-based ap-
proximations.1 In order to overcome the challenges presented
by many allocation rules, we propose an approximation to
Problem (P-S) and show that our proposal furnishes an inner
approximation to the constraint set of (P-S) for a large family
of allocation rules.

III. RESULTS

A. Tractable approximation

Instead of attempting to solve Problem (P-S) directly, we
approximate it by a simpler, though often more conser-

1A discussion of the intractability of the reliability constraints resulting
from proportional allocation rules appears in Appendix A.

vative problem. Specifically, we replace the N individual
constraints on energy requirement satisfaction with a single
constraint requiring that the aggregate shortfall (the sum
over each driver’s shortfall) be less than the shared battery
capacity with high probability. That is, we approximate
Problem (P-S) by

minimize
x,s

s+

N∑
i=1

xi

subject to Pr

(
N∑
i=1

(ξi − xi)+ ≤ s
)
≥ α

(P-SI)

where α = maxi(α1, . . . , αN ).
Problem (P-SI) offers two structural advantages over the

original capacity planning problem (P-S). First, while the
original problem involves N constraints, Problem (P-SI) uses
a single constraint. Second, the function inside the chance
constraint of Problem (P-SI) is convex, making it more
amenable to both direct analysis and approximation.

Furthermore, Problem (P-SI) is an inner approximation to
the original capacity planning problem for many common
allocation rules. That is, feasible solutions to Problem (P-SI)
are feasible for the original capacity planning Problem (P-S)
for a large family of allocation rules which we refer to as
shortfall-minimizing allocation rules.

Definition III.1 (Shortfall-minimizing allocation rules).
Consider an allocation rule f = (fi)

N
i=1, where fi : RN ×

RN ×R→ R+. We call f shortfall-minimizing if it satisfies
the following property:

s ≥
N∑
i=1

(ξi−xi)+ =⇒ fi(x, ξ, s) ≥ ξi−xi, for all i ∈ [N ].

(3)

The above definition simply states that whenever the
amount of shared resource exceeds the aggregate shortfall
across drivers (i.e., when there is enough shared resource to
satisfy all driver shortfalls), each driver receives a portion
of the shared resource greater than or equal to their energy
shortfall. The family of shortfall-minimizing rules is large,
including the proportional, first-come-first-serve (FCFS), and
utilitarian rules described in detail in Section IV.2

Theorem III.1. For any shortfall-minimizing allocation rule,
any feasible solution to Problem (P-SI) is feasible for Prob-
lem (P-S).

Proof. We will write E := {∑i(ξi − xi)+ ≤ s} and Ei :=
{xi + fi(x, ξ, s) ≥ ξi} for brevity. We have

Pr (Ei) = Pr (Ei ∩ E) + Pr (Ei ∩ Ec)
≥ Pr (Ei ∩ E)

= Pr (xi + fi(x, ξ, s) ≥ ξi | E) · Pr (E) (4)
= Pr (E) , (5)

2For an example of a rule which is not shortfall-minimizing, one can
consider an ‘equal allocation’ rule which disburses the same amount of the
shared resource to all drivers regardless of their shortfall.
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using (3) in (4) to deduce that the conditional probability
Pr (Ei | E) = 1. Since α ≥ αi and the choice of index i was
arbitrary, the desired claim follows.

Although the approximation can be conservative relative
to the original capacity planning problem, it provides a
useful tool for assessing the potential benefits of resource
sharing. That is, the aggregate battery capacity required to
satisfy the constraints of Problem (P-SI) with a particular
target reliability are often smaller than those required to
achieve the same reliability level in the non-shared setting.
Moreover, because Problem (P-SI) is an inner approximation
of Problem (P-S), analysis of Problem (P-SI) allows us to
derive lower bounds on the reduction in deployed battery
capacity achievable through resource sharing. For example,
in Appendix B, we characterize the benefits of resource
sharing in a setting where daily energy requirements are
distributed according to independent Gaussians.

In settings where direct analysis of the chance constraint
is not possible, a solution to Problem (P-SI) can be provably
approximated through scenario-based methods. Specifically,
to produce an approximate solution to Problem (P-SI), we
replace the chance constraint with a set of Msc sampled
constraints to produce an approximated problem:

minimize
x,s

s+

N∑
i=1

xi

subject to
N∑
i=1

max(ξ
(j)
i − xi, 0) ≤ s, j ∈ [Msc].

(6)

where ξ(j) ∼ P for j = 1, . . . ,Msc are independent samples
of ξ drawn from the underlying distribution.

A solution to Problem (6) is guaranteed to be feasible
for Problem (P-SI) with high confidence given a sufficiently
large sample size. Specifically, to produce a solution which
is feasible with confidence 1− δ, it is sufficient to choose a
sample size of at least O

(
N

1−α ln
(
1
δ

))
[22].

B. A heuristic for reducing conservatism

In practice, the solutions obtained through scenario ap-
proximations can be very conservative. Indeed, due to the
high number of samples used in the approximation, Prob-
lem (6) will often produce battery configurations attaining
a reliability level significantly greater than the target α.
To reduce the conservatism of our approximations, we use
a heuristic method for reducing the number of constraints
involved in the solution of the problem.

The conservatism reduction heuristic is implemented as
follows. We start by solving Problem (6) using the sample
size dictated by [22]. We evaluate the empirical reliability
of the obtained candidate solution using an additional set
of samples of size Meval, where the sample size require-
ment is chosen as described in Appendix Section C. If
the empirical reliability level is close to the target, the
algorithm terminates. If, however, the empirical reliability
is larger than the target level, we reduce the number of
samples used in the solution of Problem (6) and re-solve

the problem to produce a less conservative solution. The
resultant solution’s empirical reliability is then evaluated,
and the constraint number is either decreased or increased
depending on whether the empirical reliability is greater or
less than the target. The conservatism reduction heuristic thus
performs a binary search over the number of samples used
in the scenario approximation to produce a solution with
reliability level close to the target α. The pseudocode for the
conservatism reduction heuristic is given in Algorithm 1.

Algorithm 1 Conservatism reduction heuristic

1: Inputs: Msc Number of scenario samples
Meval Number of evaluation samples
T Number of trials

2: for t = 1, 2, . . . , T do
3: Draw ξ

(j)
sc ∼ P for j = 1, . . . ,Msc.

4: Draw ξ
(j)
eval ∼ P for j = 1, . . . ,Meval.

5: xt, st, α̂t ← BinSearch({ξ(j)sc }Msc
j=1, {ξ

(j)
eval}Meval

j=1 , α)
6: end for
7: return (xt, st), where t = arg mins∈[T ] α̂s.

Algorithm 2 Binary search to reduce conservatism

1: Inputs: ξ
(j)
sc , j = 1, . . . ,Msc Scenario samples
ξ
(j)
eval, j = 1, . . . ,Meval Evaluation samples
α Target reliability

2: Set mlo = 1, mhi = Msc.
3: while |mhi −mlo| > 1 do
4: Set mmid := dmlo+mhi

2 e.
5: Let (x, s) solve (6) using

{
ξ
(i)
sc | i ∈ [mmid]

}
.

6: Compute the empirical reliability

α̂ :=
1

k

k∑
j=1

1

{
N∑
i=1

([ξ
(j)
eval]i − xi)+ ≤ s

}
7: if α̂ > α then
8: mhi ← mmid

9: else
10: mlo ← mmid.
11: end if
12: end while
13: return x, s, α̂.

IV. EMPIRICAL STUDY

A. Data source and model

To assess the potential of resource sharing to reduce de-
ployed battery capacity in practice, we conduct an empirical
study using real-world mobility data. The data was collected
as part of a study by the Puget Sound Research Council on
the driving behavior of approximately 400 vehicles located in
the Seattle metropolitan area between November 2004 and
April 2006, and is publicly available through the National
Renewable Energy Laboratory’s Transportation Secure Data
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Center [23]. During the study, GPS data loggers were in-
stalled into each vehicle and collected information on the
timing and distance of every trip taken by the vehicle’s driver.
Figure 1 illustrates distributions over daily mileage for each
driver and total daily mileage summed across all drivers.
Notice that daily travel distances are short relative to typical
EV battery ranges: 85% of daily trips are less than 50 miles
long, and on 54% of days, the total daily mileage across
customers is less than ten thousand.

To simulate energy requirements from the daily mileage
data, we assume that EVs have an energy efficiency of
three miles per kWh [24]. Additionally, the distribution over
each driver’s daily energy consumption is modeled as a
histogram with binwidth approximately two kWh. Driver
energy requirements are then simulated by sampling from
these distributions.

B. Study results

In these empirical studies, we quantify the impacts of
resource sharing by comparing the amounts of battery ca-
pacity required to achieve a given target reliability level in
settings with and without a shared resource. Throughout the
studies, we assume that all drivers have the same target
reliability level, i.e. that αi = α for all i ∈ [N ]. For a
given battery configuration (i.e., a choice of personal battery
capacities x and shared battery capacity s) we estimate the
reliability level associated with the configuration through its
empirical reliability in each setting. That is, in the non-
shared setting, the battery capacity associated with a given
reliability level α is approximated by the sum of the drivers’
empirical α-quantiles. In the shared setting, we use the
inner approximation Problem (P-SI) and Algorithm 1 to find
candidate battery configuration and evaluate the empirical
reliability associated with the configuration under various
allocation rules. Specifically, we consider a given configura-
tion’s reliability under the proportional, first-come, first-serve
(FCFS), and utilitarian allocation rules described below.

a) Proportional allocation: Under the proportional al-
location rule, every driver receives a fraction of the shared
capacity that is proportional to their shortfall (the difference
between their personal battery capacity and realized energy
requirement):

f prop
i (x, ξ, s) := s · (ξi − xi)+∑N

j=1(ξj − xj)+
.

b) First-come first-served (FCFS): The FCFS rule as-
sumes that drivers request a portion of the shared resource
according to a certain order, given as a permutation π :
[N ]→ [N ]:

fFCFS
i (x, ξ, s) :=

{
(ξi − xi)+, if

∑π(i)
j=1(ξj − xj)+ ≤ s,

0, otherwise
.

For a fixed sample of realized driver energy requirements,
we simulate the FCFS allocation rule by drawing a random
permutation of [N ] and allocating available shared capacity
to drivers in that order.

c) Utilitarian: Under “utilitarian” rules, the objective
of the decision maker distributing the shared resource is to
maximize the number of drivers whose energy requirements
are met through the shared resource. Under this allocation
rule, the drivers are sorted in increasing order of shortfall,
and resources are disbursed according to this ordering. That
is, the utilitarian allocation rule disburses resources as fol-
lows:

f util
i (x, ξ, s) =

{
(ξi − xi)+, if

∑π?(i)
j=1 (ξj − xj)+ ≤ s,

0, otherwise
,

where π?(i) ≤ π?(j)⇔ (ξi − xi)+ ≤ (ξj − xj)+.

For a particular allocation rule and battery configura-
tion, the associated empirical reliability is calculated as the
minimum over customer-level empirical reliabilities (i.e.,
the largest value α̂ such that all customers have empirical
energy requirement satisfaction probability at least α̂). This
calculation is described in detail in Appendix C.

1) Effect of the target reliability level: First, we demon-
strate how battery capacity size requirements scale with
target reliability level α in the shared and non-shared settings.
Figure 2 illustrates the empirical reliability level as a function
of the average (per-driver) deployed battery capacity for
systems with 25, 50, and 100 drivers and target reliabilities
α ∈ {0.5, 0.505, . . . , 0.995}. In each sub-figure, the purple
line labeled “Non-shared” depicts the capacity-reliability
frontier in the setting without resource sharing and three
scatter plots of differing colors show the reliability levels
associated with various candidate battery configurations for
each of the three allocation rule considered. Additionally,
the ‘efficient frontier’ of each allocation rule (i.e., the largest
reliability level associated with a particular capacity level) is
depicted by solid lines.

For target reliability levels higher than 0.70, the amount of
battery capacity required to achieve a particular reliability is
lower in the shared setting than in the non-shared settings for
each system size and allocation rule considered. Furthermore,
the benefits of sharing (as measured by a reduction in battery
capacity requirements) increase as the target reliability level
increases. For example, as depicted in Figure 2, for N = 25
the difference between the capacity required to achieve a
reliability level of 0.75 with and without sharing ranges
between about 5-10 kWh per driver (depending on the
allocation rule used). By contrast, for a target reliability level
of 0.85 the difference is larger, between about 10-20 kWh
per driver.

It is worth noting that, as evidenced by the scatter plots in
Figure 2, the empirical reliability associated with each alloca-
tion rule varies significantly. While the FCFS and utilitarian
allocation rules are associated with similar reliability levels
given a candidate configuration, the proportional allocation
rule has lower reliability. The conservatism of the rule is
a consequence of its proportional distribution of resources:
the quantity of shared resource allocated to any customer
exceeds their shortfall only when the total amount of shared
resource exceeds the aggregate shortfall. In fact, due to its
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Fig. 1: Distributions over daily driving distance in the Puget Sound mobility dataset. Left: Distribution over daily mileage
for each driver and day when travel occured. Right: Distribution over total daily mileage summed across drivers for each
day of data collection.

conservatism and the fact that resource planning problem
is solved sub-optimally, the proportional allocation rule is
associated with larger capacity requirements than the non-
shared setting for low reliability levels (e.g., below 0.70 in
the N = 25 setting or below 0.67 in the N = 100 setting).

2) Effect of the number of drivers: The benefits of re-
source sharing also increase with the number of drivers in
the system. Notice from Figure 2 that as the number of
customers increases from N = 25 to N = 100, the reliability
associated with a given allocation rule and level of capacity
increases. For example, the reliability associated with 35
kWh of battery capacity per driver under a proportional
allocation rule is approximately 0.67 for N = 25, 0.89 for
N = 50, and 0.91 for N = 100.

To illustrate the benefits of resource sharing as a function
of driver number in greater detail, Figure 3 shows the relative
reduction in deployed battery capacity as a function of N for
three different reliability levels α ∈ {0.75, 0.85, 0.95}. More
precisely, for each of the three target reliabilities considered,
we vary N ∈ {5, 25, . . . , 185} and plot the relative reduction
in battery capacity,

1−
∑N
i=1 x

shared
i + sshared∑N

i=1 x
nonshared
i

,

where xshared, sshared are the shared battery configurations
found by Algorithm 1 and xnonshared is the non-shared con-
figuration determined by the empirical estimate of (2). For
each N and target α, we then conduct 20 independent trials
and plot the median, interquartile, and interdecile ranges of
the relative reduction in total battery capacity. We find that
the percentage reduction in capacity grows with the number
of drivers N . For example, for α = 0.85, a system size of
N = 5 is associated with a median capacity reduction of 7%
while a system size of N = 185 is associated with a median
reduction of over 20%. Moreover, for sufficiently large N
and target reliability levels, the benefits of sharing can be
large: for a target reliability of α = 0.95, the availability
of a shared resource enables at least a 50% reduction in
deployed battery capacity relative to the non-shared setting.

V. CONCLUSION

We consider a setting in which electric vehicle drivers
are given access to a shared battery resource to supplement
their personal vehicle batteries. Adopting the perspective of
a central planner, we formulate the problem of choosing the
personal and shared battery capacities in order to minimize
total deployed capacity while ensuring that driver mobility
needs are met with high probability. The resultant capac-
ity planning problem is a chance constrained optimization
problem and can be challenging to solve directly or even
approximate using sampling-based methods. We derive a
tractable inner approximation to the original capacity plan-
ning problem which is amenable to approximation through
scenario methods. To assess the potential of resource shar-
ing to reduce total deployed battery capacity (relative to
a setting without sharing) we conduct an empirical study
using longitudinal mobility data from drivers in Puget Sound,
Washington. The empirical results demonstrate that resource
sharing has the potential to greatly reduce the amount of
battery capacity deployed, and that benefits from sharing
increase with number of drivers in the system and the target
reliability level desired. In particular, when driver target
reliabilities are high (e.g., greater than 0.95), resource sharing
can reduce the amount of deployed battery capacity by at
least 40%, even for moderately sized systems of 25 drivers
or more.

While our results suggest resource sharing has significant
potential to reduce deployed battery capacity, the model is
highly stylized and has limitations which can be addressed in
future work. For example, while we allow batteries to be of
arbitrary, real-valued size, a more realistic formulation might
consider a finite number of battery size options. Moreover,
our model implicitly assumes that customers are indifferent
between using their personal batteries and a shared range-
extension resource. In practice, using the shared resource
may be inconvenient, i.e., drivers will incur transaction costs
related to accessing the resource. It is straightforward to
incorporate these costs into the problem formulation, e.g.,
the objective can be re-formulated to dis-aggregate and
differentially weight personal and shared battery capacities.
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Fig. 2: Empirical reliability over deployed battery capacity (averaged across drivers) for various allocation rules and numbers
of drivers N . In each sub-figure, the capacity-reliability frontiers associated with the non-shared setting and each allocation
rule considered in the shared setting are depicted by solid lines of varying colors. Additionally, candidate solutions considered
in the shared settings and their associated reliabilities are plotted as colored scatter plots for each allocation rules considered.
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Fig. 3: Percentage reductions in total deployed battery
capacity associated with resource sharing as a function of
the number of drivers in the system N for three different
reliability levels α. For each system size N and target
reliability level α considered, the median percent reduction
(dashed line), its interquartile range (darkly shaded region),
and its interdecile range (lightly shaded region) are shown.

However, estimating transaction costs is difficult and precise
quantification of these costs is critical to accurate assessment
of the benefits of sharing. Another limitation of our model
is that it treats drivers as passive entities: we assume the
central planner controls both personal and shared battery
capacity sizing. In practice, drivers will behave strategically
and implementation of a resource sharing system will likely
require a game theoretic perspective, in which the central
planner designs allocation rules and pricing mechanisms
which induce socially optimal outcomes while distributing
battery capacity costs equitably.
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APPENDIX

A. Nonconvexity of proportional allocation rule

We argue that the proportional allocation rule leads to
bilinear constraints in the scenario approximation of (P-S).
Consider the case where N = 2 and relabel vi := ξi − xi.
The constraints read

−v1 +
s(v1)+

(v1)+ + (v2)+
≥ 0,

−v2 +
s(v2)+

(v1)+ + (v2)+
≥ 0.

On {(v1, v2, s) | (v1)+ + (v2)+ > 0}, these are equivalent to

−vi((v1)+ + (v2)+) + s(vi)+ ≥ 0.

In the above, s is coupled with max(ξi− xi, 0), which does
not lead to a convex constraint set in general.

B. Example: Intuition behind shared allocation model

To illustrate why we expect (P-SI) to yield better solutions
than the non-shared setting, we compare the objective value
attained by (P-NS) in the non-shared setting with an “obvi-
ous” choice of {xi} and s under the following assumption:

Assumption. The trip energies satisfy ξ ∼ N (µ1, σ2IN ).

Fix αi ≡ α such that F−1i (αi) = µ(1+σ). Then the optimal
value of Problem (P-NS) is

opt∗ns =

N∑
i=1

F−1i (αi) = Nµ(1 + σ).

Now, we demonstrate a feasible solution for Problem (P-SI)
attaining a strictly better objective value. In particular, fix

xi = E [ξi] = µ, for all i = 1, . . . , N.

Under this choice, the sum of shortfalls is distributed as
N∑
i=1

max {0, ξi − xi}
(d)
=

N∑
i=1

max {0, ζi} , ζi ∼ N (0, σ2)

Letting Zi := max {0, ζi}, each term has expected value

E [Zi] = E [gi1 {gi ≥ 0}] =
1

2
E [|gi|] =

σ

2

√
2

π
=

σ√
2π
.

Therefore, we can rewrite the chance constraint as

Pr (SN ≤ s) ≥ α, SN :=

N∑
i=1

Zi. (7)

Every Zi is a σ-subgaussian random variable, so by standard
concentration inequalities (see, e.g. [25, Chapter 2]):

Pr

(
SN −

Nσ√
2π
≥ t
)
≤ exp

(
− ct2

σ2N

)
(8)

Choosing t � σ
√
N log

(
1

1−α

)
satisfies the desired inequal-

ity. Therefore, the optimal value satisfies

opt∗s ≤ s+

N∑
i=1

xi =
Nσ√

2π
+ σ
√
N log

(
1

1− α

)
+Nµ,

and the difference between objective values is

opt∗ns − opt∗s ≥ Nσ
(

1−
√

1

2π
−
σ log( 1

1−α )
√
N

)
= Ω(Nσ).

In particular, more drivers N in the system imply larger
deployed capacity savings by the shared design.

C. Estimating empirical reliability by sampling

Suppose that a configuration
(
x, s, {gi}Ni=1

)
is provided,

where gi is the constraint with respect to which reliability
should be estimated. To estimate the reliability level achieved
by that configuration, we use the following procedure:

1) Generate m independent realizations
{
ξ(j)

}m
j=1

.
2) Compute the client-level average satisfaction

Smi =
1

m

m∑
j=1

1 {gi(x, ξ, s) ≥ 0} .

3) Output the minimum satisfaction over clients as the
reliability level: α̂ := minNi=1 S

m
i .

To calculate the necessary number of samples m, we note

X
(j)
i := 1 {gi(x, ξ, s)} , E

[
X

(j)
i

]
= Pr(gi(x, ξ, s) ≥ 0).

Consequently, X(1)
i , . . . , X

(m)
i are independent and identi-

cally distributed Bernoulli random variables for fixed i ∈
[N ]. A Chernoff bound followed by a union bound yields

Pr

(
max
i∈[N ]

|Smi −E [Smi ]| ≥ ε
)
≤ 2N exp

(
−mε

2

4

)
, (9)

For a target error ε and confidence level δ we require

m ≥ 4 log(2N/δ)

ε2
samples.
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