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Abstract— In this paper we develop a framework to study
observability for uniform hypergraphs. Hypergraphs, being
extensions of graphs, allow edges to connect multiple nodes
and unambiguously represent multi-way relationships which
are ubiquitous in many real-world networks. We extend the
canonical homogeneous polynomial or multilinear dynamical
system on uniform hypergraphs to include linear outputs,
and we derive a Kalman-rank-like condition for assessing the
local weak observability. We propose an exact techniques for
determining the local observability criterion, and we propose a
greedy heuristic to determine the minimum set of observable
nodes. Numerical experiments demonstrate our approach on
several hypergraph topologies and a hypergraph representa-
tions of neural networks within the mouse hypothalamus.

I. INTRODUCTION

The ability to monitor, predict, and control complex,
networked systems is a fundamental and crucial task with
widespread applications in various domains, including so-
cial/communications systems, life sciences, security/defense,
and more [1], [2], [3]. Networks are often represented as
graphs, which while simple and to some extent universal,
only represent pairwise relationships, whereas real-world
phenomena can be rich in multi-way relationships. Examples
include social networks with friend groups, the colocalization
of chromatin strands to form transcription clusters, and brain
activity where multiple regions are coregulated [4], [5], [6].
In each case, observing the behavior and state of a few key
elements within the system is informative for the global state
of the system, and as opposed to graphs, hypergraphs provide
a more precise representation of the system structure.

A hypergraph is a generalized form of a graph, where its
hyperedges can connect any number of vertices, explicitly
capturing multi-way relationships [7]. Tensors offer a natural
framework for representing multi-dimensional patterns and
capturing higher-order interactions [8], making them increas-
ingly relevant in the study of hypergraphs [9], [10], [11].

Observability in dynamical systems quantifies our capa-
bility to deduce the system’s internal states from a given set
of system outputs or measurements. For instance, in control
engineering, especially when designing feedback control
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systems, we rely on estimations of the plant state based solely
on the plant output or the measurements collected from its
sensors. This finds various applications, such as monitoring
chemical reactions network or understanding the spread of
information or a disease within a community. In the context
of networked systems, two fundamental questions arise:

• (Q1) Is a set of sensor nodes sufficient to render a
network observable?

• (Q2) What is the minimum set of nodes to render a
network observable?

Observability of network systems has been extensively
studied from several perspectives; see [12] and references
therein. Structural observability involves determining Q1
based on methods such as the underlying directed graph
structure; dynamic observability addresses Q2 based on clas-
sical matrix properties, particle filtering [13], or the observ-
ability gramian [14]; and topological observability explores
the relationship between observability and graph topologies
[15], [16]. While hypergraphs are finding increasing use in
representing complex networks, the problem of hypergraph
observability remains unexplored.

This paper contributes to the observability of hypergraph
dynamics in the following ways:

• We construct a nonlinear observability test for hyper-
graph dynamics with linear outputs to answer Q1.

• We propose a greedy algorithm to efficiently determine
the minimum set of observable nodes (MON), in re-
sponse to Q2.

• We demonstrate our approach on several uniform hy-
pergraph topologies and hypergraphs derived from an
experimental mouse endomicroscopy dataset.

In this paper, we focus on the concept of weak local observ-
ability for nonlinear systems. To overcome the limitations
of local observability, our proposed algorithms leverage
symbolic calculations to offer a global observability test.

This paper is organized as follows. Following preliminar-
ies in Section II, Section III introduces nonlinear observ-
ability, and Section IV provides an overview of uniform
hypergraphs and their dynamics. In Section V, a test for hy-
pergraph observability is proposed and Section VI provides
our algorithm for selecting the MON. Finally, numerical
results and a discussion are provided in Sections VII and
VIII respectively.

II. PRELIMINARIES

In this section, we present a concise review of the multi-
linear algebra and Lie theory necessary for the development
of a hypergraph observability criteria.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2445



A. Kronecker Product

The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is
given by,

A⊗B =

 A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ,

where, A ⊗ B ∈ Rmp×nq . Furthermore, the mixed product
property implies that,

(A⊗B)(C⊗D) = (AC)⊗ (BD),

where A,B,C, and D are matrices of compatible dimen-
sions. The Kronecker power is a convenient notation to
express all possible products of elements of a vector up to a
given order, and it is denoted by,

x[i] = x⊗ x · · · ⊗ x︸ ︷︷ ︸
i−times

.

Moreover, for x ∈ Rn, dim(x[i]) = ni, and each component
of x[i] is of the form xω1

1 xω2 · · ·xωn
n for some multi-index

ω ∈ Zn of weight
∑n

j=1 ωj = i.

B. Tensors

A tensor is a multidimensional array [8], [17], [18]. The
order of a tensor is the number of its dimensions, and each
dimension is called a mode. An m-th order real valued tensor
will be denoted by T ∈ RJ1×J2×···×Jm , where Jk is the size
of its k-th mode. We will denote by J = (J1, J2, · · · , Jm).
It is therefore reasonable to consider scalars x ∈ R as zero-
order tensors, vectors x ∈ Rn as first-order tensors, and
matrices X ∈ Rm×n as second-order tensors. A tensor is
called cubical if every mode is the same size, i.e., T ∈
Rn×n×···×n. A cubical tensor T is called supersymmetric if
Tj1j2...jk is invariant under any permutation of the indices.

Definition 1: The tensor vector multiplication T×pv along
mode p for a vector v ∈ RJp is defined by

(T ×p v)j1j2...jp−1jp+1...jk =

Jp∑
jp=1

Tj1j2...jp...jkvjp ,

which can be extended to

T ×1 v1 ×2 v2 ×3 v3 · · · ×k vk = Tv1v2v3 . . . vm ∈ R (1)

for vp ∈ RJp . The expression (1) is also known as the
homogeneous polynomial associated with T. If vp = v for
all p, we write (1) as Tvm for simplicity.

Tensor unfolding is considered as a critical operation in
tensor computations [8]. In order to unfold a tensor T ∈
RJ1×J2×···×Jm into a vector or a matrix, we use an index
mapping function ivec(·, J) : Z×Z× m· · · ×Z → Z as defined
in [19], which is given by

ivec(j, J) = j1 +

m∑
k=2

(jk − 1)

k−1∏
l=1

Jl.

where, j = (j1, j2, · · · , jm).

Definition 2: The k-mode unfolding of T denoted by T(k),
is a Jk × (J1 · · · Jk−1Jk+1 · · · Jm) matrix, whose (i, p)-th
entries are given by

T(k)(i, p) = Tj1,··· ,jk−1,i,jk,··· ,jm ,

where, j̃ = (j1, · · · , jk−1, jk+1, · · · , jm) is such that p =
ivec(̃j, J̃) with J̃ = (J1, · · · , Jk−1, Jk+1 · · · Jm).

C. Lie Derivatives

Let h : Rn → R be a scalar function, then its gradient is
defined as a row vector of partial derivatives,

dh =
(

∂
∂x1

h . . . ∂
∂xn

h
)
.

This definition can be generalized to gradient of a vector
valued function h : Rn → Rm with components h =
(h1, · · · , hm)′, as

∇xh =

 dh1

...
dhm

 .

Let ⟨·, ·⟩ be the standard inner product on Rn. Let f : Rn →
Rn be a vector field, then Lie derivative of a scalar function
h along f is defined as

Lfh = ⟨dh, f⟩.

One can generalize this to higher order Lie derivatives
Li
fh, i ∈ Z defined recursively as follows,

Li
fh = Lf (L

i−1
f h),with L0

fh = h.

For vector valued function h one can similarly define the Lie
derivative as

Lfh =

 Lfh1

...
Lfhm

 =

 ⟨dh1, f⟩
...

⟨dhm, f⟩

 .

This definition can be naturally extended to higher order by
applying the definition of higher order Lie derivatives for
scalar functions to the components of h.

III. NONLINEAR OBSERVABILITY CRITERION

For nonlinear systems, notions of controllability and ob-
servability were introduced in the seminal work [20]. The
notion of observability is based on the indistinguishability
of system states, but in contrast to the linear systems, there
are several nonlinear observability concepts, such as local,
weak and global observability [20], [21], [22]. Unfortunately,
unlike the linear case where the Kalman rank condition can
be used to determine observability, no easy criteria exist for
nonlinear systems.

Consider the affine control system Σ,

Σ

{
ẋ = f(x,u) = h0(x) +

∑k
i=1 hi(x)ui

y = g(x)

where, u = (u1, · · · , uk)
′ ∈ Rk denotes the input vector,

x ∈ M ⊂ Rn is the state vector and y ∈ Rm is the
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output/measurement vector. We assume that Σ is analytic,
i.e., the functions hi : M → M, i = 0, · · · , k and gi : M →
R, i = 1, · · · ,m where g = (g1, · · · , gm)′ are assumed to
be analytic functions defined on M . We also have to assume
Σ is complete, that is, for every bounded measurable input
u(t) and every x0 ∈ M there exists a solution x(t) of Σ
such that x(0) = x0 and x(t) ∈ M for all t ∈ R. We
review different notions of observability from [23] which
are equivalent to those introduced in [20], but use a slightly
different terminology.

Definition 3: Let U be an open subset of M . A pair of
points x0 and x1 in M are called U -distinguishable if
there exists a measurable input u(t) defined on the interval
[0, T ] that generates solutions x0(t) and x1(t) of system Σ
satisfying xi(0) = xi, i = 0, 1 such that xi(t) ∈ U for
t ∈ [0, T ] and h(x0(t)) ̸= h(x1(t)) for some t ∈ [0, T ].
We denote by I(x0, U) all points x1 ∈ U that are not U–
distinguishable from x0

Definition 4: The system Σ is observable at x0 ∈ M if
I(x0,M) = x0.

Definition 5: The system Σ is locally observable at x0 ∈
M if for every open neighbourhood U of x0, I(x0, U) = x0

Local observability implies observability. On the other
hand, since U can be chosen arbitrarily small, local observ-
ability implies that we can distinguish between neighboring
points instantaneously. Both the definitions above ensure that
a point x0 ∈ M can be distinguished from every other
point in M . It is often sufficient to distinguish between
neighbours in M , which leads to the following two notions
of observability.

Definition 6: The system Σ is weakly observable at
x0 ∈ M if x0 has an open neighbourhood U such that
I(x0,M)

⋂
U = x0.

Definition 7: The system Σ is locally weakly observable
at x0 ∈ M if x0 has an open neighbourhood U such that
for every open neighbourhood V of x0 contained in U ,
I(x0, V ) = x0.

As we can set U = M , local observability implies local
weak observability. The local weakly observability lends
itself to a simple algebraic test. Let H be the observation
space,

H = {Lhi1
Lhi2

· · ·Lhir
(gi) : r ≥ 0, ij = 0, · · · , k,

i = 1, · · · ,m},

and
dH = spanRx

{dϕ : ϕ ∈ H},

be the space spanned by the gradients of the elements of
H, where Rx is space of meromorphic functions on M . The
following result was proved in [20], see Theorems 3.1 and
3.11.

Theorem 1: The analytic system Σ is locally weakly ob-
servable for all x in an open dense set of M if and only if
dimRx

(dH) = n.
Remark 1: Here dimRx

(dH) is the generic or maximal
rank of dH, that is, dimRx

(dH) = maxx∈M (dimRdH(x)).

For system Σ with no control inputs, i.e. hi ≡ 0, i =
1, · · · , k the condition for local weak observability simplifies
to checking,

rank(O(x)) = n, (2)

where, O(x) is the nonlinear observability matrix (NOM),

O(x) = ∇x


L0
h0
g(x)

L1
h0
g(x)
...

Lr
h0
g(x)

 , (3)

for some r ∈ Z. One can use symbolic computation to check
the generic rank condition (2) as performed by Sedoglavic’s
algorithm [24].

Remark 2: In general the value of r to use in (3) is not
known apriori. For analytic system Σ, r can be set to the
state dimension n, see Theorem 4.1 in [23].

Remark 3: For a polynomial system Σ, observability has
also been studied from the perspective of algebraic geometry,
see [22] and references therein.

We adopt the use of local weak observability as the notion
of nonlinear observability throughout the remainder of this
paper.

IV. UNIFORM HYPERGRAPHS
A undirected hypergraph G = {V,E} where V is a finite

set and E ⊆ P(V) \ {∅}, the power set of V. The elements
of V are called the nodes, and the elements of E are called
the hyperedges. A hypergraph is k-uniform if all hyperedges
contain exactly k vertices.

A. Uniform Hypergraph Structure
Definition 8: Let G = {V,E} be a k-uniform hypergraph

with n = |V| nodes. The adjacency tensor A ∈ Rn×n×···×n

of G is a k-th order, n-dimensional, supersymmetric tensor
is defined

Aj1j2...jk =

{
1

(k−1)! if {j1, j2, . . . , jk} ∈ E

0 otherwise
. (4)

We recall definitions of uniform hypergraph chain, ring,
star and complete hypergraphs following [9].

Definition 9: A k-uniform hyperchain is a sequence of n
nodes such that every k consecutive nodes are adjacent, i.e.,
nodes j, j+1, . . . , j+ k− 1 are contained in one hyperedge
for j = 1, 2, . . . , n− k + 1.

Definition 10: A k-uniform hyperring is a sequence of n
nodes such that every k consecutive nodes are adjacent, i.e.,
nodes σn(j), σn(j + 1), . . . , σn(j + k − 1) are contained in
one hyperedge for j = 1, 2, . . . , n, where σn(j) = j for
j ≤ n and σn(j) = j − n for j > n.

Definition 11: A k-uniform hyperstar is a collection of
k−1 internal nodes that are contained in all the hyperedges,
and n−k+1 leaf nodes such that every leaf node is contained
in one hyperedge with the internal nodes.

Definition 12: A k−uniform complete hypergraph is a set
of n vertices with all

(
n
k

)
possible hyperedges.

See Fig. 2 in Section VII-A for examples of these struc-
tures, and note that when k = 2, definitions 9 - 12 are
reduced to standard chains, rings, stars and complete graphs.
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B. Uniform Hypergraph Dynamics with Outputs

We extent the homogeneous polynomial/multilinear time-
invariant dynamics of a k-uniform hypergraph to include
linear system outputs.

Definition 13: Given a k-uniform undirected hypergraph
G with n nodes, the dynamics of G with outputs y ∈ Rm is
defined as

Σ

{
ẋ = f(x) = Axk−1

y = g(x) = Cx,
(5)

where A ∈ Rn×n×···×n is the adjacency tensor of G, and
C ∈ Rm×n is the output matrix.

See Fig. 1 for an example of uniform hypergraph and asso-
ciated dynamics. All the interactions are characterized using
multiplications instead of the additions that are typically
used in a standard graph based representation. For detailed
discussion on relationship between graph vs. hypergraph
dynamic representation, see [9].

V. OBSERVABILITY COMPUTATION FOR
UNIFORM HYPERGRAPHS

In this section, we recast the homogeneous polynomial/-
multilinear hypergraph dynamical system in terms of the
Kronecker product, derive a construction of the correspond-
ing NOM, and propose a recursive algorithm to perform the
construction.

The hypergraph dynamics (5) can be expressed equiva-
lently as the unfolded tensor A contracted with the Kronecker
exponentiation of the state vector:

Σ

{
ẋ = f(x) = A(p)x

[k−1]

y = g(x) = Cx,
(6)

where, A(p) ∈ Rn×nk−1

is the p-th mode unfolding of A.
Since A is a super-symmetric tensor, all p-th mode unfoldings
give rise to the same matrix A(p) = A.

Furthermore, f and g are homogeneous polynomials and
hence analytic functions. Thus, one can in principle use
Sedoglavic’s algorithm [24] for rank computation of NOM
associated with above system, as performed in [15] and
discussed in Section III. Alternatively, algebraic geometric
techniques for polynomial systems can also be used as
indicated in the Remark 3. These approaches while general
purpose tend to be computationally expensive. We develop
a specialized framework exploiting structure of hypergraph
dynamics introduced above for potentially more efficient
observability computation.

A. Observability Criterion

To determine the NOM (3) for the systems (5) and (6),
we compute the Lie derivatives of the system output along

1

2

3

ẋ=Ax


ẋ1 = x2 + x3

ẋ2 = x1 + x3

ẋ3 = x1 + x2

A

1

2

3

ẋ=Ax2


ẋ1 = x2x3

ẋ2 = x1x3

ẋ3 = x1x2

B

Fig. 1. Graphs versus uniform hypergraphs. (A) Standard graph with three
nodes and edges e1 = {1, 2}, e2 = {2, 3} and e3 = {1, 3}, and its
corresponding linear dynamics. (B) 3-uniform hypergraph with three nodes
and a hyperedge e1 = {1, 2, 3}, and its corresponding nonlinear dynamics.

the flow of the system state:

L0
fg(x) = Cx,

L1
fg(x) =

d

dt
Cx = CAx[k−1],

L2
fg(x) =

d

dt
CAx[k−1]

= CA
d

dt

( k − 1 times︷ ︸︸ ︷
x⊗ x · · · ⊗ x

)
= CA

(
ẋ⊗ · · · ⊗ x+ · · ·+ x⊗ · · · ⊗ ẋ

)
= CA

(∑
x⊗ · · · ⊗Ax[k−1] ⊗ · · · ⊗ x

)
= CA

[(∑
I⊗ · · · ⊗A⊗ · · · ⊗ I

)
x2k−3

]
= CAB2x

2k−3,
...

Ln
f g(x) = CAB2 . . .Bnx

[nk−(2n−1)] ∀n > 2,

where Bp is given by,

Bp =

(p−1)k−(2p−3)∑
i=1

(p−1)k−(2p−3)times︷ ︸︸ ︷
I⊗ · · · ⊗ A︸︷︷︸

i-th pos.

⊗ · · · ⊗ I . (7)

The NOM may then be written as

O(x) = ∇x


Cx

CAx[k−1]

CAB2x
[2k−3]

...
CAB2 . . .Bnx

[nk−(2n−1)]

 , (8)

where, we have used r = n as per Remark 2. From Theorem
1, when rank(O(x)) = dim(x), systems (5) and (6) are
observable.

Remark 4: For the case k = 2, the hypergraph reduces to
a graph with adjacency matrix A and linear dynamics. Then,
O(x) reduces to the Kalman observability matrix, and our
observability test is equivalent to the famous Kalman-rank
condition.
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B. Computational Framework

The NOM (8) can be expressed in the form,

O(x) = ∇x


CJ0(x)
CJ1(x)
CJ2(x)

...
CJn(x)

 ,

where, Ji(x) ∈ Rn are vectors defined as,

J0(x) = x,

J1(x) = Ax[k−1],

and

Jp(x) = AB2 . . .Bpx
[pk−(2p−1)],

for p = 2, · · · , n − 1. It is computationally infeasible to
construct the Bp matrices explicitly, so we apply the mixed
product property to evaluate Bpx

[pk−(2p−1)] as,

Bpx
[pk−(2p−1)]

=

(p−1)k−(2p−3)∑
i=1

(p−1)k−(2p−3)times︷ ︸︸ ︷
x⊗ · · · ⊗Ax[k−1]︸ ︷︷ ︸

i-th vpos.

⊗ · · · ⊗ x . (9)

The mixed product property can be recursively exploited
to compute products B2 · · ·Bpx

[pk−(2p−1)] appearing in
Jp(x).

From Eqn. 9, define sets S1, . . . , S(p−1)k−(2p−3) such that

Si =

{
x, . . . ,Ax[k−1]︸ ︷︷ ︸

i-th pos.

, . . . ,x

}
,

where |Si| = (p− 1)k− (2p− 3). Given all sets Si, the cal-
culation of Bp−1Bpx

[pk−(2p−1)] follows a similar procedure
to Eqn. 9 to obtain the result that Bp−1Bpx

[pk−(2p−1)] may
be written as

(p−2)k
−(2p−5)∑

i=1

(p−1)k
−(2p−3)∑

j=1

(
Sj,1 ⊗ · · · ⊗A

(
Sj,i ⊗ · · · ⊗ Sj,i+k−2

)︸ ︷︷ ︸
i-th pos.

⊗ · · · ⊗ Sj,(p−1)k−(2p−3)

)
, (10)

where there are (p − 2)k − (2p − 5) vectors in Rn that
are Kronecker product within each calculation of the inner
sum. These (p − 2)k − (2p − 5) vectors form elements in
the recursively calculated sets Si. Algorithm 1 performs the
recursive calculation of Jp(x).

Theorem 2: Recursive application of the mixed product
property of Kronecker products computes Jp(x) without
computing a Kronecker exponentiation larger than x[k−1].

Proof: Recursive use of the mixed product property
in computing Jp(x) generates a series of sets S′

i for i =
1, . . . , (p − 1)k − (2p − 3) where every term in the sets is
a vector in Rn. From Eqn. (10), each term in the sets S′

i

is taken directly from Si or through the multiplication of A

Algorithm 1 RecursiveJp(A, p, k, Sj)

1: if p = 1 then
2: Jp(x) = A

(
Sj,1 ⊗ · · · ⊗ Sj,(k−1)

)
3: return: Jp(x)
4: end if
5: b = (p− 1)k − (2p− 3)
6: Jp(x) = 0
7: for i = 1, . . . , b do

8: S′
i = {Sj,1, . . . ,

ith pos.︷ ︸︸ ︷
A
(
Sj,i ⊗ · · · ⊗ Sj,i+k−2

)
,

. . . , Sj,pk−(2p−1)}
9: Jp(x) = Jp(x) + RecursiveJp(A, p− 1, k, S′

i)
10: end for
11: return: Jp(x)

with the Kronecker product of k − 1 vectors in Si (Step 9
in Algorithm 1), which requires computing vectors of size
at most nk−1 with the Kronecker product.

Addressing the locality of the system state remains a
central challenge in determining nonlinear observability. To
provide a notion of global observability, Algorithm 1 is
applied to symbolic state vectors such that the rank condition
of the symbolic NOM is a test of observability for all states
of the system. Since the complexity of symbolic operations is
not fixed, Algorithm 1 is optimized to minimized Kronecker
exponentiation rather than to reduce the number of floating
point operations (FLOPs). If we were to test for local observ-
ability at a numeric state, we would utilize a Lyapanov-like
matrix solver to evaluate the NOM instead.

VI. MINIMUM OBSERVABLE NODE SELECTION

Finding the minimum set of observable nodes (MON)
is a combinatorial optimization problem, and is in general
intractable using brute-force search. We provide a greedy
heuristic approach for estimating the MON of a uniform
hypergraph in which nodes are chosen as measurements
based on the maximum change in the rank of OD(x), see
Algorithm 2. Here OD(x) denotes the NOM for nodes in
the index set D = {i1, · · · , im} ⊂ S = {1, · · · , n} as the
outputs, and is given by,

OD(x) =


Oi1(x)
Oi2(x)

...
Oim(x)

 ,

where, construction of Oi(x), i ∈ D is as follows. Let the
gradient of entries Jp,i(x), i = 1, · · · , n of vector Jp, for
p = 1, · · · , n be denoted,

Jp,i(x) = CiJp,i(x).
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Algorithm 2 GreedyMON(Oi(x) for all i = 1, · · · , n)
1: Let S = {1, 2, . . . , n} and D = ∅
2: while rank(OD(x)) < n do
3: for s ∈ S \D do
4: Compute ∆(s) = rank(OD∪{s}(x))− rank(OD(x))
5: end for
6: Set s∗ = argmaxs∈S\D∆(s)
7: Set D = D ∪ {s∗}
8: end while
9: return The set D.

where the output matrix Ci ∈ Z1×n observes only the i-th
node i.e. 1 at i-th entry and zero otherwise. Then

Oi(x) = ∇x


CiJ0(x)
CiJ2(x)

...
CiJn−1(x)

 =


J0,i(x)
J1,i(x)

...
Jn−1,i(x)

 ,

is the NOM with i-th node as the measurement.
Algorithm 2 provides a greedy approach to selecting the

MON of a hypergraph. The individual observation matrices
are provided as input and may be computed according to
Algorithm 1. The conditional statement in line 2 implements
Theorem 1 to determine the size at which the system is
observable with only the vertices contained in D. Line 4
computes the greedy heuristic to maximize the rank of the
NOM, and the rank calculations can be performed either nu-
merically or symbolically. The choice to execute Algorithm
2 numerically versus symbolically is the dominant factor in
determining the time complexity of Algorithm 2. When the
cost of checking the rank in line 4 is r, the run time of
Algorithm 2 is O(rn2).

VII. NUMERICAL RESULTS

We demonstrate the identification of MON on uniform
hypergraph chain, rings, and stars as well as a hypergraph
constructed from time series data. These calculations were
performed symbolically with MATLAB R2022b.

A. Synthetic Uniform Hypergraphs

We identified the MON set for uniform hypergraph chains,
rings and stars and k = 2, . . . , n with n = 3, . . . , 7. For
the hyperstar, the size of the MON increases with n and
decreases with k. As examples, in Fig. 2, six hypergraphs
are shown with the identified MON. Future work aims to
develop a theoretical characterization of the MON for these
types of hypergraphs.

B. Mouse Neuron Endomicroscopy Hypergraph

Hypothalamus neural activity during a feeding, fasting,
and refeeding experiment was monitored with endomi-
croscopy to generate a time series data set [25]. Similar to
[9] and [11], we construct 3 hypergraph representations of
the activity of 15 neurons during the different phases of the
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Fig. 2. MON of 3-uniform hyperchains, hyperrings and hyperstars.
The nodes with arrows are denoted as the MON nodes. (A) 3−uniform
hyperchain on n = 4 (left) and n = 5 (right) vertices. (B) 3−uniform
hyperring on n = 4 (left) and n = 6 (right) vertices. (C) 3−uniform
hyperstar on n = 5 (left) and n = 6 (right) vertices. (D) 3−uniform
complete hypergraphs with n = 5 (left) and n = 6 (right) vertices. The red
arrows indicate the MON.

experiment. First, we compute the multi-correlation of all
pairs of 3 neurons, which is defined

ρ = (1− det(R))1/2, (11)

where R ∈ R3×3 is the correlation matrix among 3 neu-
rons [26]. When the multi-correlation ρ is greater than a
prescribed threshold, we define a hyperedge among the 3
vertices. Following [9], we used a threshold of 0.95.

For each of the three hypergraphs, we identified the
MON. Fig. 3 depicts the hypergraph structure during each
phase of the feeding experiment and depicts the MON. A
similar correlation, thresholding, and graph construction was
performed on all 3 phases of the experiment to identify the
linear MON. Across all phases of the experiment, the MON
size is reduced for hypergraphs as opposed to graphs. During
the fast phase of the experiment, the multi-correlation among
all neurons decreases, which results in a less connected
hypergraph and an increased size of the MON. Given that
the number of observed nodes on the connected component
is minimal, it appears that the size of the MON set is largely
driven by hypergraph connectivity. While the hypergraph
MON sets is greatly reduced compared to the graph MON
sets during all three phases of the experiment, the size of the
MON set is the same order of magnitude as the minimum
control node sets identified on this data in [9].

VIII. CONCLUSION

In this paper, we proposed a framework to study ob-
servability for uniform hypergraphs. We defined a canonical
multilinear dynamical system with linear outputs using uni-
form hypergraph adjacency tensor leading to a homogeneous
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Fig. 3. (Above) Mouse neuron endomicroscopy features. Neuronal activity
networks of the three phases - fed, fast and re-fed, which depicts the
spatial location and size of individual cells. Each 2-simplex (i.e., a triangle)
represents a hyperedge, and red arrows indicate nodes selected in MON.
(Below) MON for the neuronal activity networks modelled by 3-uniform
hypergraphs and standard graphs.

polynomial system. We derived the NOM for assessing the
local weak observability of this resulting system. We also
proposed a recursive technique for efficient computation of
the NOM, and a greedy heuristic to determine the MON.
We demonstrated our approach numerically on different
hypergraph topologies, and hypergraphs derived from an
experimental mouse endomicroscopy dataset.

In the future, we plan to perform theoretical analysis for
determining MON for different hypergraph topologies and
exploring the role of symmetry, and to extend the proposed
framework for non-uniform and directed hypergraphs. We
also hope to further improve efficiency of the observability
computations to scale to large hypergraphs which often arise
in practise.

ACKNOWLEDGMENTS

This material is based upon work supported by the Air
Force Office of Scientific Research under award numbers
FA9550-22-1-0215 and FA9550-23-1-0400, by NSF grant
DMS-2103026, a MathWorks Fellowship to the Rajapakse
Lab (IR), and National Institute of General Medical Sciences
under award number GM150581 (JP). Any opinions, finding,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the United States Air Force.

REFERENCES

[1] S. H. Strogatz, “Exploring complex networks,” nature, vol. 410, no.
6825, pp. 268–276, 2001.

[2] M. Newman, Networks. Oxford university press, 2018.
[3] F. Bullo, Lectures on network systems. Kindle Direct Publishing,

2020, vol. 1.
[4] M. M. Wolf, A. M. Klinvex, and D. M. Dunlavy, “Advantages to

modeling relational data using hypergraphs versus graphs,” in 2016
IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2016, pp. 1–7.

[5] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania,
J.-G. Young, and G. Petri, “Networks beyond pairwise interactions:
structure and dynamics,” Physics Reports, 2020.

[6] A. R. Benson, D. F. Gleich, and D. J. Higham, “Higher-order network
analysis takes off, fueled by classical ideas and new data,” arXiv
preprint arXiv:2103.05031, 2021.

[7] C. Berge, Hypergraphs: combinatorics of finite sets. Elsevier, 1984,
vol. 45.

[8] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[9] C. Chen, A. Surana, A. Bloch, and I. Rajapakse, “Controllability of
hypergraphs,” IEEE Transactions on Network Science and Engineer-
ing, 2021.

[10] C. Chen and I. Rajapakse, “Tensor entropy for uniform hypergraphs,”
IEEE Transactions on Network Science and Engineering, vol. 7,
no. 4, pp. 2889–2900, 2020. [Online]. Available: https://ieeexplore.
ieee.org/document/9119161

[11] A. Surana, C. Chen, and I. Rajapakse, “Hypergraph similarity mea-
sures,” IEEE Transactions on Network Science and Engineering, 2022.

[12] A. N. Montanari and L. A. Aguirre, “Observability of network
systems: A critical review of recent results,” Journal of Control,
Automation and Electrical Systems, vol. 31, pp. 1348–1374, 2020.

[13] A. Montanari and L. A. Aguirre, “Particle filtering of dynamical net-
works: Highlighting observability issues,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 29, no. 3, p. 033118, 2019.

[14] T. H. Summers and J. Lygeros, “Optimal sensor and actuator place-
ment in complex dynamical networks,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 3784–3789, 2014.

[15] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Observability of complex
systems,” Proceedings of the National Academy of Sciences, vol. 110,
no. 7, pp. 2460–2465, 2013.

[16] F. Su, J. Wang, H. Li, B. Deng, H. Yu, and C. Liu, “Analysis and
application of neuronal network controllability and observability,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27,
no. 2, p. 023103, 2017.

[17] C. Chen, A. Surana, A. Bloch, and I. Rajapakse, “Multilinear time
invariant system theory,” in 2019 Proceedings of the Conference on
Control and its Applications. SIAM, 2019, pp. 118–125.

[18] C. Chen, A. Surana, A. M. Bloch, and I. Rajapakse, “Multilinear
control systems theory,” SIAM Journal on Control and Optimization,
vol. 59, no. 1, pp. 749–776, 2021.

[19] S. Ragnarsson and C. Van Loan, “Block tensor unfoldings,” SIAM J.
Matrix Analysis Applications, vol. 33, pp. 149–169, 2012.

[20] R. Hermann and A. Krener, “Nonlinear controllability and observ-
ability,” IEEE Transactions on automatic control, vol. 22, no. 5, pp.
728–740, 1977.

[21] E. D. Sontag, “A concept of local observability,” Systems & Control
Letters, vol. 5, no. 1, pp. 41–47, 1984.

[22] D. Gerbet and K. Röbenack, “On global and local observabil-
ity of nonlinear polynomial systems: A decidable criterion,” at-
Automatisierungstechnik, vol. 68, no. 6, pp. 395–409, 2020.

[23] M. Anguelova, Nonlinear Observability and Identi ability: General
Theory and a Case Study of a Kinetic Model for S. cerevisiae.
Chalmers Tekniska Hogskola (Sweden), 2004.

[24] A. Sedoglavic, “A probabilistic algorithm to test local algebraic
observability in polynomial time,” in Proceedings of the 2001 interna-
tional symposium on Symbolic and algebraic computation, 2001, pp.
309–317.

[25] P. Sweeney, C. Chen, I. Rajapakse, and R. D. Cone, “Network dy-
namics of hypothalamic feeding neurons,” Proceedings of the National
Academy of Sciences, vol. 118, no. 14, 2021.

[26] J. Wang and N. Zheng, “Measures of correlation for multiple
variables,” arXiv preprint, 2014. [Online]. Available: https://arxiv.org/
abs/1401.4827

2451


