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Abstract— In cooperative multi-agent reinforcement learning
(Co-MARL), a team of agents must jointly optimize the team’s
long-term rewards to learn a designated task. Optimizing
rewards as a team often requires inter-agent communication
and data sharing, leading to potential privacy implications.
We assume privacy considerations prohibit the agents from
sharing their environment interaction data. Accordingly, we
propose Privacy-Engineered Value Decomposition Networks
(PE-VDN), a Co-MARL algorithm that models multi-agent
coordination while provably safeguarding the confidentiality of
the agents’ environment interaction data. We integrate three
privacy-engineering techniques to redesign the data flows of
the VDN algorithm—an existing Co-MARL algorithm that
consolidates the agents’ environment interaction data to train
a central controller that models multi-agent coordination—and
develop PE-VDN. In the first technique, we design a distributed
computation scheme that eliminates Vanilla VDN’s dependency
on sharing environment interaction data. Then, we utilize a
privacy-preserving multi-party computation protocol to guar-
antee that the data flows of the distributed computation scheme
do not pose new privacy risks. Finally, we enforce differential
privacy to preempt inference threats against the agents’ training
data—past environment interactions—when they take actions
based on their neural network predictions. We implement
PE-VDN in StarCraft Multi-Agent Competition (SMAC) and
show that it achieves 80% of Vanilla VDN’s win rate while
maintaining differential privacy levels that provide meaningful
privacy guarantees. The results demonstrate that PE-VDN can
safeguard the confidentiality of agents’ environment interaction
data without sacrificing multi-agent coordination.

I. INTRODUCTION

Cooperative multi-agent reinforcement learning (Co-
MARL) is a machine learning problem in which multiple
agents work together to optimize performance in a common
task. The agents interact with an environment that rewards
their actions as a team and must learn a decision-making
scheme that maximizes the team’s long-term rewards through
trial and error [25]. Co-MARL algorithms can extend the ca-
pabilities of single-agent reinforcement learning algorithms
to complete complex tasks that involve multiple agents;
for instance, in self-driving vehicles where reinforcement
learning is a popular approach for autonomous driving [2],
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Co-MARL may enable a fleet of autonomous vehicles to
cooperate and reduce traffic congestion [4].

We study modeling multi-agent coordination in Co-MARL
systems with privacy in mind. Effective coordination of-
ten requires inter-agent communication and data sharing.
However, sharing data may have privacy ramifications in
situations where agents represent privacy-sensitive entities or
handle privacy-sensitive information. For example, sharing
a self-driving vehicle’s environment interaction data may
reveal commuting patterns and sensitive locations such as
home, places of worship, and nightlife activities [9].

We assume that any data sharing that reveals the agents’
interactions with the environment violates privacy. The pres-
ence of privacy-sensitive information in the agents’ envi-
ronment interaction data could complicate Co-MARL al-
gorithms that rely on sharing them. Centralized training
algorithms [18] are major examples in which a central node
consolidates the environment interaction data of all agents
and trains a central controller that determines the team’s
actions. The central controller accounts for the dynamics of
how the training of one agent affects others and effectively
models multi-agent coordination. By requiring the agents to
share their environment interaction data, centralized training
methods expose the agents’ sensitive information to various
privacy risks such as data breaches and unauthorized access.
Accordingly, we raise the following research question:

Is it possible to redesign the data flows of central-
ized training algorithms to safeguard the confiden-
tiality of the agents’ environment interaction data
without losing multi-agent coordination?

We show that it is indeed possible to design such an algo-
rithm and propose Privacy-Engineered Value Decomposition
Networks (PE-VDN). Instead of relying on a central node
that consolidates the agents’ environment interaction data,
PE-VDN establishes multi-agent coordination by creating
peer-to-peer communication channels. Additionally, the algo-
rithm incorporates additional privacy-enhancing techniques
to ensure that its established information flows do not un-
dermine the confidentiality of the agents’ privacy-sensitive
environment interaction data.

We develop PE-VDN based on the Value Decomposition
Networks (VDN) algorithm in [21]—referred to as Vanilla
VDN, hereafter. Vanilla VDN is a centralized training and
decentralized execution (CTDE) Co-MARL algorithm that
uses a specially structured function approximator to estimate
the team’s action values and compute optimal actions. The
function approximator consists of multiple branches of neural
networks, each of which is designated for one agent. These
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neural networks use their designated agent’s environment
interaction data as input, and the summation of their outputs
estimates the team’s action value. The coupling of the neural
networks during training takes multi-agent coordination into
account. Once training concludes, the algorithm distributes
the final neural network branches back to their designated
agents so that they can use them to make their own decisions
at runtime. This decentralized execution feature is well-suited
to our privacy goals because it eliminates the need for sharing
any data during execution.

We use the Vanilla VDN algorithm as PE-VDN’s starting
point and incorporate three privacy-engineering techniques
to modify data flows and satisfy our privacy goals. First,
we decentralize the vanilla algorithm’s training. We demon-
strate that the gradients that Vanilla VDN computes for
centralized training are only coupled by a summation term
that aggregates the output of all neural network branches
in the action-value function approximator. We propose an
equivalent distributed computation scheme for the gradients
that enables the agents to locally maintain and optimize their
dedicated neural network branches themselves. The resulting
decentralized training algorithm computes the same gradients
as Vanilla VDN and only requires the agents to share their
neural network outputs with each other; hence, it mitigates
the privacy risks of sharing environment interaction data.

In the second privacy measure, we integrate a privacy-
preserving multi-party computation protocol with the dis-
tributed computation of the gradients. The protocol enables
the agents to compute the summation term that couples their
gradients while hiding the value of their neural network
outputs from each other. Since the agents only need the sum-
mation term for decentralized training, revealing their neural
network outputs for computing the summation unnecessar-
ily exposes information that correlates with their sensitive
environment interaction data. The protocol obfuscates the
neural network outputs with correlated random numbers that
act as encryption keys, then splits the resulting values into
encrypted peer-to-peer messages. The protocol guarantees
that as long as no party gains access to all of the peer-to-
peer messages that an agent emits, the agents’ neural network
outputs remain a secret.

The third and last privacy-protection layer that we design
for PE-VDN protects the agents’ environment interaction
data against indirect inference threats. The agents choose
their actions based on their internal neural network’s pre-
dictions and unintentional information leaks can occur when
neural networks release their predictions. For example, so-
called membership and attribute inference attacks, and inver-
sion attacks are all known to make accurate inferences about
the training data of a neural network by mere input and out-
put observations [29]. In PE-VDN, the neural networks that
determine the agents’ actions are trained with environment
interaction data. Our third privacy-engineering technique
preempts inference threats against the agents’ environment
interaction data.

The DP-SGD algorithm [1] is a privacy-preserving training
algorithm that can disrupt inference attacks against the train-

ing dataset of neural networks. DP-SGD enforces differential
privacy during training and helps protect the confidentiality
of the training data when external entities interact with
the trained models [7]. Intuitively, DP-SGD guarantees that
two training datasets that differ in a single record produce
approximately statistically indistinguishable neural network
parameters. If the agents train their internal neural networks
with DP-SGD, then the plausible-deniability guarantees that
DP-SGD provides can reduce the risks of indirect informa-
tion leakage about the agents’ past environment interaction
data.

The DP-SGD algorithm can be seamlessly integrated with
our last two privacy-engineering techniques; however, its
differential privacy analysis does not readily apply to deep
reinforcement learning algorithms. DP-SGD was originally
developed for supervised machine learning algorithms with
static training datasets, whereas in deep reinforcement learn-
ing, a stream of environment interaction data continuously
enters a replay buffer and is used for training. We provide a
theoretical analysis that leverages DP-SGD’s Moments Ac-
countant method [1] and Maximum-Overlap Parallel Com-
position [19] to compute the differential privacy level of DP-
SGD when applied to deep reinforcement learning.

We implement a Python library for PE-VDN and test it in
the StarCraft Multi-Agent Competition (SMAC) suite [16].
In the numerical results, we dissect the different privacy-
engineering components and study the trade-offs between
privacy, precision, and performance. Our results show that
within the acceptable differential privacy range of 0 and 10
[13], the agents can achieve 80% of Vanilla VDN’s win rate.

II. PRELIMINARIES

In this section, we cover some technical background on
Co-MARL’s problem formulation and review Vanilla VDN.

A. Dec-POMDP

Co-MARL algorithms typically model multi-agent co-
operation using decentralized partially observable Markov
decision processes (Dec-POMDPs) [6]. A Dec-POMDP G is
a tuple G = ⟨N ,S,A,O,Z,P,R, γ⟩ where N is the set of
agents and N = |N |; S, A, and O are the sets of all possible
states, actions, and observations, respectively; Z : S 7→ O is
an observation function; P : SN ×AN ×SN 7→ [0, 1] is the
environment’s transition probabilities;R : SN×AN×SN 7→
R is the reward function; and γ ∈ [0, 1) is the discount factor.

A team policy, denoted π := (πi)i∈N , determines the
actions that each of the agents must take at every environ-
ment observation. Similar to the notation used for the team
policy, we use bold symbols to denote team actions and
observations. In POMDPs, the policy typically incorporates
a history of past environment observations and actions. Let
τ t = ⟨(o1,a1), . . . , (ot−1,at−1),ot⟩ denote the team’s
history at time t where, for all k ≤ t, ak ∈ AN and o ∈ ON .
Then, π(at | τ t) is the probability that the team takes action
at when its history is τ t.
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Given a team policy π, a value function V π evaluates the
expected total reward that the policy accumulates, i.e.,

V π(s) = E

[ ∞∑
t=1

γt−1R(st,at, st+1) | s1 = s

]
, (1)

where at ∼ π and st+1 ∼ P(st+1 | st,at). An action-value
function Qπ is similarly defined as

Qπ(s,a) = E [R(s,a, s′) + γV π (s′) | s′ ∼ P(s′ | s,a)] .
(2)

The goal of solving a Dec-POMDP is to find an optimal
action-value function Q∗ and a corresponding optimal policy
π∗ such that Qπ∗

(s,a) = Q∗(s,a) = supπ Qπ(s,a). In
Co-MARL, the goal is to find an optimal policy without
knowing the underlying transition probabilities.

B. Deep Q-Learning

Deep Q-Learning (DQN) [11] is a variant of tabular Q-
learning that uses deep neural networks to approximate the
Q-function. By using neural networks, DQN can handle high-
dimensional and continuous state spaces. DQN uses a replay
buffer to train the neural network that approximates the Q-
function. The replay buffer is a fixed-length database of
the agent’s past environment interaction data in the form
of ⟨st, at, st+1,R(st, at, st+1)⟩, or in short ⟨s, a, s′, r⟩. The
replay buffer is typically filled as follows: the most recent
data replaces the oldest entry. However, other methods that
use specific heuristics to identify the entry that must be
replaced with incoming data exist as well [3].

With E denoting a minibatch of the replay buffer, DQN
minimizes the Bellman error loss function defined as follows:

ℓ(θ) =
∑

⟨s,a,s′,r⟩∈E

(
r + γmax

a′
Qπ
(
s′, a′; θ−

)
−Qπ(s, a; θ)

)2
,

(3)
where θ− is called the target parameters. These parameters
are copied from θ periodically to stabilize training.

C. Multi-Agent DQN

Both tabular Q-learning and DQN can be used to solve
Co-MARL problems. Since the agents in Co-MARL are
rewarded together as a team, a single Q-function can rep-
resent the action values of the entire team, i.e., the team
can be treated as a single agent with a multi-dimensional
action. Such bundling of the agents reduces Co-MARL to
single-agent reinforcement learning and is the main basis
of centralized training methods. Bundling agents requires
a consolidated replay buffer to support DQN. In the con-
solidated replay buffer, all parameters except the rewards
are replaced with their team versions—team states and team
actions and thus ⟨s,a, s′, r⟩ is used instead of ⟨s, a, s′, r⟩.
We also replace all state values s with histories τ to support
partial observability. The resulting loss function is∑
⟨τ ,a,τ ′,r⟩∈E

(
r + γmax

a′
Qπ
(
τ ′,a′; θ−

)
−Qπ(τ ,a; θ)

)2

.

(4)

Once training concludes, the trained Q-function for the
team supports the decision-making of all agents. In this case,
the agents must aggregate their environment observations to
execute the learned policy too. Therefore, this algorithm is
an instance of centralized training and centralized execution.

Alternatively, each agent may attribute the team rewards
to itself and use DQN to train a policy independently. This
approach is often called independent Q-learning. Independent
training allows the agents to execute their policy without
having to share their environment observations; however, as
opposed to centralized training, independent training does
not take multi-agent cooperation into account but it often
scales better with the number of agents [25].

In CTDE methods, the agents use centralized training to
learn the team’s optimal Q-function but then decompose it
into a set of local Q-functions that allow for decentralized
execution. The agents in CTDE methods choose the action
that maximizes their local Q-function; therefore, similar to
independent Q-learning, the agents need not share data to
execute the team’s policy. The difference between these local
Q-functions and those obtained via independent training,
however, is that the former takes multi-agent coordination
into account by design during training.

CTDE methods typically assume that the agents’ individ-
ually optimal actions amount to the optimal action for the
team. This so-called decentralizability assumption justifies
decomposing the team’s Q-function into local Q-functions
and supports decentralized execution. The formal definition
of decentralizability is as follows:

Definition 1: A reinforcement learning task is decentraliz-
able if there exists a collection of local action-value functions
{Qi}i∈N such that, for all team histories τ , team actions a,
and agents i ∈ N ,(

argmax
a

Qπ(τ ,a)
)
i
= argmax

ai

Qi(τi, ai). (5)

D. Vanilla VDN

The Vanilla VDN algorithm leverages decentralizability
by approximating the team’s central Q-function with the
summation of some local Qi functions. That is, the algorithm
assumes that there exist {Qi}i∈N such that, for all joint
policies π, histories τ , and actions a,

Qπ(τ ,a) =
∑
i∈N

Qi(τi, ai). (6)

This additivity assumption implies decentralizability in (5);
however, not all decentralizable tasks satisfy additivity.

In the centralized training phase of Vanilla VDN, the
agents must send their environment interaction data to a
central node to create a consolidated replay buffer and train
the team’s Q-function. The optimizer first draws a minibatch
of the consolidated replay buffer, denoted E. Let, e =
⟨τ ,a, τ ′, r⟩ ∈ E be an element of the minibatch, where τ =
(τi)i∈N , a = (ai)i∈N , and τ ′ = (τ ′i)i∈N denote the team’s
history, action, and next-step history, respectively. With θi
denoting the parameters of agent i’s dedicated portion of the
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Q-function, Vanilla VDN’s objective function is as follows:

ℓV DN (e; {θi}i∈N ) =(
r +

∑
i∈N

(
γmax

a′
Qi

(
τ ′i , a

′; θ−i
)
−Qi (τi, ai; θi)

))2

.

(7)

Vanilla VDN uses backpropagation to compute the gradi-
ent of the objective function with respect to each θi and uses
gradient descent methods to update the Q-function’s weights
and biases. That is, for all neural network branches {θi}i∈N ,
the optimizer performs the update

θi ← θi − α
∑
e∈E

∂ℓVDN(e; θ1, . . . , θN )

∂θi
, (8)

where α is the learning rate. Once centralized training
concludes, the optimizer distributes the agents’ designated
portions—namely Qi (·, ·; θi) for each i ∈ N—back to the
agents to support decentralized execution.

III. RELATED WORK
Our main research objective is to design a Co-MARL

algorithm with proper handling of the agents’ environment
interaction data in the name of privacy. In this section, we
briefly review the key research themes that are relevant to
our research objective.

The survey in [10] and its references to previous related
surveys provide an overview of privacy and security for
multi-agent machine learning. These surveys point to nu-
merous privacy threats against distributed learning systems
and are closely related to our privacy goals. Furthermore,
these surveys refer to federated learning, secure multi-party
computation, and differential privacy as three prominent
defensive mechanisms for general machine learning tasks.
We incorporate all three mechanisms in the design of PE-
VDN.

Next, we review existing works in designing privacy-aware
deep reinforcement learning agents. The single-agent deep
reinforcement learning algorithm in [23] is a differentially
private algorithm that protects the confidentiality of the
agent’s rewards. The work in [22] develops a single-agent
tabular reinforcement learning algorithm that satisfies joint
differential privacy—a relaxation of conventional differential
privacy. As opposed to the first work, we consider the
multi-agent setup, protect the agents’ environment interaction
data which includes rewards, and instead of developing a
customized differential privacy mechanism that perturbs the
objective function, we use verified and open-source libraries.
Compared with the second algorithm, we consider a multi-
agent setup, take continuous observations into account, and
do not use differential privacy relaxations. The single-agent
algorithm in [30] generalizes enforcing joint differential
privacy to continuous state and action spaces; however, it
is restricted to linear function approximators as opposed to
this work’s use of deep neural networks.

The decentralized multi-agent deep reinforcement learning
algorithms in [14] and [26] closely relate to the privacy goals

that we consider. However, the algorithms do not consider
team rewards and assume that the agents are rewarded
individually. Moreover, the algorithms do not address the
privacy risks associated with the inter-agent communication
frameworks that they propose.

IV. PRIVACY-ENGINEERING VANILLA VDN
We develop three privacy-engineering techniques to re-

design Vanilla VDN’s information flows and satisfy our
privacy objectives with respect to environment interaction
data. In this section, we describe each of the three privacy-
engineering techniques that we use to develop PE-VDN.

A. Decentralized Training

The Vanilla VDN algorithm’s update rule in (8) requires
the loss function’s gradients with respect to the parameters of
all neural network branches within the function approxima-
tor. Recall that, in Vanilla VDN, these branches are dedicated
to specific agents for decentralized execution. Evaluating the
gradient of the loss function in (7), for every branch θi and
minibatch sample e, we can write

∂ℓVDN(e; θ1, . . . , θN )

∂θi
=

− 2

(
r +

∑
i∈N

(
γmax

a′
Qi

(
τ ′i , a

′; θ−i
)
−Qi (τi, ai; θi)

))
︸ ︷︷ ︸

A

· ∂Qi(τi, ai; θi)

∂θi︸ ︷︷ ︸
B

. (9)

From the gradient expression and its separation into terms
A and B, we can observe that the A term is the only factor
that couples the gradients of the branches and is a function of
all of the agents’ environment interaction data. The B term,
however, is the gradient of the ith branch, and computing it
only requires the parameters of that branch and its dedicated
agent’s environment interaction data.

In PE-VDN, the agents maintain and train their dedicated
branch of the VDN themselves. They compute their local
gradients by cooperating with other agents to compute the A
term in (9) together, which is the coupling term that accounts
for multi-agent coordination. We now show how the agents
can cooperate to compute the A term without sharing their
environment interaction data.

We require every agent i to compute the message

mi = γmax
a′

Qi

(
τ ′i , a

′; θ−i
)
−Qi (τi, ai; θi) (10)

and share it with all other agents. Each mi value can be
computed using the ith agent’s environment interaction data
and the current parameters of its local Qi function. If every
agent broadcasts its message mi to the other agents and
locally computes its B term, it can then update its Qi function
just as Vanilla VDN would have updated that agent’s dedi-
cated branch. The resulting distributed computation scheme
eliminates the need for sharing environment interaction data
with a central node.
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B. Privacy-Preserving Multi-Party Summation

Although the summation in the A term can be easily
computed by requiring every agent to broadcast their mi

messages, doing so may lead to unintentional information
leakage about the agents’ environment interaction data.
The mi values are functions of their corresponding agent’s
privacy-sensitive environment interaction data and correlate
with them. We now show how the agents can compute the
desired summation in term A in (9) while hiding their mi

values from one another.
We use a privacy-preserving multi-party computation tech-

nique called secret sharing [17] to compute the A term while
hiding the underlying mi values. Secret sharing refers to
the process of dividing a secret into n pieces such that the
observation of the pieces reveals no information about the
underlying secret unless a sufficient number of them are
available. Precisely, a (k, n)-secret sharing of s guarantees
that observers with access to up to k−1 shares can learn no
information about s.

Additive secret sharing is an efficient (n, n)-secret sharing
scheme [24] that satisfies additive homomorphism, i.e., the
summation of the shares equals the summation of the secrets
under the guarantee that the individual shares reveal no
information about the secret. In computing the A term in the
gradient expression in (9), a privacy-preserving summation
protocol based on additive secret sharing can be used to
protect the agents’ contribution to the summation. More
details about how we integrate additive secret sharing with
decentralized training can be found in the extended version
of this paper [5].

C. Training with Differential Privacy

When the agents choose actions based on their neural
network’s action-value predictions, they may unintentionally
leak information about their environment interaction data as
well. It has been observed that the predictions of neural
networks could mirror specific relationships in the training
dataset that were not intended to be exposed [28]. For ex-
ample, text-generative neural networks may complete certain
input prompts with memorized phrases within their training
datasets [8]. Similarly, the actions of deep reinforcement
learning agents—including independent training algorithms
in Co-MARL—may reveal certain sensitive characteristics of
their training experience as well [12].

A machine learning algorithm that trains a neural network
must map a training dataset to a set of parameters that
determine the neural network’s weights and biases. Un-
der fixed hyperparameters and pseudo-randomization seeds,
training algorithms are deterministic mappings. These de-
terministic mappings may produce outputs that external
observers can accurately associate with certain training data.
Privacy-enhancing techniques based on differential privacy
can disrupt inference privacy threats against the training
datasets [28]. Differentially private training algorithms can
provably generate model parameters that are approximately
statistically indistinguishable from those trained with datasets
that differ in only one element. This guarantee establishes a

plausible deniability argument against the accuracy of pri-
vacy threats that base their attacks on the learned parameters
of a neural network or its predictions.

The DP-SGD algorithm [1] is a differentially private
supervised learning algorithm for neural networks and en-
forces differential privacy by repeatedly injecting Gaussian
noise into the gradients. The algorithm’s so-called Moments
Accountant subroutine tracks the differential privacy level of
the composition of the iterations throughout the training.

As opposed to typical gradient descent algorithms that
draw fixed-length minibatches, DP-SGD uses Poisson sam-
pling, which refers to a sampling method that chooses each
of the minibatch elements with a fixed probability. Moreover,
DP-SGD clips the gradients to a fixed threshold C. That is,
with gx denoting the gradient for sample x, DP-SGD uses
the mapping ClipC(gx) := gx ·max (1, ∥gx∥2/C)

−1.
We integrate DP-SGD with our earlier decentralization

and the privacy-preserving multi-party summation protocol
contributions as follows: instead of performing Poisson sam-
pling on a static labeled dataset as in supervised learning,
we perform Poisson sampling on the stream of environment
interaction data that gets loaded onto the agents’ replay
buffers. The integration of the DP-SGD concludes the design
of PE-VDN.

The application of DP-SGD to the contents of the agents’
replay buffers makes the existing differential privacy analysis
of DP-SGD ill-suited to PE-VDN. Specifically, the differ-
ential privacy analysis of the DP-SGD algorithm via the
Moments Accountant method [1] only applies to the contents
of the replay buffer for a single iteration, not the agents’
entire collection of environment interaction data. As the
last remaining puzzle piece, we now state a theorem that
computes the differential privacy level of PE-VDN.

Theorem 1: Fix a Poisson sampling rate q, noise variance
σ2, and δ as DP-SGD parameters. Let (ϵ(T ), δ) be the dif-
ferential privacy level that the Moments Accountant method
computes for DP-SGD after T iterations. Then, applying
DP-SGD updates to PE-VDN with buffer size B, once the
replay buffers have been fully populated achieves (ϵ(B), δ)-
differential privacy.

Proof: By the end of the training, let D = {d1, . . . , dT }
denote the set of all sequences of environment interaction
data that have been loaded onto an agent’s replay buffer in
sequential order. That is, d1, is the first sequence, d2 is the
second sequence, and so forth. Define

D1 = {d1, d2, . . . , dB}
...
DB = {dB , dB+1, . . . , d2B−1}

At the ith iteration, the algorithms apply DP-SGD to D∩Di.
The contents of each Di are at most used in the algorithm
for B iterations, and once a sequence d ∈ D is replaced in
the replay buffer with a new one, it is no longer a part of
the training. The composition theorem in [19] can leverage
such special set overlaps to provide better differential privacy
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Fig. 1. Comparison of the win rate of different algorithms in SMAC’s 3m environment. The left plot compares win rates of Vanilla VDN, Independent
Q-Learning (IQL), PE-VDN with only decentralized training (PE-VDN A), and PE-VDN with decentralized training and privacy-preserving multi-party
summation (PE-VDN B) algorithms. The right plot demonstrates the win rate of PE-VDN with differential privacy (PE-VDN C). The solid line represents
the anchor model’s win rate and the volatile dashed line is the win rate of the running model.

bounds. Consider the overlap set

X :=

{
I ⊆ {1, . . . , T} |

⋂
i∈I

Di ̸= ∅

}
. (11)

Each index set I ∈ X has at most B elements, which
corresponds to B consecutive sequences of environment
interaction data. By Theorem 5 of [19], the differential
privacy of the overall algorithm is upper bounded by that of
the composition of B iterations of DP-SGD updates, which
can be computed via the Moments Accountant method.

V. NUMERICAL EXPERIMENTS

Based on the three privacy-engineering techniques de-
scribed above, we implement a Python library for PE-VDN1.
We use the StarCraft Multi-Agent Competition (SMAC) suite
[16], a machine learning application programming interface
(API) for using Co-MARL to learn how to play StarCraft II.
Our experiments take place in SMAC’s 3m environment in
which three agents must cooperate to kill three pre-trained
enemies.

In the experiments, we dissect the different components
of PE-VDN to empirically evaluate their effects on team
rewards. First, we consider the decentralization of Vanilla
VDN’s training. We do not expect that decentralization
will affect performance because the distributed computation
scheme in Section IV-A (PE-VDN A) computes the same
gradients as Vanilla VDN. We also do not anticipate any
significant performance drop due to the privacy-preserving
multi-party summation protocol (PE-VDN B) because the
only source of inaccuracy that it introduces is the encoding
function’s quantization error.

We periodically evaluate the agents’ win rate during
training and plot the results in Figure 1. The win rates
confirm that Vanilla VDN, PE-VDN A, and PE-VDN B
with PRECISION = 5 all perform similarly. The superior
performance of Vanilla VDN, PE-VDN A, and PE-VDN B
compared with Independent Q-Learning in Figure 1 indicates
that the agents indeed benefit from cooperation.

In the next experiment, we evaluate the effects of enforcing
differential privacy via the DP-SGD algorithm. DP-SGD’s

1All codes and instructions are provided here.

injection of noise into the gradients may affect performance
negatively. In the supervised learning setup where DP-SGD
has been primarily studied, it has been reported that the
performance of the models trained with DP-SGD is more
sensitive to the choice of training hyperparameters than non-
differentially private counterparts [13]. In particular, hyper-
parameter tuning may play a key role in model accuracy,
training stability, and sample complexity [13]. Clipping gra-
dients may add bias, perturbing the gradients may deflect the
parameters away from local minima and destabilize training,
and achieving meaningful ϵ and δ values—ϵ < 3 and
δ < 1/n1.1, where n is the training dataset’s size [13]—may
require large training datasets.

In our implementations, we use the Opacus [27] tool-
box which is an open-source library for DP-SGD. We use
Opacus’ built-in Moments Accountant method to track PE-
VDN’s differential privacy levels as stated in Theorem 1.
Without differential privacy, we used the Adam optimizer
with a learning rate of 5 · 10−4. In light of the guidelines in
[13], we found that using the SGD optimizer with weight de-
cay 0.01, momentum 0.9, and a significantly higher learning
rate 5 ·10−3 performs better for DP-SGD. Moreover, we use
an anchoring technique to improve the training’s stability fur-
ther. In this technique, once the periodic win-rate evaluation
returns rates that are beyond a specific threshold, we save the
parameters as an anchor model. Then we repeatedly increase
the threshold and penalize the rest of the training with the
current parameters’ distance from the anchor. With these
techniques, Figure 1 shows the performance of PE-VDN
under (2.90, 4.9 · 10−4)-differential privacy and benchmarks
it with PE-VDN B with Poisson sampling.

VI. CONCLUSIONS & FUTURE WORK

In this work, we proposed the PE-VDN algorithm which
incorporates three privacy-engineering techniques to protect
the confidentiality of the agents’ environment interaction data
in Vanilla VDN. In particular, we re-engineered the data
flows of Vanilla VDN to achieve the following: decentralized
training without compromising multi-agent coordination,
privacy-preserving inter-agent communication and computa-
tion, and differentially private neural network training.
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For future work, we aim to develop similar decentral-
ization and privacy-preserving communication schemes for
more sophisticated centralized training and decentralized
execution algorithms such as QMIX [15] and QTRAN [20].
These algorithms improve upon the performance of the VDN
algorithm by relaxing the additivity assumption in (6). In
particular, the QTRAN algorithm only requires decentraliz-
ability as stated in (5).
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