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Abstract— In this paper we propose an optimization-based
control scheme, which can be used for trajectory generation
or receding horizon control for system with nonlinear, but
convex dynamics, and both explicit and implicit discrete time
models. The scheme uses both the nonlinear model and its
linearization to construct a tube containing all possible future
system trajectories, and uses this tube to predict performance
and ensure constraint satisfaction. The controls sequence and
tube cross-sections are optimized online in a sequence of convex
programs without the need of pre-computed error bounds.
We prove feasibility, stability and non-conservativeness of the
approach, with the series of convex programs converging to
a point which is a local optimum for the original nonlinear
optimal control problem. We further present how a structure-
preserving model can be implemented within the approach and
used to reduce the number of constraints and guarantee a
structure-preserving discrete trajectory solution.

I. INTRODUCTION

Optimization-based control techniques allow for a task to
be completed optimally with respect to a given performance
index while respecting both system and environment con-
straints [1], [2]. As such it has often been implemented
for online trajectory design or receding horizon control
of systems subject to stringent and/or safety critical con-
straints such as for example autonomous vehicles [3], [4],
spacecraft systems [5], [6], and robotics [7]. In its most
simple form optimization-based control entails the single
solution of a optimal control problem (OCP) resulting in
an optimal trajectory and an open-loop control sequence for
the entire time period of interest. To allow for feedback a
receding horizon strategy can be implemented (also known
as model predictive control or MPC) [1]. At each discrete
time step, an OCP is solved, the first control of the resulting
control sequence is applied and the new state of the system
is measured. Based on this measurement a new OCP is
solved and the procedure is repeated. Thus for open-loop
autonomous trajectory generation of real-time systems or
receding horizon implementation, it is critical that the OCP
can be solved successfully and reliably within the available
time. The nonlinear nature of most system however implies
that the resulting OCP is a nonlinear program (NLP) and
thus has high computation complexity with no guarantees
for a successful solution.

To address this problem many approaches have focused on
approximating the problem as a convex program, which can
be solved efficiently and reliably [8]. One approach of this
kind in the space domain, known as lossless convexification,
is capable of obtaining a convex relaxation of the problem,

whose solution is guaranteed to coincide with global optima
of the original NLP problem but is applicable to a very
limited set of problems [2]. Other approaches rely on the
solution of a sequence of convex programs at each discrete
time step aiming to converge to a solution close to a local op-
timum of the original NLP. For example successive sequen-
tial programming approaches use a sequence of quadratic
programs [8], [2], while the tube-based approaches rely on
the linearization of the system dynamics and the construction
of feasible tubes, which contain all possible trajectories based
on the error of the linear approximation [9], [10]. Such
approaches and other convexification techniques have been
demonstrated to be advantageous for real-time applications
([3], [4], [5], [6] among many others). However, without
appropriate step size selection or line search algorithms, there
can be a discrepancy between their computed solution and
the optimum of the original problem leading to suboptimality
or even infeasibility.

Very recently, a tube-based approach was developed by
[11] for systems with convex dynamics which is able to
guarantees that the sequence of convex programs proposed
to approximate the NLP converges to one of the NLP
local optima and thus removes the degree of suboptimality
other such approaches introduce. It also guarantees that the
iteration can be terminated early without loss of feasibility
or stability. However, the paper assumes the existence of an
explicit discrete time system model with certain convexity
properties. When provided with explicit continuous model,
this prevents the use of many higher-order standard and
structure-preserving model discretization techniques limiting
the choice to lower accuracy discrete time model approxima-
tion. Such restriction might not be problematic for a receding
horizon implementation which relies on feedback to deal
with model inaccuracies, but can be detrimental when used
for trajectory generation. The assumption also prevents the
approach to being applied to a wide range of systems with
implicit continuous models such as many multibody systems
and other constrained systems.

For this purpose in this paper we provide a reformulation
of the nominal receding horizon approach by [11] for
implicit convex system models. We present the approach
for a receding horizon implementation which can trivially
be simplified for single trajectory design use. We prove
recursive feasibility and stability of the proposed approach
and provide a proof that it also converges to a point which is
a local optimum of the original NLP. As such the approach of
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[11] can be seen as a specific case of the one proposed here,
which uses the existence of an explicit model to simplify the
formulation.

In the second part of the paper (Section IV) we focus
on a specific use of the proposed approach for structure-
preserving discrete models [12] and more specifically vari-
ational models [13]. By preserving certain mathematical
structures and conservation laws from the continuous into
the discrete domain, such discretization schemes allow for
better qualitative representation of the system and accurate
energy and momentum simulation for exponentially long
times even for larger discrete time steps [12]. For this reason,
they have often been used to reduce the computational cost
of simulations and optimal control strategies and could be
of great benefit for fuel and energy optimization problems
([14], [15], [16], [17]). In Section IV we present how such
models can readily be used in the proposed optimization-
based scheme and show that their characteristics can be
employed to simultaneously reduce the number of constraints
and guarantee structure-preserving properties of the resulting
solution. The advantages of the proposed approach are then
demonstrated for two example systems, showing convergence
of the sequence of convex programs and the effect of the
structure-preservation model on the resulting solution.

II. PROBLEM FORMULATION

Consider a nonlinear system with state x(t) ∈ Rnx , control
input u(t) ∈ Rnu and continuous model of the form

f(ẋ, x, u) = 0 (1)

where f is differentiable for all (ẋ, x, u) in the operating
region Rnx×X ×U and componentwise convex with respect
to ẋ, x and u.

Assumption 1: We assume a discrete time model can be
created of the form

g(xi+1, xi, ui) = 0 (2)

such that g is differentiable for all (xi+1, xi, ui) in the
operating region X ×X ×U and convexity is preserved, i.e.
the elements of g(·) are convex with respect to all xi+1 ∈ X ,
xi ∈ X and ui ∈ U . We further assume the discrete time
step is chosen to guarantee g(·) is locally Lipshitz.

We pose the problem of optimally controlling this system’s
trajectory x : {x0, x1, ...}, u : {u0, u1, ...} to track a given
state and input reference trajectory xr : {xr0, xr1, ...}, ur :
{ur0, ur1, ...} where g(xri+1, x

r
i , u

r
i ) = 0 for all i ≥ 0 subject

to a quadratic objective
∞∑
i=0

(
∥xi − xri ∥

2
Q + ∥ui − uri ∥

2
R

)
(4)

(where ∥x∥2Q = xTQx) and additional initial and polytopic
constraints of the form x0 = xinit, xi ∈ X ⊂ IRnx , ui ∈
U ⊂ IRnu . To solve this problem a MPC optimization
strategy can be employed with a receding horizon optimal
control problem (RHOCP) of the form

nMPC RHOCP:
u∗
i = arg min

xi∈XN+1,ui∈UN
JnMPC(xi,ui) (5a)

subject to: x0|i = xi (5b)
xk|i ∈ X , uk|i ∈ U for k = 0, ..., N − 1 (5c)
g(xk+1|i, xk|i, uk|i) = 0 for k = 0, ..., N − 1 (5d)

xN |i ∈ XN ⊆ X (5e)

where xk|i, uk|i denote respectively the state and input at
time k + i predicted at time i and

JnMPC(xi,ui) = (6)
N−1∑
k=0

(
∥xk|i − xrk|i∥

2
Q + ∥uk|i − urk|i∥

2
R

)
+ ∥xN |i − xrN |i∥

2
QN

Assumption 2: We assume the state xi can be measured at
each discrete time step i, the reference trajectory (xri , u

r
i )

satisfies (5c-5e) for all i and Q and R are positive definite.
We further assume the prediction horizon N , the terminal
weight matrix QN and the terminal set XN are chosen such
that there exists a feedback gain K for which the set XN is
positively invariant for the system (2) under the control law
ui = K(xi − xri ) + uri ∈ U , and for all xN ∈ XN

∞∑
i=N

(∥xi − xri ∥2Q + ∥ui − uri ∥2R) ≤ ∥xN − xrN∥2QN
(7)

At each discrete time step i the nonlinear MPC (nMPC)
RHOCP could be solved online to obtain an optimal control
sequence u∗

i : {u0|i, u1|i, . . . , uN−1|i} and the first element
of the sequence could be used to define a receding control
law ui = u0|i. At the next step a new RHOCP can be
formulated based on the measurement (or estimate) of xi+1

and the process can be repeated. To guarantee stability of the
control strategy it is essential that a feasible solution can be
obtained within each discrete time step. In its form in (5a-
5e), however, the nMPC RHOCP is a nonlinear program and
thus no guarantee can be given on whether it can provide a
feasible solution and how long that would require. To address
these problems we propose a successive linearization ap-
proach to reformulate the problem as a convex program. This
approach is a reformulation of [11] allowing its application
to a wider variety of systems. The approach [11] can in fact
be seen as a special case of the approach proposed here.

III. PROPOSED APPROACH

Given a prior pair of state and control trajectories x0
i :

{x00|i, x
0
1|i, . . . , x

0
N |i} and u0

i : {u00|i, u
0
1|i, . . . , u

0
N−1|i} using

Taylor series the discrete time dynamics of the system can
be linearized as follows

g(xk+1|i, xk|i, uk|i) = g(x0k+1|i, x
0
k|i, u

0
k|i)+

Ck|isk+1|i+Dk|isk|i+Ek|iνk|i+e(xk+1|i, xk|i, uk|i) (8)

where sk|i = xk|i − x0k|i, νk|i =uk|i − u0k|i (9)

Ck|i =
∂g

∂xk+1|i
|(x0

k+1|i,x
0
k|i,u

0
k|i)
, Dk|i =

∂g

∂xk|i
|(x0

k+1|i,x
0
k|i,u

0
k|i)
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Ek|i =
∂g

∂uk|i
|(x0

k+1|i,x
0
k|i,u

0
k|i)

(10)

Assumption 3: The initial seed trajectory (x0,u0) is a fea-
sible (but potentially suboptimal) for constraints (5b-5e).

Remark 1: Due to the convexity of g it is known that
e(xk+1|i, xk|i, uk|i) is also componentwise convex in xk+1|i,
xk|i, uk|i and e(xk+1|i, xk, uk) ≥ 0. Therefore Assumption
3 (g(x0k+1, x

0
k, u

0
k) = 0) and Equation (8) imply

Cksk+1|i+Dk|isk|i+Ek|iνk|i ≥ 0⇒ g(xk+1|i, xk|i, uk|i) ≥ 0

Based on this linearization we can define perturbation sets
based on their vertices Sk|i = Co{smk|i,m = 1, ..., nv},
S−
k|i = Co{s−,mk|i ,m = 1, ..., nv}, S+

k|i = Co{s+,mk|i ,m =

1, ..., nv} and formulate a convex program:

cMPC RHOCP :

(c∗i ,S
∗
i ,S

+,∗
i ,S−,∗

i ) = arg min
ci, S

+
i , S−

i ,Si

JcMPC(ci,Si,x
0
i ,u

0
i )

subject to:
S0|i = {0} (11a)

Sk|i ⊕ {x0k|i} ⊆ X , for k = 1, ...N − 1 (11b)

S+
k|i ⊆ Sk|i, S−

k|i ⊆ Sk|i, for k = 1, ..., N (11d)

SN |i ⊕ {x0N |i} ⊆ XN (11e)

Ksk|i + ck|i + u0k|i ∈ U ∀sk|i ∈ Sk|i, k = 0, ..., N − 1

(11f )

g(x0k+1|i + s−k+1|i, x
0
k|i + sk|i, Ksk|i + ck|i + u0k|i) ≤ 0

Ck|is
+
k+1|i + (Dk|i + Ek|iK)sk|i + Ek|ick|i ≥ 0

for ∀sk|i ∈ Sk|i,∀s+k+1|i ∈ S
+
k+1|i,∀s

−
k+1|i ∈ S

−
k+1|i

and k = 0, ...N − 1 (11g)

where ⊕ is the Minkowski sum, S+
i = {S+

1|i, . . . , S
+
N |i},

Si = {S−
1|i, . . . , S

−
N |i}, Si = {S0|i, . . . , SN |i} ∈ SN+1,

JcMPC(ci,Si,x
0
i ,u

0
i ) =

N−1∑
k=0

(
max

sk|i∈Sk|i
∥x0k|i+sk|i−x

r
k|i∥

2
Q

+ max
sk|i∈Sk|i

∥uk|i−urk|i∥
2
R

)
+ max
sN|i∈SN|i

∥x0N |i+sN |i−x
r
N |i∥

2
QN

and a dual mode prediction strategy of the form

uk|i = u0k|i+ νk|i = u0k|i+Ksk|i+ ck|i for k = 0, ...N −1

has been used shifting the optimization from the sequence
ui to the sequence ci : {c0|i, ...., cN−1|i}. In Equation (10)
sk and νk can be viewed as perturbations from the original
trajectory x0 and control sequence u0 respectively. Thus the
sets sequence Si⊕xi = {S0|i⊕{x00|i}, . . . , SN |i⊕{x0N |i}}
can be viewed as a tube containing all possible system
trajectories corresponding to the sequence ci.

Remark 2: In comparison to the explicit model formulation
in [11], the use of implicit models dictates that additional
sets S+

k|i, S
−
k|i have to be defined because implementing both

constraints in (11g) for a single set Sk|i would only be
satisfied for a single-trajectory tube (Sk|i = {0} for all

k). In Section III-A we guarantee that the tube obtained
with the proposed formulation (Sk|i ⊇ Co{s−,mk|i , s

+,m
k|i ,m =

1, ..., nv}) contains the feasible solutions of the original NLP
(5a-5e).

Using the convex RHOCP formulation (cMPC RHOCP) a
receding horizon strategty can be formulated as described in
Algorithm 1, which optimizes both the tube cross sections
and control sequences online. As we will prove in the next
section, the iterations performed at each discrete time step i
converge to a local minimum of the original nMPC RHOCP,
eliminating the conservativeness and suboptimality presented
by other tube-based approaches. We also show that the
iteration can be terminated early without loss of recursive
feasibility and stability.

Algorithm 1: cMPC
Offline: Determine K, QN , XN , and an initial seed

trajectory (x0
0,u

0
0) satisfying (5b)-(5e) with

x0 = xinit
Online: At each discrete time step i = 0, 1, . . .:

1 Obtain xi and set the iteration counter n← 1;
2 while n ≤ maxiters and ∥c∗i ∥ ≥ tol do
3 Compute Ck|i, Dk|i, Ek|i for k = 0, . . . , N − 1

using (10) and (x0
i ,u

0
i );

4 Solve nominal RHOCP to obtain
(c∗i ,S

∗
i ,S

+,∗
i ,S−,∗

i );
5 for k = 0, . . . , N − 1 do
6 Compute u∗k|i = u0k|i + c∗k|i +K(x∗k|i − x

0
k|i)

and g(x∗k+1|i, x
∗
k|i, u

∗
k|i) = 0 with x∗0|i = xi;

7 Update the seed: (x0
i ,u

0
i )← (x∗

i ,u
∗
i );

8 n← n+ 1;

9 Implement ui ← u∗0|i;
10 Set u∗N |i = K(x∗N |i − x

r
N+i) + urN+i and solve

g(x∗N+1|i, x
∗
N |i, u

∗
N |i) = 0 for x∗N+1|i ;

11 Set u0
i+1 ← {u∗1|i, . . . , u

∗
N−1|i, u

∗
N |i}

x0
i+1 ← {x∗1|i, . . . , x

∗
N |i, x

∗
N+1|i};

Remark 3: The initial seed trajectory can be obtained by
reformulating the cMPC RHOCP in a strategy analogous to
the one outlined in [11]. The constraints and cost can be
expressed as a maximization over the vertices of Si,S+

i ,S
−
i ,

allowing the cost to be reformulated to a linear objective with
an additional second-order cone constraint on the vertices of
Si. The resulting problem is convex and can thus be solved
efficiently using a variety of solvers (see for example [8]).

Remark 4: The representation of Si,S
+
i ,S

−
i causes expo-

nential growth in the number of variables and constraints in
cMPC RHOCP with the state dimension nx. Alternatively,
using homothetic sets as described in [11] allows the num-
bers of variables and constraints depend linearly on nx and
the chosen number of vertices of Si, respectively. In either
case a reduction in nx allows for computational savings and
a method for achieving this is proposed in Section IV.
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A. Feasibility and stability guarantees

In this section we demonstrate the recursive feasibility and
stability of the proposed approach. Additionally we prove
that the iteration at each horizon time step i converges to a
locally optimal solution of the original nMPC RHOCP.

First we prove that for non-zero perturbations, the tube con-
tains the original nonlinear system trajectory and converges
to it when the iterations are not terminated early. Let

Xk|i = Co{xmk|i,m = 1, ..., nv} = {x0k|i} ⊕ Sk|i
X−
k|i = Co{x−,mk|i ,m = 1, ..., nv} = {x0k|i} ⊕ S

−
k|i

X+
k|i = Co{x+,mk|i ,m = 1, ..., nv} = {x0k|i} ⊕ S

+
k|i

Lemma 1: If Sk+1|i satisfies (11d) and s−,mk+1|i, s
+,m
k+1|i satisfy

(11g) for m = 1, ..., nv then there exists a xk+1|i ∈ Xk+1|i
satisfying g(xk+1|i, xk|i, uk|i) = 0 for ∀xk|i ∈ Xk|i with
uk|i = K(xk|i − x0k|i) + ck|i + c0k|i.

Proof Constraints (11d) imply Sk|i ⊇ Co{s−,mk|i , s
+,m
k|i ,m =

1, ..., nv}. Furthermore let zλ = λzm + (1 − λ)zv for λ ∈
[0, 1], m, v ∈ {1, ..., nv}. Then from Remark 1

g(x−,mk+1|i, x
m
k|i, u

m
k|i) ≤ 0

g(x−,vk+1|i, x
v
k|i, u

v
k|i) ≤ 0

}
⇒

g(x−,λk+1|i, x
λ
k|i, u

λ
k|i) ≤ 0

for any λ ∈ [0, 1]

Ck|is
+,m
k+1|i+Dk|is

m
k|i+Ek|i(u

m
k|i−u

0
k|i) ≥ 0

Ck|is
+,v
k+1|i+Dk|is

v
k|i+Ek|i(u

v
k|i−u

0
k|i) ≥ 0

}
⇒

g(x+,λk+1|i, x
λ
k|i, u

λ
k|i) ≥ 0 for any λ ∈ [0, 1]

where umk|i = K(xmk|i − x
0
k|i) + ck|i + c0k|i, u

v
k|i are defined

similarly and xλk|i = sλk|i + x0k|i. Based on this and from
setting Sk+1|i as the convex hull of its vertices it follows that
there exists sλk+1|i ∈ Co{s

−,λ
k+1|i, s

+,λ
k+1|i} ⊆ Sk+1|i satisfying

g(xλk+1|i, x
λ
k|i, u

λ
k|i) = 0 for all λ ∈ [0, 1]. □

To make notation more precise, at the ith time step and nth
iteration of lines 3-8 of Algorithm 1 we denote the seed
trajectory as x0,n

i , the seed control sequence as u0,n
i and the

tube as Sni . Similarly, we denote the solution of the cMPC
RHOCP in line 4 as (c∗,ni ,S∗,n

i ,S+,∗,n
i ,S−,∗,n

i ), and the op-
timal objective as J∗,n

cMPC,i = JcMPC(c
∗,n
i ,S∗,n

i ,x0,n
i ,u0,n

i ).

Theorem 1: (Recursive feasibility): If the initial seed tra-
jectory (x0

i ,u
0
i ) is feasible w.r.t constraints (5b-5e) and the

assumptions 1, 2, 3 hold, then the nominal RHOCP in step
4) of Algorithm 1 is feasible at each iteration and for i ≥ 0.

Proof Let ck|i = 0, k = 0, . . . , N − 1 and Sk|i = {0} for
k = 0, . . . , N reducing the constraints in nominal RHOCP
to {x0k|i} ⊆ X ,u0k|i ∈ U , {x0N |i} ⊆ XN . In this case the
trajectory takes the form (xi,ui) = (x0

i ,u
0
i ) and based

on Assumption 3 is a feasible (but possibly suboptimal)
solution of nominal RHOCP at i = 0. Feasibility of the
trajectory (x0

i+1,u
0
i+1) at any subsequent horizon steps is

then guaranteed by constraints (11b)-(11e) and the conditions
placed on the choice of set XN in Assumption 2. □

Theorem 2: For all i ≥ 0 and for all n ≥ 1

JnMPC(x
0,n+1
i ,u0,n+1

i ) ≤ JcMPC(ci,S
n
i ,x

0,n
i ,u0,n

i ) (12)

for (x0,n+1
i ,u0,n+1

i ) obtained by steps 4-7 of Algorithm 1.

Proof It follows from the nominal RHOCP formulation that
x0,n+1
i belongs to the tube Sni ⊕{x

0,n
k }. The statement then

follows from Eq (9), steps 5-7 in Alg. 1 and the maximization
formulation of the cMPC cost returning the maximum cost
over the tube Sni . In more detail

∥x0,n+1
k|i − xrk|i∥

2
Q ≤ max

sk|i∈Sk|i
∥x0,nk|i + sk|i − xrk|i∥

2
Q

∥u0,n+1
k|i − urk|i∥

2
Q ≤ max

sk|i∈Sk|i
∥u0,nk|i +Ksk|i + ck|i − urk|i∥

2
R

∥x0,n+1
N |i − xrN |i∥

2
Q ≤ max

sN|i∈SN|i
∥x0,nN |i + sN |i − xrN |i∥

2
QN

and Equation (12) follows from summing the terms before
and after the inequality sign for all k = 0, . . . , N − 1
to obtain the expressions for JnMPC(x

0,n+1
i ,u0,n+1

i ) and
JcMPC(ci,S

n
i ,x

0,n
i ,u0,n

i ). □

Theorem 3: For all i ≥ 0 and for all n ≥ 1, we have

J∗,n+1
cMPC ≤ J

∗,n
cMPC (13)

Proof From Theorem 1 and Theorem 2 it follows that a
suboptimal solution exists ci = 0 and Si = {{0}, . . . , {0}},
JcMPC({0}, {0},x0,n+1

i ,u0,n+1
i ) = JnMPC(x

0,n+1
i ,u0,n+1

i )

and (14)

JnMPC(x
0,n+1
i ,u0,n+1

i ) ≤ JcMPC(c
∗,n
i ,S∗,n

i ,x0,n
i ,u0,n

i )
(15)

From Theorem 1, optimality and (14) it follows that

JcMPC(c
∗,n
i ,S∗,n

i ,x0,n
i ,u0,n

i ) ≤ JnMPC(x
0,n
i ,u0,n

i ) (16)

(13) follows from the combination of (14), (15), (16). □

Theorem 4: For all i ≥ 0, the iteration on lines 2-8 of
Algorithm 1 converges to a seed trajectory (x0,n

i ,u0,n
i ) such

that c∗,ni = 0 and S∗,n
i = {{0}, . . . , {0}} is an optimal

solution of the cMPC RHOCP in the limit as n→∞.

Proof Assumption 2 implies J∗,n
cMPC,i ≥ 0 and from Theorem

3 it follows that J∗,n
cMPC,i − J∗,n+1

cMPC,i → 0.Thus from (13)
and (16) it follows that J∗,n

cMPC,i − JnMPC(x
0,n
i ,u0,n

i )→ 0 as
n→∞ implying that (c∗,ni ,S∗,n

i )= (0, {{0}, . . . , {0}}) is the
optimal solution of the cMPC RHOCP in the limit as n→∞.

Theorem 5: The iteration defined in steps 2-9 of Algorithm
1 converges to a local minimum of nMPC RHOCP (5a-5e).

Proof The proof can be found in the Appendix.

Theorem 6: Given Assumptions 1 and 2, the control law
of Algorithm 1 ensures that xδi+1 = xδi = uδi = 0 with
xδi = xi − xri and uδi = ui − uri is an asymptotically stable
equilibrium of the system (2) (i.e. g(xδi+1, x

δ
i , u

δ
i ) = 0), with

region of attraction consisting of the initial conditions x0
of (2) for which there exists a control sequence such that
ui ∈ U and xi ∈ X for k = 0, . . . , N − 1, and xN ∈ XN .

Proof The proof is analogous to that of Theorem 8 in [11].
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IV. PROPOSED VARIATIONAL REFORMULATION

In this section we present how a structure-preserving model
can be accommodated by the proposed approach. We further
discuss how such a model can be used to reduce the number
of variables and constraints in the respective RHOCP. These
developments are demonstrated for a system with explicit
continuous model, but the extension to implicit models (such
as for systems with constraints) is trivial.

A. Model formulation and terminal set calculation

We consider a general mechanical system with configuration
q(t) ∈ IRnq and Lagrangian of the form

L(q, q̇) = 1

2
q̇TMq̇ − V (q) (17)

Using the Continuous Forced Euler-Lagrange equations the
continuous model of the system motion under the influence
of control forces u(t) ∈ IRnu can be derived as

q̈ = −M−1∇qV (q) + u (18)

Assumption 4: We assume a regular L, symmetric invertible
M , polytopic configuration constraints q ∈ Q and assume
the expression M−1∇qV (q) is concave.

To discretize the equations of motion we formulate a discrete
approximation of the Lagrangian and derive a discrete time
system model using a variational integrator [13]:

g(qi+1, qi, qi−1, ui, ui−1) = −qi+1 + 2qi − qi−1−
h2

2 (M−1∇ηiV (ηi)+M
−1∇ηi−1V (ηi−1)+

h2M−1

2 (ui−1+ui))
(19)

for ηi =
qi+1+qi

2 . To implement initial and terminal condi-
tions on the configuration and velocity (or momentum) an
equivalent variational model formulation can be used :

y(xi+1, xi, ui) =

[
r(qi+1, xi, ui)
f(xi+1, qi, ui)

]
= (20)[

−qi+1+qi−h
2

2 M
−1∇ηiV (ηi) + hM−1pi−h

2

2 M
−1ui

qi+1−qi−h
2

2 M
−1∇ηiV (ηi)−hM−1pi+1 +

h2

2 M
−1ui

]
= 0

Here h denotes the discrete time step and xi = [qTi , p
T
i ]

where pi ∈ IRnq is the discrete conjugate momentum [13].

Remark 5: Notably, the model (19) has reduced dimension-
ality (g ∈ IRnq ) compared to its equivalent reformulation
(20) (y ∈ IR2nq ) and to other standard Euler or Runge-
Kutta models used to discretize (18) in which both the
configuration and the velocity are simulated in time.

Remark 6: Based on Assumption 4 the continuous model
(18) can be rewritten as a convex implicit function. Using
both (19) and (20) the discrete model remains a convex
function, something that is not guaranteed with higher stage
Runge-Kutta methods or other higher order standard meth-
ods. Thus the variational model provides a convex, second
order approximation of the system dynamics which can
simulate energy and momenta accurately for exponentially
long times (in the presence of forcing, any momentum

conservation laws from the continuous case are accurately
preserved in the discrete simulation as guaranteed by the
Discrete Noether Theorem with Forcing [18]). As we will
discuss in Section IV-B, it also allow for a reduction in the
number of optimization variables and constraints of an OCP.

B. Variational RHOCP formulation

A cMPC RHOCP formulation can be created using only
the implicit model (20) for k = 0, ..., N − 1 as presented
in (11a-11g) with a state vector comprising of both the
configuration and the momentum instances xk|i = [qTk|i, p

T
k|i].

Alternatively in the cases where no cost weights are placed
on the velocity/momentum a second formulation can be made
which reduces the number of constraints and variables based
on the configuration-only model in (19) as follows:

VcMPC RHOCP :

(c∗i ,S
∗
i ,S

+,∗
i ,S−,∗

i , Z∗
0|i, Z

∗
N |i, Z

+,∗
N |i , Z

−,∗
N |i ) =

arg min
ci, S

+
i , S−

i ,Si

Z0|i,ZN|i,Z
+
N|i,Z

−
N|i

JcMPC(νi,Si, ZN |i,q
0
i , x

0
N ,u

0
i )

subject to:
Z0|i = {0} (21a)

Sk|i ⊕ {q0k|i} ⊆ Q, for k = 1, ...N − 1 (21b)

S+
k|i ⊆ Sk|i, S−

k|i ⊆ Sk|i, for k = 1, ..., N − 1 (21c)

Z+
N |i ⊕ {x

0
N |i} ⊆ XN , Z−

N |i ⊕ {x
0
N |i} ⊆ XN (21d)

Z+
N |i ⊆ ZN |i, Z−

N |i ⊆ ZN |i (21e)

νk|i + u0k|i ∈ U for k = 0, ..., N − 1 (21f )

r(q01|i + s−1|i, x
0
0|i + z0|i, ν0|i + u00|i) ≤ 0

F0|is
+
1|i +G0|iz0|i + Y0|iν0|i ≥ 0

for ∀z0|i ∈ Z0|i,∀s+1|i ∈ S
+
1|i,∀s

−
1|i ∈ S

−
1|i (21g)

g(q0k+1|i + s−k+1|i, q
0
k|i + qk|i,

q0k−1|i + s−k−1|i, νk|i + u0k|i, νk−1|i + u0k−1|i)≤ 0

Ck|is
+
k+1|i+Dk|isk|i+Hk|isk−1|i+Ek|iνk|i+Pk|iνk−1|i≥ 0

for ∀sk−1|i ∈ Sk−1|i,∀sk|i ∈ Sk|i,∀s+k+1|i ∈ S
+
k+1|i,

∀s−k+1|i ∈ S
−
k+1|i and k = 1, ...N − 1 (21h)

f(x0N |i + z−N |i, q
0
N−1|i + sN−1|i, νN−1|i+u

0
N−1|i) ≤ 0

LN−1|iz
+
N |i + PN−1|isN−1|i + TN−1|iνN−1|i ≥ 0

for ∀sN−1|i ∈ SN−1|i,∀z+N |i ∈ Z
+
N |i,∀z

−
N |i ∈ Z

−
N |i (21i)

where the variational convex RHOCP is denoted VcMPC
RHOCP, sk|i = qk|i − q0k|i, xk|i = xk|i − x0k|i, s0,i =

z0,i[0 : nq], Zk,i = Co{zmk,i ∈ IR2nq ,m = 0, ..., 2nq},
Sk,i = Co{smk,i ∈ IRnq ,m = 0, ..., nq} and the
plus and minus sets are defined similarly. Additionally
the matrices (F0|i, G0|i, Y0|i), (Ck|i, Dk|i, Hk|i, Ek|i, Pk|i),
(LN−1|i, PN−1|i, TN−1|i) are defined similarly to (8) with
respect to the elements of r(·), g(·), and f(·) respectively
with the linearization performed around the seed config-
uration trajectory q0 and the given initial state x0i =
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[(q0i )
T , (p0i )

T ]. Here q0
i : {q00|i, q

0
1|i, . . . , q

0
N−1|i} and

JVcMPC(νi,Si, ZN |i,q
0
i , x

0
N ,u

0
i )=

∑N−1
k=0 (∥u0k|i+ν0|i−u

r
k|i∥

2
R

+ max
sk|i∈Sk|i

∥q0k|i+sk|i−q
r
k|i∥

2
Q)+ max

zN|i∈ZN|i
∥x0N |i+zN |i−x

r
N |i∥

2
QN

but constraints on the velocity can also be placed using
forward, backward or central difference approximation. In
this formulation we have used (19) to define the model con-
straints for k = 1, ..., N−1 and the equations in (20) to define
the initial and terminal constraints. The terminal set and cost
can in this case are computed based on (20) guaranteeing
convergence of both the configuration and momentum to
an equilibrium point. Such formulation maintains feasibility
guarantees due to the equivalence of the model (19) and (20).
Steps 5-6 in Algorithm 1 must also be replaced with

At k = 0 u∗0|i = u00|i + ν∗0|i

r(q∗1|i, x
∗
0|i, u

∗
0|i) = 0 with x∗0|i = xi

For k = 1, ..., N − 1 u∗k|i = u0k|i + ν∗k|i

g(q∗k+1|i, q
∗
k|i, q

∗
k−1|i, u

∗
k|i, u

∗
k−1|i) = 0

Despite the fact that constraints (21g) have to be encoded for
three sets rather than two sets in the standard formulation
in (11g), as we will demonstrate in Section V, due to
the smaller dimensionality of the elements of the sets in
the variational formulation, such formulation allows for the
reduction in both the number of optimization variables and
constraints. Furthermore due to Theorem 5 it is guaranteed
that the sequence of convex problem will converge to a local
optimum of the original nonlinear OCP with (5d) replaced
by the combination of (19) for steps 1, .., N − 1 and (20)
for steps 0, N . Such variational NLP formulations have been
proved to demonstrate structure-preserving properties [18] in
their solutions and thus the sequence of convex programs is
guaranteed to converge to such solution.

V. NUMERICAL EXAMPLES

In this section the numerical results are obtained by applying
the proposed approach with a variational RHOCP formula-
tion using python and the cvxpy library [19]. The RHOCP
constraints are implemented by solving each constraint for
each of the vertices the perturbation sets. For all experiments
maxiter = 3 and tol = 10−6.

Example 1 First we consider an example system with

L(q, q̇) = 1
2 (q̇)

T q̇− 0.2e−q[1], f(q̇, u) =

[
u[1]− q̇[1]− 0.2

u[2]

]
where nq = 2, nu = 2 and f represents the generalized
forces acting on the system. The discrete model is obtained
using the forced variational integrator from [18] and discrete
time step h = 8× 10−3. A VcMPC RHOCP with N = 14,
Q = 1, R = diag{1, 1}, initial condition q[0](0) = q[1](0) =
2, q̇[1](0) = q̇[2](0) = 2, constraints |q[1](t)| ≤ 10,
|q[2](t)| ≤ 10, |u[1](t)| ≤ 150, |u[2](t)| ≤ 150 and reference
solution qri = 0, uri = 0 for all i.

Fig. 1. Closed-loop state trajectories. Left: Example 1. Right: Example 2

Fig. 2. Demonstration of the con-
servation properties of the variational
cMPC approach for Example 1

Fig. 3. Convergence of the tube
shown through the size of the per-
turbations between iterations 1 and 2
at i = 0 for Example 2

Example 2 We also consider the famous Fermi-Pasta-Ulam
(FPU) problem with nq = 2, nu = 2 and a change of
coordinates as follows:

L(q, q̇) = 1
2 (q̇)

T q̇ − η2(q[1]+q[2])2

4 − q[1]3 − q[2]3, f(u) = u

with η = 50. The discrete model is again obtained using the
forced variational integrator and a discrete time step of h =
10−2. The VcMPC RHOCP is solved with N = 10, Q = 0.1,
R = diag{0.1, 0.1}, reference solution qri = 0, uri = 0 for all
i, constraints |q[1](t)| ≤ 10, |q[2](t)| ≤ 10, |u[1](t)| ≤ 33,
|u[2](t)| ≤ 33 and initial conditionsq[1](0)

q[2](0)

=E

1
1

,
q̇[1](0)
q̇[2](0)

=E

1/η
1

, E=
1√
2

−1 1
1 1

.
Figure 1 demonstrates the closed-loop trajectories for both

examples obtained using Algorithm 1 with the variational
changes discussed in Section IV-B. In general the conjugate
momentum and its change are defined as p = ∂L(q,q̇)

∂q ,
ṗ = ∂L(q,q̇)

∂q̇ and thus for the system in Example 1 p[1]
is conserved. Based the Forced Noether Theorem this is
equivalent to the following discrete conservation law

Ψk|i = pk|i − p0|i − h
k−1∑
k=0

f(
qk+1|i−qk|i

h , uk|i) = 0

Using the trajectory and control sequence result from the
last iteration at i = 0, in Figure 2 it is demonstrated that
the discrete conservation law is indeed preserved by the
successive approach. In Table I it is also shown that the pro-
posed variational formulation (21g-21i) reduces the number
of model constraints and optimization variables compared to
an Euler formulation of (11g). The number of constraints
will be higher with a multi-stage Runge-Kutta scheme.

Next the performance of the receding horizon scheme itself is
demonstrated. In Figure 4 it is shown that for both examples
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E
xa

m
pl

e Number of model constraints Number of
optimization variables

cMPC RHOCP VcMPC RHOCP cMPC RHOCP VcMPC RHOCP

Nnq2
4nq+2 N+1

2
nq2

3nq+2
Nnu+nq(12N+4) Nnu+nq(6N+10)

1 28672 3840 372 216
2 20480 2816 268 160

TABLE I

Fig. 4. Convergence of the cMPC optimal cost and control perturbation
sequence norm ∥c∗i ∥ for Left: Example 1, Right: Example 2.

at successive iterations and discrete time steps the optimal
predicted cost is non-increasing and ∥c∗i ∥ → 0 as expected
from Theorems 3 and 4. In Figure 3 one can also see the
rapid convergence of the tube to a single trajectory within a
single iteration.

VI. CONCLUSION

In this paper we present a formulation of a tube-based
optimization-based approach for trajectory design and re-
ceding horizon control of system with nonlinear, but convex
dynamics. It is a reformulation of the approach presented
in [11] applicable to a wider range of systems with both
explicit and implicit discrete models. The approach relies on
both the nonlinear dynamics directly and their linearization
to formulate a sequence of convex programs solved at each
discrete time step, which define a tube of possible trajectories
and optimize their cross-sections online without the need of
pre-defined linearization bounds. In the paper we prove that
the approach guarantees stability and feasibility even when
the iteration of convex programs is terminated early. If the
iteration is not terminated early, we prove that it converges
to a point that is a local optimum for the original nonlinear
optimal control problem. We further describe how the ap-
proach can accommodate for a structure-preserving discrete
system model while reducing the number of constraints and
providing a structure-preserving trajectory generation and
control approach. The advantages of the proposed scheme
are then demonstrated for two example systems, showing
convergence of the successive convex problem and the effect
of the structure-preservation model on the resulting trajectory
and control solution.

APPENDIX

Here we present the proof for Theorem 5 for a system with
nx = 1 and omit the {·|i} notation to conserve space. The
proof for higher-dimensional systems is analogous. We also
focus on simplified problems which incorporate only the
constraints which do not clearly lead to the same Karush-
Kuhn-Tucker (KKT) first-order necessary conditions [8]:

nMPC RHOCP simplified :

c∗ = arg min JcnMPC(x, c)

subject to: ϕ(xk+1, xk, ck) = 0 for k = 0, . . . , N − 1

cMPC RHOCP simplified :

(c∗,S∗,S+,∗,S−,∗) = arg min
c, S∈SN+1,

S+∈(S+)N ,S−∈(S−)N

JcMPC(c,S,x
0, c0)

subject to:

Cks̄
+
k+1 +Φks̄k + Ekck ≥ 0, Cks

+
k+1 +Φks̄k + Ekck ≥ 0

Cks̄
+
k+1 +Φksk + Ekck ≥ 0, Cks

+
k+1 +Φksk + Ekck ≥ 0

ϕ(x0k+1 + s̄−k+1, x
0
k + s̄k|i, ck|i + u0k −Kx0k) ≤ 0

ϕ(x0k+1 + s−k+1, x
0
k + s̄k|i, ck|i + u0k −Kx0k) ≤ 0

ϕ(x0k+1 + s̄−k+1, x
0
k + sk|i, ck|i + u0k −Kx0k) ≤ 0

ϕ(x0k+1 + s−k+1, x
0
k + sk|i, ck|i + u0k −Kx0k) ≤ 0

for ∀s−k+1 ∈ S
−
k+1,∀s

+
k+1 ∈ S

+
k+1,∀sk ∈ Sk, k = 0, ..., N−1

Here the nMPC problem has been reformulated
using uk = Kxk + ck, Φk = Dk + EkK,
JnMPC(x,u) = JcnMPC(x, c) =

∑∞
k=0

(
∥xk − xrk∥

2
Q +

∥Kxk + ck − urk∥
2
R

)
, g(xk+1, xk, uk) = ϕ(xk+1, xk, ck).

To simplify the cMPC RHOCP constraints (11d) have
been removed as the at the cMPC convergence point
S+
k = Sk = S−

k = {0} and the sets have been
implemented using their bounds s+k|i, s̄

+
k|i,s

−
k|i, s̄

−
k|i ∈ Rnx as

optimization variables where S+
k|i = {s : s

+
k|i ≤ s+ ≤ s̄+k|i},

S−
k|i = {s : s

−
k|i ≤ s− ≤ s̄−k|i}. The augumented Lagrangian

and the KKT conditions for the simplified NLP problem are

LnMPC(x, c, λ) = JcnMPC(x, c)−
∑N−1

k=0 λkϕ(xk+1, xk, ck)

0 =
∂Jc

nMPC(xi,ci)
∂x0

|(x∗,n,c∗,n) − λ∗,n0
∂ϕ(r,y,c)

∂y |(x∗,n
1 ,x∗,n

0 ,c∗,n0 )

for k = 1, . . . , N − 1

0 =
∂Jc

nMPC(xi,ci)
∂xk

|(x∗,c∗,n) − λ∗,nk
∂ϕ(r,y,c)

∂y |(x∗,n
k+1,x

∗,n
k ,c∗,nk )

− λ∗,nk−1
∂ϕ(r,y,c)

∂r |(x∗,n
k ,x∗,n

k−1,c
∗,n
k−1)

and for k = 0, . . . , N − 1

0 =
∂Jc

nMPC(xi,c)
∂ck

|(x∗,n,c∗,n) − λ∗,nk
∂ϕ(r,y,c)

∂c |(x∗,n
k+1,x

∗,n
k ,u∗,n

k )

0 = ϕ(x∗,nk+1, x
∗,n
k , c∗,nk )

where (·)∗,n denotes the value at the local optimum point
for nMPC simplified and x∗,n

i is obtained from c∗,ni and
ϕ(xk+1, xk, ck). The augumented Lagrangian and the KKT
conditions for the simplified cMPC RHOCP problem become

LcMPC(c,S,x
0,u0,α,β,γ,µ,ψ,η,ξ,τ)=JcMPC(c,S,x

0,u0)+

+
∑N−1

k=0

(
αkϕ(z

1
k) + βkϕ(z

2
k) + γkϕ(z

3
k) + µkϕ(z

4
k)

−(ψk(Cks̄
−
k+1+Φks̄k+Ekck)+ηk(Cks

−
k+1+Φks̄k+Ekck)

+ξk(Cks̄
−
k+1+Φksk+Ekck) + τk(Cks

−
k+1+Φksk+Ekck))

)
for k = 1, . . . , N − 1

0 = α∗,c
k−1

∂ϕ(r,y,c)
∂r |z1,∗,ck−1

+ γ∗,ck−1
∂ϕ(r,y,c)

∂r |z3,∗,ck−1
(26a)

0 = β∗,c
k−1

∂ϕ(r,y,c)
∂r |z2,∗,ck−1

+ µ∗,c
k−1

∂ϕ(r,y,c)
∂r |z4,∗,ck−1

(26b)
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0 = −ψ∗,c
k−1

∂ϕ(r,y,c)
∂r |z5,∗,ck−1

− ξ∗,ck−1
∂ϕ(r,y,c)

∂r |z7,∗,ck−1
(26c)

0 = −η∗,ck−1
∂ϕ(r,y,c)

∂r |z6,∗,ck−1
− τ∗,ck−1

∂ϕ(r,y,c)
∂r |z8,∗,ck−1

(26d)

and for k = 0, . . . , N − 1

0 = ∂JcMPC
∂s̄k
|z∗,c

i
+α∗,c

k
∂ϕ(r,y,c)

∂y |z1,∗,ck
+β∗,c

k
∂ϕ(r,y,c)

∂y |z2,∗,ck

−ψ∗,c
k

∂ϕ(r,y,c)
∂y |z5,∗,ck

− η∗,ck
∂ϕ(r,y,c)

∂y |z6,∗,ck
(26e)

0 = ∂JcMPC
∂sk
|z∗,c

i
+ γ∗,ck

∂ϕ(r,y,c)
∂y |z3,∗,ck

+µ∗,c
k

∂ϕ(r,y,c)
∂y |z4,∗,ck

− ξ∗,ck
∂ϕ(r,y,c)

∂y |z7,∗,ck
− τ∗,ck

∂ϕ(r,y,c)
∂y |z8,∗,ck

(26f )

0 = ∂JcMPC
∂ck
|z∗,c

i
+α∗,c

k
∂ϕ(r,y,c)

∂c |z1,∗,ck
+β∗,c

k
∂ϕ(r,y,c)

∂c |z2,∗,ck

+γ∗,ck
∂ϕ(r,y,c)

∂c |z3,∗,ck
+µ∗,c

k
∂ϕ(r,y,c)

∂c |z4,∗,ck
−ψ∗,c

k
∂ϕ(r,y,c)

∂c |z5,∗,ck

−η∗,ck
∂ϕ(r,y,c)

∂c |z6,∗,ck
−ξ∗,ck

∂ϕ(r,y,c)
∂c |z7,∗,ck

−τ∗,ck
∂ϕ(r,y,c)

∂c |z8,∗,ck

(26g)
0=αc,∗

k ϕ(z1,c,∗k )=βc,∗
k ϕ(z2,c,∗k )=γc,∗

k ϕ(z3,c,∗k )=µc,∗
k ϕ(z4,c,∗k ) (26h)

0=ψc,∗
k (Ck s̄

−,c,∗
k+1 +Φk s̄

c,∗
k +Ekc

c,∗
k )=ηc,∗k (Cks

−,c,∗
k+1 +Φk s̄

c,∗
k +Ekc

c,∗
k )

0=ξc,∗k (Ck s̄
−,c,∗
k+1 +Φks

c,∗
k +Ekc

c,∗
k )=τc,∗

k (Cks
−,c,∗
k+1 +Φks

c,∗
k +Ekc

c,∗
k )

where: z∗
i =(cc,∗,Sc,∗,S+,c,∗,S−,c,∗,x0

i ,u
∗
i )

z1k=(x0
k+1+s̄

−
k+1, x

0
k+s̄k, σk), z

2
k=(x0

k+1+s
−
k+1, x

0
k+s̄k, σk)

z3k=(x0
k+1+s̄

−
k+1, x

0
k+sk, σk), z

4
k=(x0

k+1+s
−
k+1, x

0
k+sk, σk)

z5k=(x0
k+1+s̄

+
k+1, x

0
k+s̄k, σk), z

6
k=(x0

k+1+s
+
k+1, x

0
k+s̄k, σk)

z7k=(x0
k+1+s̄

+
k+1, x

0
k+sk, σk), z

8
k=(x0

k+1+s
+
k+1, x

0
k+sk, σk)

and z1,∗,ck − z8,∗,ck are analogously defined with σk = ck +
u0k − Kx0k. Now at the convergence point (c∗,ni ,S∗,n

i ) =
(0, {{0}, . . . , {0}}) summing (26a - 26d) for k = 0 and
(26a - 26f ) for k > 1 we obtain

∂JcMPC
∂x0
|z∗,c

i
+(α∗,c

0 +β∗,c
0 +γ∗,c

0 +µ∗,c
0 −ψ∗,c

0

−η∗,c0 −ξ∗,c0 −τ∗,c
0 )

∂ϕ(r,y,c)
∂y |

(x0
1, x0

0, c00)
=0 (27)

∂JcMPC
∂xk
|z∗,c

i
+(α∗,c

k +β∗,c
k +γ∗,c

k +µ∗,c
k −ψ∗,c

k −η∗,ck −ξ∗,ck

−τ∗,c
k )

∂ϕ(r,y,c)
∂y |

(x0
k+1

, x0
k
, c0

k
)
+(α∗,c

k−1+γ
∗,c
k−1+β

∗,c
k−1+µ

∗,c
k−1−ψ

∗,c
k−1

−η∗,ck−1−ξ
∗,c
k−1−τ

∗,c
k−1)

∂ϕ(r,y,c)
∂r |

(x0
k
, x0

k−1
, c0

k−1
)
=0 for k≥1 (28)

with c0k = u0k−Kx0k because at the point of interest z1,∗,ck =
z2,∗,ck = ... = z8,∗,ck and the cost derivative for a given k is
non-zero for either the bar or the underbar variable, but never
both at the same time due to the min-max cost formulation.
Similarly for k ≥ 0 Equation (26g) becomes

∂JcMPC
∂ck
|z∗,c

i
+(α∗,c

k +β∗,c
k +γ∗,c

k +µ∗,c
k −ψ∗,c

k −η∗,ck

−ξ∗,ck −τ∗,c
k )

∂ϕ(r,y,c)
∂c |

(x0
k+1

, x0
k
, c0

k
)
=0 (29)

Now using (27), (28), and (29) together and comparing to the
nMPC KKT for the simplified problem with x = x0, c = c0

it is clear that the point (x0
i , c

0
i , {−α

∗,c
k −β

∗,c
k −γ

∗,c
k −µ

∗,c
k +

ψ∗,c
k +η∗,ck +ξ∗,ck +τ∗,ck for k = 0, . . . , N}) satisfies the sim-

plified KKT conditions for nMPC RHOCP simplified. This
point, to which the successive convex programs converge, is
also a local optimum for the original NLP problem.
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