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Abstract— This paper introduces a novel model-free solution
for a multi-objective model-following control problem, utilizing
an observer-based adaptive learning approach. The goal is to
regulate model-following error dynamics and optimize process
variables simultaneously. Integral reinforcement learning is
employed to adapt three key strategies, including observation,
closed-loop stabilization, and reference trajectory tracking.
Implementation uses an approximate projection estimation
method under mild conditions on learning parameters.

I. INTRODUCTION

Model-following techniques based on the optimal control
framework have been used for trajectory-tracking control
problems [1]. However, these solutions require offline solv-
ing of differential equations and full knowledge of process
dynamics. Model Reference Adaptive Systems (MRAS) have
been employed for real-time tracking control, but they have
limitations such as dependence on process dynamics and
lack of optimization for dynamic variables [2]. In this work,
we propose a new model-free control architecture using
an observer approach specifically designed for Linear Time
Invariant (LTI) systems. Our approach, based on Integral
Reinforcement Learning (IRL), ensures convergence under
mild conditions on learning parameters.

The model-following applications involve various systems,
including hypersonic aircraft, autonomous vehicles, under-
actuated systems, and robotic manipulators [3–6]. Several
existing solutions exhibit the aforementioned limitations in
model-following, such as dual mode predictive control [7],
sliding mode surfaces [8], adaptive backstepping and L1
adaptive control [4], Lyapunov-based MRAS [9], model
predictive control [5], and barrier function-based MRAS [3].
Graphical games have been used to address leader-follower
control problems for LTI agents interacting through graph
topologies [10–12], relying on pinning control to ensure syn-
chronization. Model-based approaches using sum-of-squares
polynomials [9], model-predicted control [13], and sliding
surface-based observers [8] have been explored. Additionally,
observer-based approaches [14] have been employed, but
they lack model-free strategies.
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Reinforcement Learning (RL) is a machine learning tool
that utilizes temporal difference structures to find optimal
strategies in dynamic learning environments [15–17]. This
implies seeking rewards or penalties to maximize cumulative
rewards. RL solutions are implemented using Value Iteration
(VI) and Policy Iteration (PI) techniques [17–19], and param-
eter estimation approaches such as Recursive Least Squares
(RLS) and Batch Least Squares (BLS) are employed to find
underlying strategies [19,20]. In the continuous-time domain,
the control setup results in the integral Bellman optimality
equation [21,22], which is solved using IRL approaches. As
the Bellman equation cannot be solved analytically, adaptive
critic structures approximating RL solutions are used [23–
27]. RL approaches have been applied to various problems
such as Linear Quadratic Regulator (LQR) [28], model-
following control [29], output-based regulation of multi-
agent systems [30], and control of flexible wing aircraft [31].

Contributions: This work proposes a customized con-
trol structure to solve the model-following control problem.
The structure consists of three model-free strategies, adept
at regulating model-following tracking errors, observation
errors, and optimizing closed-loop performance. The ob-
server strategy, with its flexible-order error dynamics, offers
advantages over low-order schemes and serves as an addi-
tional model-following structure to guide internal process
dynamics. Moreover, unlike many existing approaches, this
method optimizes both model-following error dynamics and
closed-loop dynamic performance by solving the underlying
LQR problem.

Mathematical notation: In this paper, R represents the
set of real numbers, Z0+ denotes non-negative integers, and N
stands for positive whole numbers. The Kronecker product
is denoted by ⊗. The gradient of function M is referred
to as ∇M. Let ∥𝜘∥∞ = sup

𝑘∈N
∥𝜘(𝑘)∥∞ define the L∞− norm

of a sequence {𝜘(𝑘)}∞
𝑘=0 with L2

def
= {𝜘 : ∥𝜘∥2 < ∞} and

L∞
def
= {𝜘 : ∥𝜘∥∞ < ∞}.
Structure: The paper is structured as follows: Sec-

tion II explains the overall control scheme consisting of
three model-free strategies to achieve optimization goals.
In Section III, the optimal control setup leading to the
integral Bellman optimality equation is discussed, along with
stability characteristics. Section IV presents the model-free
IRL solution and its actor-critic implementation, introducing
an approximate projection technique for stable adaptations
of actor-critic weights. Section V validates the IRL solution
using an unstable dynamic process and a nonlinear reference-
trajectory. Finally, Section VI summarizes the main findings.
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II. PROBLEM FORMULATION

The model-following problem encounters challenges
due to complex mathematical manipulations of reference-
tracking error dynamics and the need for simultaneous
optimization of other process variables. To address this, an
observer-based strategy is presented to simplify the control
scheme and enhance computational efficiency.

The process dynamics structure is described below.

¤X = AX + B u and 𝑌 = 𝐶 X, (1)

where X ∈ R𝑛, u ∈ R𝑚, and 𝑌 ∈ R𝑝 represent vectors of
the states, input control signals, and output signals, respec-
tively. Moreover, A, B, and C are the dynamic parameters
characterizing the process.

The process described by (1) is required to follow another
dynamical model given by: ¤̂X = Â X̂ + B̂ (u𝜋Ob + u), where
X̂ ∈ R𝑛 is a vector of either the desired or observed states,
Â and B̂ are parameters of the desired dynamical system or
approximated process, and u𝜋𝑂𝑏 ∈ R𝑚 is the control signal
due to an observer strategy 𝜋𝑂𝑏.

Remark 1: The parameters Â and B̂ can represent the
desired dynamical performance or an approximation of the
process (A and B). The objective is to regulate the observa-
tion errors without requiring partial or full knowledge of the
process dynamics.

The reference dynamical behavior is determined by a
command generator, represented as: Y𝑟𝑒 𝑓 (𝑡) = 𝑓 (𝑡), where
Y𝑟𝑒 𝑓 (𝑡) ∈ R𝑞 . The objective of the optimization problem
is to let an output Y𝑠 (𝑡) ∈ R𝑞 of system (1) follow the
reference-trajectory Y𝑟𝑒 𝑓 (𝑡) ∈ R𝑞 (i.e., lim

𝑡→∞
∥e𝑀 𝑓 (𝑡)∥ → 0,

e𝑀 𝑓 (𝑡) = Y𝑟𝑒 𝑓 (𝑡)−Y𝑠 (𝑡)). To clarify mathematical notation,
any time-dependent function 𝑔(𝑡) will be denoted as 𝑔𝑡 .

To address the challenges, we divide the overall control
strategy into three sub-strategies: (i) u𝜋𝑂𝑏

𝑡 ∈ R𝑚 observes
the process states, forming an additional model-following
loop to compare the process outputs (1) with the desired or
approximated outputs. (ii) `

𝜋𝐶𝑙

𝑡 ∈ R𝑚 optimizes the closed-
loop performance of the dynamic system, and (iii) u𝜋𝑀 𝑓

𝑡 ∈
R𝑚 reflects the model-following actions. These interactive
strategies are implemented in a model-free fashion, resulting
in the main control strategy u𝑡 = `

𝜋𝐶𝑙

𝑡 + u𝜋𝑀 𝑓

𝑡 . The detailed
control scheme will be explained in the following sections.

A. Observing the Desired Dynamic Performance

This strategy aims to find the desired states using an
observer-like structure. Hence, the desired or approximated
dynamic process is described by:

¤̂X = Â X̂ + B̂ (u𝜋𝑂𝑏 + u) and 𝑌 = 𝐶 X̂, (2)

where X̂ ∈ R𝑛 and 𝑌 ∈ R𝑝 are vectors of the desired or
observed states and output signals, respectively.

The observer control signal u𝜋𝑂𝑏 relies on a flexible-order
of tracking-error dynamics defined by a vector E𝑂𝑏. The
size of this vector varies according to the number of error
samples 𝑒𝑂𝑏

𝑡 = Y𝑡 − Ŷ𝑡 collected at fixed-time intervals
𝛿, such that E𝑂𝑏

𝑡 =
[
𝑒𝑂𝑏
𝑡 𝑒𝑂𝑏

𝑡+𝛿 𝑒𝑂𝑏
𝑡+2𝛿

]T ∈ R3𝑝 . The

observer strategy 𝜋𝑂𝑏 is selected using an adaptive learning
mechanism, and the resulting control signal is given by
u𝜋𝑂𝑏

𝑡+𝛿 = u𝜋𝑂𝑏

𝑡 + `
𝜋𝑂𝑏

𝑡 , where `
𝜋𝑂𝑏

𝑡 = 𝜋𝑂𝑏 E𝑂𝑏
𝑡 , `

𝜋𝑂𝑏

𝑡 ∈ R𝑚.
The strategy 𝜋𝑂𝑏 is selected to minimize the performance
index given by 𝐽

𝜋Ob
𝑡 =

∫ ∞
𝑡

𝑈𝑂𝑏
𝜏

(
E𝑂𝑏
𝜏 , `

𝜋𝑂𝑏
𝜏

)
𝑑𝜏. The cost

function 𝑈𝑂𝑏 is used to minimize the observation errors.
Assumption 1: The dynamic system (2) defined by (Â, C)

is observable and the process (1) is observable as well. □

B. Closed-Loop Strategy

The model-following strategy regulates the trajectory-
tracking error dynamics while stabilizing and optimizing
the process’s performance. To achieve this, a closed-loop
feedback strategy 𝜋𝐶𝑙 is advised based on real-time ob-
served states, ensuring stability of the closed-loop dy-
namical system, provided it is stabilizable. The objective
function associated with this strategy is given by 𝐽

𝜋Cl
𝑡 =∫ ∞

𝑡
𝑈𝐶𝑙

𝜏

(
X̂𝜏 , `

𝜋𝐶𝑙
𝜏

)
𝑑𝜏, where 𝑈𝐶𝑙

𝑡 is a cost function. The
resulting strategy takes the form of linear feedback: `

𝜋𝐶𝑙

𝑡 =

𝜋𝐶𝑙 X̂𝐶𝑙
𝑡 , `

𝜋𝐶𝑙

𝑡 ∈ R𝑚. This strategy solves the underlying
Linear Quadratic Regulation (LQR) problem for the desired
or observed system (2).

Assumption 2: There exists a stabilizing control strategy
𝜋𝐶𝑙 that can stabilize the closed-loop dynamics of the desired
or approximated process ¤̂

𝑋 = (Â + B̂ 𝜋𝐶𝑙)X̂. □

C. Online Model-Following Strategy

The model-following strategy aims to regulate the errors
𝑒
𝑀 𝑓
𝑡 between the selected outputs of the process Y𝑠

𝑡 and
those of the reference system Y𝑟𝑒 𝑓

𝑡 (i.e., 𝑒𝑀 𝑓
𝑡 = Y𝑟𝑒 𝑓 −Y𝑠

𝑡 ).
Similar to the observer strategy, the model-following error
samples are collected at a fixed-time interval 𝛿, resulting

in E𝑀 𝑓
𝑡 =

[
𝑒
𝑀 𝑓
𝑡 𝑒

𝑀 𝑓

𝑡+𝛿 𝑒
𝑀 𝑓

𝑡+2𝛿

]T
∈ R3𝑞 . Three error

samples are considered for both the observer and model-
following strategies. The model-following strategy 𝜋𝑀 𝑓 is
determined online using the control law u𝜋𝑀 𝑓

𝑡+𝛿 = u𝜋𝑀 𝑓

𝑡 +
`
𝜋𝑀 𝑓

𝑡 , where `
𝜋𝑀 𝑓

𝑡 = 𝜋𝑀 𝑓 E𝑀 𝑓
𝑡 ∈ R𝑚. The perfor-

mance index to evaluate the quality of 𝜋𝐶𝑙 is defined as
𝐽
𝜋Mf
𝑡 =

∫ ∞
𝑡

𝑈
𝑀 𝑓
𝜏

(
E𝑀 𝑓
𝜏 , `

𝜋𝑀 𝑓

𝜏

)
𝑑𝜏, where 𝑈

𝑀 𝑓
𝑡 represents

the model-following cost function.
Assumption 3: The strategies 𝜋𝐶𝑙 and 𝜋𝑀 𝑓 stabilize the

process around the desired reference-trajectory Y𝑟𝑒 𝑓 . □

D. Overall Control Solution

The control mechanism implies the existence of kernel
solution structures that realize the interactive optimization
goals of the sub-control problems (i.e., argmin𝜋𝑂𝑏

𝐽
𝜋Ob
𝑡 ,

argmin𝜋𝐶𝑙
𝐽
𝜋Cl
𝑡 , and argmin𝜋𝑀 𝑓

𝐽
𝜋Mf
𝑡 ). Since the process is

an LTI system, the kernel solutions can take quadratic forms
in the observer errors, observed states, and model-following
errors. Assumptions 1, 2, and 3 are made to ensure the
availability of such strategies that can stabilize the closed-
loop dynamics and follow the desired reference-trajectory.
Moreover, this solution form can also be attempted for
nonlinear systems, given the data-driven structure of its
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Fig. 1: The overall adaptive control scheme

proposed strategies. The overall control scheme of the model-
following solution is depicted in Fig. 1.

III. OPTIMAL CONTROL FOUNDATION

The aim of each sub-control problem is to minimize
its respective cost function, given by 𝑈𝑖

𝑡

(
F

𝑖
𝑡 , `

𝜋𝑖
𝑡

)
=

1
2

(
F

𝑖 𝑇
𝑡 Q𝑖 F

𝑖
𝑡 + `

𝜋𝑖 𝑇
𝑡 R𝑖 `

𝜋𝑖
𝑡

)
, where 𝑖 ∈ {𝑂𝑏,𝐶𝑙, 𝑀 𝑓 }

refers to each sub-control problem, Q𝑖 ∈ R𝑛×𝑛 and R𝑖 ∈
R𝑚×𝑚 are weighting matrices. Each optimization problem is
solved using a Hamiltonian structure, which is given by

𝐻𝑖 (F𝑖
𝑡 , 𝝀

𝜋𝑖
𝑡 , `

𝜋𝑖
𝑡 ) = 𝝀𝜋𝑖 𝑇

𝑡
¤𝒁𝜋𝑖
𝑡 +𝑈𝑖

𝑡

(
F

𝑖
𝑡 , `

𝜋𝑖
𝑡

)
, (3)

where 𝐻𝑖 , 𝑖 ∈ {𝑂𝑏,𝐶𝑙, 𝑀 𝑓 } is a Hamiltonian function
for each sub-control problem 𝑖, F𝑖

𝑡 ∈
{
E𝑂𝑏
𝑡 , X̂𝐶𝑙

𝑡 , E𝑀 𝑓
𝑡

}
,

and 𝝀𝜋𝑖
𝑡 ∈ R(𝑛+𝑚) is a Lagrange multiplier associated with

constraint ¤𝒁𝜋𝑖
𝑡 : 𝒁𝜋𝑖 = [F𝑖 𝑇

𝑡 `
𝜋𝑖 𝑇
𝑡 ]𝑇 ∈ R(𝑛+𝑚) .

The following result demonstrates how the kernel solution
forms can be selected.

Lemma 1: Let 𝑉 𝑖
𝑡 (𝒁

𝜋𝑖
𝑡 ) > 0, 𝑉 𝑖

𝑡 (0) = 0 be a solving
value function satisfying the Hamiltonian (3). Then, 𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡 )

represents a Lyapunov Function.
Proof: The function 𝑉 𝑖

𝑡 takes advantage of the LTI
dynamic properties of the underlying sub-control prob-
lems. Therefore, its structure can be chosen as follows:
𝐽
𝜋i
𝑡

def
= 𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡 ) = 1

2 𝒁
𝜋𝑖
𝑡 S

𝑖 𝒁𝜋𝑖 𝑇
𝑡 , where 0 < S

𝑖 ≡[
S

𝑖
FF

S
𝑖
F`𝜋

S
𝑖
`𝜋F

S
𝑖
`𝜋`𝜋

]
∈ R4×4, 𝑺𝑖

FF
∈ R3×3, and 𝑺𝑖

`𝜋`𝜋 ∈

R. This form represents a candidate Lyapunov function
under the given assumptions. Furthermore, the Hamilton-
Jacobi (HJ) theory establishes the relation between the value

function 𝑉 𝑖
𝑡 and the Lagrange multiplier 𝝀𝜋𝑖

𝑡 as follows:
𝝀𝜋𝑖
𝑡 = ∇𝑉 𝑖

𝑡 = 𝜕𝑉 𝑖
𝑡 /𝜕𝒁

𝜋𝑖
𝑡 . Moreover, the solution of each

underlying optimal sub-control problem yields a solution for
its corresponding Bellman equation (i.e., 𝐻𝑖 (F𝑖

𝑡 ,∇𝑉
𝑖
𝑡 , `

𝜋𝑖
𝑡 ) =

0) which implies that 𝜕𝑉 𝑖
𝑡

𝜕𝒁
𝜋𝑖
𝑡

𝑇 ¤𝒁𝜋𝑖
𝑡 +𝑈𝑖

𝑡

(
F

𝑖
𝑡 , `

𝜋𝑖
𝑡

)
= 0. This is

an infinitesimal form of the Hamilton-Jacobi-Bellman (HJB)
equation, given by: ¤𝑉 𝑖

𝑡 +𝑈𝑖
𝑡

(
F

𝑖
𝑡 , `

𝜋𝑖
𝑡

)
= 0. Since ¤𝑉 𝑖

𝑡 ≤ 0, then
𝑉 𝑖
𝑡 is a Lyapunov function.
The realization of a model-free control strategy involves

constructing a temporal difference structure, which can be
adapted using various approximate dynamic programming
forms, as explained in the following result.

Lemma 2: Let 𝑉∗𝑖
𝑡 (𝒁𝜋∗𝑖

𝑡 ) > 0, 𝑉∗𝑖
𝑡 (0) = 0 represent the

optimal solution of (3) following the optimal strategy 𝜋∗𝑖 .
Thus, 𝑉∗𝑖

𝑡 (𝒁𝜋∗𝑖
𝑡 ) corresponds to the optimal solution of the

integral Bellman optimality expression provided by:

𝑉∗𝑖
𝑡 (𝒁𝜋∗𝑖

𝑡 ) =
∫ 𝑡+𝛿

𝑡

𝑈∗𝑖
𝜏

(
F

𝑖
𝜏 , `

𝜋∗𝑖
𝜏

)
𝑑𝜏 +𝑉∗𝑖

𝑡 (𝒁𝜋∗𝑖
𝑡+𝛿). (4)

Proof: The Hamiltonian 𝐻𝑖 (F𝑖
𝑡 ,∇𝑉

𝑖
𝑡 , `

𝜋𝑖
𝑡 ) = 0 can be

reformulated using Euler approximation as follows:

𝑉 𝑖
𝑡 (𝒁

𝜋𝑖
𝑡 ) =

∫ 𝑡+𝛿

𝑡

𝑈𝑖
𝜏

(
F

𝑖
𝜏 , `

𝜋𝑖
𝜏

)
𝑑𝜏 +𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡+𝛿). (5)

The optimal strategy takes on a linear form, which can be
expressed as follows:

`
𝜋∗𝑖
𝑡 = −S𝑖−1

`𝜋`𝜋 S
𝑖
`𝜋F

F
𝑖
𝑡 . (6)

This strategy leads to an optimal function 𝑉∗𝑖
𝑡 (𝒁𝜋∗𝑖

𝑡 ), which
solves (4) and the HJB equation 𝐻𝑖 (F𝑖

𝑡 ,∇𝑉
∗𝑖
𝑡 , `

𝜋∗𝑖
𝑡 ) = 0.

The subsequent result indicates that the observer-based
model-following strategy achieves asymptotic stabilization of
both the observer and model-following errors. These tracking
errors are denoted as e𝑖𝑡 , 𝑖 ∈ {𝑂𝑏, 𝑀 𝑓 } for clarity.

Theorem 1: Let the initial values of functions 𝑉 𝑖
0 (𝒁

𝜋𝑖
0 ),∀𝑖

be bounded by upper values Υ𝑖 ,∀𝑖 ∈ {𝑂𝑏, 𝑀 𝑓 }. Then, the
trajectory-tracking dynamical error systems are asymptoti-
cally stable (i.e., lim

𝑡→∞
∥e𝑖𝑡 ∥ → 0).

Proof: The integral Bellman equation (5) yields a
Lyapunov function, as per Lemma 1. Hence, 𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡 ) ≤

𝑉 𝑖
0 (𝒁

𝜋𝑖
0 ) ≤ Υ𝑖 and 𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡 ) ∈ L∞,∀𝑖 ∈ {𝑂𝑏, 𝑀 𝑓 }. This,

Assumption 1, and Assumption 3 reveal that the trajectory-
tracking errors

{
𝑒𝑖𝑡 , 𝑒

𝑖
𝑡+𝛿 , 𝑒

𝑖
𝑡+2𝛿

}
∈ L∞ and hence the sta-

bilizing strategy, derived using the kernel solution S
𝑖 , is

𝜋𝑖 ∈ L∞. The HJB equation 𝐻𝑖 (F𝑖
𝑡 ,∇𝑉

𝑖
𝑡 , `

𝜋𝑖
𝑡 ) = 0 signifies

that ¤𝑉 𝑖
𝑡 = −𝑈𝑖

𝑡

(
F

𝑖
𝑡 , `

𝜋𝑖
𝑡

)
≤ 0. Therefore, ¤𝑉 𝑖

𝑡 ∈ L∞ and
¤𝒁𝜋𝑖
𝑡 ∈ L∞. This HJB equation yields lim

𝑡→∞
∥𝑉 𝑖

𝑡 ∥ → 0

with
∫ 𝑡

0
1
2

(
F

𝑖 𝑇
𝜏 Q𝑖 F

𝑖
𝜏 + `

𝜋∗𝑖 𝑇
𝜏 R𝑖 `

𝜋∗𝑖
𝜏

)
𝑑𝜏 ≤ 𝑉 𝑖

0 (𝒁
𝜋𝑖
0 ). Then,∫ 𝑡

0
1
2F

𝑖 𝑇
𝜏

(
Q𝑖 + 𝜋𝑇∗𝑖 R𝑖 𝜋∗𝑖

)
F

𝑖
𝜏 𝑑𝜏 ≤ 𝑉 𝑖

0 (𝒁
𝜋𝑖
0 ). This reveals

that F𝑖
𝑡 ∈ L2 and ¤𝑉 𝑖

𝑡 ∈ L2. Therefore, according to Barbalat’s
Lemma lim

𝑡→∞
¤𝑉 𝑖
𝑡 → 0, implying asymptotic stabilization of

the model-following and observation errors.

IV. IRL SOLUTION ALGORITHM

The analytical solution of the coupled integral Bellman
optimality equation (4) is challenging, requiring the use of
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approximate learning mechanisms like RL. Consequently, a
model-free IRL solution is developed to identify the optimal
strategies to follow.

A. Integral Reinforcement Learning Algorithm
Algorithm 1 presents an online IRL solution, which solves

the integral temporal difference equations (4) with the op-
timal strategies (6). This model-free approach utilizes error
measurements 𝑒

𝑀 𝑓
𝑡 and 𝑒𝑂𝑏

𝑡 alongside observed states X̂.
The algorithm employs an adaptive critic to approximate the
underlying optimal strategy using the actor structure, while
the critic assesses the quality of the attempted strategy.

Algorithm 1 Integral Reinforcement Learning Algorithm

1: Initialize the states F
𝑖
0,∀𝑖 and strategies 𝜋𝑖 ,∀𝑖.

2: Compute S
𝑖 (𝑟+1) ,∀𝑖 by solving the equation:

𝑉
𝑖 (𝑟+1)
𝑡 (𝒁𝜋𝑖 (𝑟 )

𝑡 ) −𝑉
𝑖 (𝑟+1)
𝑡 (𝒁𝜋𝑖 (𝑟 )

𝑡+𝛿 ) =∫ 𝑡+𝛿

𝑡

𝑈
𝑖 (𝑟)
𝜏

(
F

𝑖
𝜏 , `

𝜋𝑖 (𝑟 )
𝜏

)
𝑑𝜏, (7)

where 𝑟 is an iterative index.
3: Update the strategy and determine the control signal

`
𝜋0
𝑖
0(𝑟+1)

𝑡+𝛿 = −S𝑖 (𝑟+1)−1

`𝜋`𝜋 S
𝑖 (𝑟+1)
`𝜋F

F
𝑖
𝑡+𝛿 . (8)

4: Terminate upon convergence of ∥S𝑖 (𝑟+1) − S
𝑖 (𝑟) ∥, ∀𝑖.

B. Actor-Critic Implementation
Real-time parameter estimation involves two steps. First,

we use structures Ŝ
𝑖
,∀𝑖 to approximate matrices S

𝑖 ,∀𝑖 by
solving the underlying integral Bellman optimality equations.
Second, we approximate the optimal strategies 𝜋∗𝑖 ,∀𝑖 in the
form of �̂�𝑖 ,∀𝑖. The vector-indices of the process are defined
as follows: 𝑛 = 3 and 𝑚 = 𝑝 = 𝑠 = 1. To approximate each
function 𝑉 𝑖

𝑡 (𝒁
𝜋𝑖
𝑡 ), we use the following critic structure:

�̂� 𝑖
𝑡 (𝒁

�̂�𝑖
𝑡 ) = 1

2
𝒁 �̂�𝑖 𝑇
𝑡 Ŝ

𝑖
𝒁 �̂�𝑖
𝑡 ,∀𝑖 (9)

where �̂�𝑇
𝑖

∈ R3 and 0 < Ŝ
𝑖 𝑇 ∈ R4×4 are the weights

of the actor and critic structures, respectively. The Bell-
man optimality equation is written as �̃� 𝑖

𝑡 ,𝑡+𝛿 (𝒁
�̂�𝑖
𝑡 ,𝑡+𝛿) =∫ 𝑡+𝛿

𝑡
𝑈∗𝑖

𝜏

(
F

𝑖
𝜏 , `

𝜋∗𝑖
𝜏

)
𝑑𝜏, ∀𝑖 with �̃� 𝑖

𝑡 ,𝑡+𝛿 (𝒁
�̂�𝑖
𝑡 ,𝑡+𝛿) = �̂� 𝑖

𝑡 (𝒁
�̂�𝑖
𝑡 ) −

�̂� 𝑖
𝑡+𝛿 (𝒁

�̂�𝑖
𝑡+𝛿),∀𝑖. This equation can be reformulated as follows:

𝚯𝑖 �̃� �̂�𝑖
𝑡 = 𝚽𝑖

𝑡 , (10)

where �̃� �̂�𝑖
𝑡 =

{(
ZZ𝑖
𝑡

⊗
Z[𝑖
𝑡

)
, 𝑖 ∈ {𝑂𝑏,𝐶𝑙, 𝑀 𝑓 } , Z𝑂𝑏 =

1, . . . , (ℓ × 𝑝 + 𝑚), Z𝐶𝑙 = 1, . . . , (𝑛 × 𝑝 + 𝑚), Z𝑂𝑏 =

1, . . . , (a × 𝑠 + 𝑚), [𝑂𝑏 = Z𝑂𝑏, . . . , (ℓ × 𝑝 + 𝑚), [𝐶𝑙 =

Z𝐶𝑙 , . . . , (𝑛 × 𝑝 + 𝑚), [𝑂𝑏 = Z𝑂𝑏, . . . , (a × 𝑠 + 𝑚)} , 𝚯𝑖 is a
vector that is calculated by reshaping matrix 1

2 Ŝ
𝑖

to associate
its entries with �̃� �̂�𝑖

𝑡 , and 𝚽𝑖
𝑡 =

∫ 𝑡+𝛿
𝑡

𝑈∗𝑖
𝜏

(
F

𝑖
𝜏 , `

𝜋∗𝑖
𝜏

)
𝑑𝜏.

Similarly, the best strategy-to-follow (8) is approximated
by an actor structure �̂�𝑖 such that

�̂�𝑖 F
𝑖
𝑡 = 𝝓𝑖

𝑡 and 𝝓𝑖
𝑡 = −Ŝ𝑖−1

` �̂�` �̂� Ŝ
𝑖

` �̂�F𝑖 F
𝑖
𝑡 . (11)

The actor-critic weights will be tuned using projection-
based parameter estimation approach. The following result
outlines the convergence characteristics of the employed
projection adaptation approach.

Theorem 2: Let the actor weights �̂�𝑖 and critic weights Ŝ
𝑖

be calculated using Algorithm 1. Then,
a. The actor and critic weights converge to a set of

weights �̂�∗
𝑖

and Ŝ
∗𝑖

, respectively.
b. The actor and critic weights’ deviations from the

optimal solution (i.e., �̂�∗
𝑖

and 𝚯𝑖∗) remain bounded,
given mild conditions on the learning rates.

Proof: a. The tuning errors in the adapted critic
and actor weights are optimized using the Hamilto-
nian functions 𝐻𝑖

𝚯 and 𝐻𝑖
�̂�

, respectively, as follows.
𝐻𝑖

𝚯 (𝚯
𝑖 , _𝑖𝚯, 𝑓

𝑖
𝚯) = 1

2
(
𝚯𝑖 (𝑟+1) −𝚯𝑖 (𝑟) ) (𝚯𝑖 (𝑟+1) −𝚯𝑖 (𝑟) )T +

_𝑖𝚯 𝑓 𝑖𝚯 and 𝐻𝑖
�̂�
(�̂�𝑖 , _𝑖�̂� , 𝑓

𝑖
�̂�
) = 1

2
(
�̂�𝑟+1
𝑖

− �̂�𝑟
𝑖

) (
�̂�𝑟+1
𝑖

− �̂�𝑟
𝑖

)T +
_𝑖
�̂�
𝑓 𝑖
�̂�
, where _𝑖𝚯 and _𝑖

�̂�
are Lagrange multipliers associated

with the optimization constraints 𝑓 𝑖𝚯 = 𝚯𝑖 (𝑟+1) �̃� �̂�𝑖
𝑟 −𝚽𝑖

𝑟 and
𝑓 𝑖
�̂�
= �̂�𝑟+1

𝑖
F 𝑖
𝑟 − 𝝓𝑖

𝑟 , respectively. To determine the critic and
actor adaptation laws, the Hamiltonian optimization condi-

tions are applied as follows:
𝜕𝐻𝑖

𝚯

𝜕𝚯𝑖 (𝑟+1) = 0,
𝜕𝐻𝑖

𝚯

_𝑖𝚯

= 0,
𝜕𝐻𝑖

�̂�

�̂�𝑟+1
𝑖

=

0, and
𝜕𝐻𝑖

�̂�

_𝑖
�̂�

= 0. This yields
(
𝚯𝑖 (𝑟+1) −𝚯𝑖 (𝑟) )T+_𝑖𝚯𝒁

�̂�𝑖
𝑡 = 0,

𝑓 𝑖𝚯 = 0,
(
�̂�𝑟+1
𝑖

− �̂�𝑟
𝑖

)T + _𝑖
�̂�
F

𝑖
𝑡 = 0, and 𝑓 𝑖

�̂�
= 0, respectively.

Further manipulation results in the following critic and actor
update laws: 𝚯𝑖 (𝑟+1) = 𝚯𝑖 (𝑟) − �̃�

�̂�𝑖 T
𝑟

�̃�
�̂�𝑖 T
𝑟 �̃�

�̂�𝑖
𝑟

(
𝚯𝑖 (𝑟) �̃� �̂�𝑖

𝑟 −𝚽𝑖
𝑟

)
and

�̂�𝑟+1
𝑖

= �̂�𝑟
𝑖
− F𝑖 T

𝑡

F𝑖 T
𝑡 F𝑖

𝑡

(
�̂�𝑟
𝑖
F 𝑖
𝑟 − 𝝓𝑖

𝑟

)
. The actor-critic adapta-

tion forms can be modified while maintaining the overall
optimization objectives by controlling the adaptation paces
and addressing possible singularity issues, ensuring non-
divergent behavior. The modifications can be incorporated
as follows

𝚯𝑖 (𝑟+1) = 𝚯𝑖 (𝑟) − 𝜎𝑖
𝑐 �̃�

�̂�𝑖T
𝑟

𝛼𝑖
𝑐 + �̃� �̂�𝑖T

𝑟 �̃� �̂�𝑖
𝑟

(
𝚯𝑖 (𝑟) �̃� �̂�𝑖

𝑟 −𝚽𝑖
𝑟

)
(12)

�̂�𝑟+1
𝑖 = �̂�𝑟𝑖 −

𝜎𝑖
𝑐 F

𝑖 T
𝑡

𝛼𝑖
𝑎 + F

𝑖 T
𝑡 F

𝑖
𝑡

(
�̂�𝑟𝑖 F 𝑖

𝑟 − 𝝓𝑖
𝑟

)
, (13)

where 𝜎𝑖
𝑐, 𝛼

𝑖
𝑐, 𝜎

𝑖
𝑎, and 𝛼𝑖

𝑎, ∀𝑖 ∈ R are positive parameters.
Algorithm 1 and the stability results from Lemma 2 and

Theorem 1 show that lim
𝑡→∞

∥F 𝑖
𝑡 ∥ → 0 and lim

𝑡→∞
∥ �̃� �̂�𝑖

𝑡 ∥ → 0.

Consequently, the weights 𝚯𝑖 (𝑟) and �̂�𝑟
𝑖

will converge to a
solution comprising 𝚯𝑖∗ and �̂�∗

𝑖
, respectively.

b. Let the adaptation errors in the adapted critic and actor
weights be denoted as follows: 𝚯𝑖 (𝑟)

𝑒 = 𝚯𝑖∗−𝚯𝑖 (𝑟) and �̂�𝑟
𝑖 𝑒

=

�̂�𝑟
𝑖
− �̂�∗

𝑖
, respectively. Then, (12) yields 𝚯𝑖 (𝑟+1) T

𝑒 = 𝚯𝑖 (𝑟) T
𝑒 −

𝜎𝑖
𝑐 �̃�

�̂�𝑖
𝑟

(
𝚽𝑖

𝑟 −
(
−𝚯𝑖 (𝑟)

𝑒 +𝚯𝑖∗
)
�̃� �̂�𝑖
𝑟

)T

𝛼𝑖
𝑐 + �̃� �̂�𝑖 T

𝑟 �̃� �̂�𝑖
𝑟

with 𝚽𝑖
𝑟 −𝚯𝑖∗ �̃� �̂�𝑖

𝑟 = 0.

Further, 𝚯𝑖 (𝑟+1) T
𝑒 = 𝚯𝑖 (𝑟) T

𝑒 − 𝜎𝑖
𝑐 �̃�

�̂�𝑖
𝑟 �̃� �̂�𝑖 T

𝑟

𝛼𝑖
𝑐 + �̃� �̂�𝑖 T

𝑟 �̃� �̂�𝑖
𝑟

𝚯𝑖 (𝑟) T
𝑒 or simply

𝚯𝑖 (𝑟+1) T
𝑒 = 𝑨𝑖

𝑐 𝚯
𝑖 (𝑟) T
𝑒 , where 𝑨𝑖

𝑐 =

(
I𝑖𝑐 −

𝜎𝑖
𝑐 �̃�

�̂�𝑖
𝑟 �̃�

�̂�𝑖 T
𝑟

𝛼𝑖
𝑐+�̃�

�̂�𝑖 T
𝑟 �̃�

�̂�𝑖
𝑟

)
and
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I𝑖𝑐 is an identity matrix. To ensure bounded tuning of the
critic weights, the parameters 𝜎𝑖

𝑐 and 𝛼𝑖
𝑐 must be chosen

such that 0 < 𝜎𝑖
𝑐 < 2 and 0 < 𝛼𝑖

𝑐. Similarly, (13) yields

�̂�𝑟+1
𝑖 𝑒

= 𝑨𝑖
𝑎 �̂�

𝑟
𝑖 𝑒

with 𝑨𝑖
𝑎 =

(
I𝑖𝑎 −

𝜎𝑖
𝑎 F 𝑖

𝑟 F 𝑖 T
𝑟

𝛼𝑖
𝑎 + F 𝑖 T

𝑟 F 𝑖
𝑟

)
, where I𝑖𝑎

is an identity matrix. Hence, the conditions 0 < 𝜎𝑖
𝑎 <

2 and 0 < 𝛼𝑖
𝑎 ensure convergence to solution �̂�∗

𝑖
.

V. MODEL-FOLLOWING VALIDATION RESULTS

The model-free IRL solution is validated using a third-
order dynamical process with the following parameters:

A =

[
0 1 0
0 −5 10
0 −1 −5

]
, B =


0
0
1

 , and C =
[

0 1 0
]𝑇

.

The dynamic parameters of the desired process are as

follows: Â =

[
0.0132 1.0085 −0.0055
0.0132 −5.0286 9.9132
−0.0526 −1.0155 −4.9374

]
and B̂ =[

−0.0072 −0.0547 1.0527
]𝑇

. The selected output of
the process is represented as Y𝑠 = X(2). Additionally, the
nonlinear reference trajectory 𝑌

𝑟𝑒 𝑓
𝑡 is expressed as:

𝑌
𝑟𝑒 𝑓
𝑡 =


1 + exp(−0.01 𝑡) cos

(
1.5 𝑡
20

)
, for 𝑡 ≤ 10

0.5 (1 + exp(−0.01 (𝑡 − 10))) , for 10 < 𝑡 ≤ 20

The model-following goal is to regulate the errors 𝑌
𝑟𝑒 𝑓
𝑡 −

X(2) such that lim
𝑡→∞

∥𝑌 𝑟𝑒 𝑓
𝑡 − X(2)∥ → 0. The remaining

learning parameters are outlined in Table I. The simulation is
performed using MATLAB software for a duration of 20 sec.

TABLE I: Learning and Adaptation Parameters

Parameter Value Parameter Value

Q𝑖 0.05 𝐼3 R𝑖 0.01
𝛿 0.01 sec 𝛼𝑖

𝑐 1.8
𝜎𝑖
𝑐 0.5 𝛼𝑖

𝑎 1.8
𝜎𝑖
𝑎 0.5

Discussion: The desired response features an unstable
process with a nonlinear reference trajectory, challenging the
IRL solution’s performance. Simulation results in Figure 2
illustrate closed-loop, observer, and model-following loops
with solid, dotted, and dotted-dashed lines, respectively.
Critic and actor weights are computed using (12) and (13),
and adaptations of the actor weights are depicted in Fig. 2(a).
After an exploration phase, the actor weights converge to
solutions for the sub-control problems. Control signals `

𝜋𝑂𝑏

𝑡

and `
𝜋𝑀 𝑓

𝑡 demonstrate the IRL solution’s ability to regulate
observation and model-following errors (Figs. 2(b) and 2(d)).
The closed-loop control signal `

𝜋𝐶𝑙

𝑡 enables the process
to follow the nonlinear reference trajectory and optimize
closed-loop performance (Fig. 2(b)). The closed-loop strat-
egy converges to 𝜋𝐶𝑙 = [−15.9517,−4.0410,−4.9822]. De-
spite the unstable process and nonlinear reference trajectory,
the observer and closed-loop strategies stabilize the dynamic
process while following the desired reference-trajectory. The

IRL solution successfully achieves the control goals simulta-
neously in a model-free manner, as highlighted in Fig. 2(c).

VI. CONCLUSION

An innovative model-free integral reinforcement learning
approach is proposed to solve the model-following control
problem. The control structure comprises three interactive
strategies: one for regulating errors between actual and
observed states, another for optimizing and stabilizing the
closed-loop system, and a third for enabling the process to
track a nonlinear reference trajectory. Our solution effectively
optimizes the process’s dynamic performance while precisely
regulating model-following errors. Implementation involves
using an approximate projection method to adapt the actor-
critic weights for the sub-strategies, with careful management
of learning parameters to ensure convergence.

REFERENCES

[1] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. John
Wiley & Sons, 2012.
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