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Abstract— The nonlinear filtering problem is concerned with
finding the conditional probability distribution (posterior) of
the state of a stochastic dynamical system, given a history of
partial and noisy observations. This paper presents a data-
driven nonlinear filtering algorithm for the case when the
state and observation processes are stationary. The posterior
is approximated as the push-forward of an optimal transport
(OT) map from a given distribution, that is easy to sample
from, to the posterior conditioned on a truncated observation
window. The OT map is obtained as the solution to a stochastic
optimization problem that is solved offline using recorded
trajectory data from the state and observations. An error
analysis of the algorithm is presented under the stationarity and
filter stability assumptions, which decomposes the error into two
parts related to the truncation window during training and the
error due to the optimization procedure. The performance of
the proposed method, referred to as optimal transport data-
driven filter (OT-DDF), is evaluated for several numerical
examples, highlighting its significant computational efficiency
during the online stage while maintaining the flexibility and
accuracy of OT methods in nonlinear filtering.

I. INTRODUCTION

A nonlinear filtering problem consists of two processes:
(i) a hidden Markov process {X1, X2, . . .} that represents
the state of a dynamical system; and (ii) an observed ran-
dom process {Y1, Y2, . . .} that represents the noisy sensory
measurements of the state. The job of a nonlinear filter is to
numerically approximate the posterior distribution, i.e. the
conditional probability distribution of the state Xt given a
history of noisy measurements {Yt, Yt−1, . . . , Y1}, for t =
1, 2, . . .. The exact posterior admits a recursive update law
that facilitates the design of nonlinear filtering algorithms [7].
Denoting the posterior at time t by πt, the recursive update
law may be expressed as

πt = Ft(Yt)(πt−1) (1)

where Ft(Yt) is a Yt-dependent map on the space of
probability distributions that consists of two operations: the
propagation step that updates the posterior according to
the dynamic model and the conditioning step that updates
the posterior according to Bayes’ rule; see Sec. II-A for
details and a brief review. The initial distribution π0 is the
probability distribution of the initial condition X0.
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Nonlinear filtering algorithms carry out different numer-
ical approximations of the update step (1). Kalman fil-
ter (KF) [21], and its extensions [4], [15], [6], rely on
a Gaussian approximation of the joint distribution of the
state and observation, thereby, simplifying (1) to an update
for a mean vector and a covariance matrix. Due to the
Gaussian approximation, the performance of KF type algo-
rithms is limited to linear dynamical systems with additive
Gaussian noise. Sequential importance re-sampling particle
filters [17], [14] approximate the posterior with a weighted
empirical distribution of a large number of particles. While
they provide an asymptotically exact solution in the limit
of infinitely many particles, they suffer from the weight-
degeneracy issues in high dimensions [5], [26]. Coupling
and controlled interacting particle system approaches [10],
[36], [27], [11], [35], [25], [29], [28], [31] avoid weight
degeneracy by replacing the importance sampling step with a
control law/coupling that updates the location of the particles
with uniform weights. However, the main bottleneck of these
types of algorithms becomes the online computation of the
control law/coupling.

This paper is built upon our recent work that proposes an
optimal transport (OT) variational formulation of the Bayes’
law to construct nonlinear filtering algorithms [30], [1], [18],
[2]. In this formulation, the update step (1) is replaced with
a push-forward1 of a map Tt following

πt = Tt(·, Yt)#πt−1, (2)

and the map Tt is obtained by solving a stochastic optimiza-
tion problem that aims at finding the OT map from πt−1

to πt (see Sec. III-A for details). This approach, which is
referred to as the OT particle filter (OTPF), has two main
appealing features: (i) it only requires samples from the
joint distribution of the state Xt and the observations Yt,
without the need for the analytical model of the observation
likelihood and dynamics, i.e. given a sample Xt−1, we need
an oracle or a simulator that samples Xt and Yt; (ii) it
allows for the utilization of neural networks to enhance
the representation power of the transport maps Tt to model
complex and multi-modal probability distributions. Due to
these features, the OTPF is numerically favorable for prob-
lem settings that involve multi-modal and high-dimensional
posterior distributions [2]. However, the better performance
comes with the cost of solving a stochastic optimization
problem online at each time t.

1For two probability measures P and Q, and a measurable map T , the
push-forward T#P = Q means Law(T (X)) = Q if Law(X) = P .
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In this paper, we propose an algorithm, referred to as OT
data-driven filter (OT-DDF), that improves upon OTPF in
two critical aspects:

1) We make the algorithm completely data-driven, by
only requiring recorded data from the state and ob-
servations without active usage of a simulator/oracle.

2) We make the online computations very light by re-
placing the online optimization with an offline training
stage that finds a fixed map T that conditions on a trun-
cated measurement history {Yt, Yt−1, . . . , Yt−w+1} for
some window size w.

These improvements become possible by making two critical
assumptions about the model: (A1) the process (Xt, Yt) is
stationary; (A2) the filter dynamics (1) is stable. Precise
statements of the assumptions appear in Sec. II-B.

The rest of the paper is organized as follows: Sec. II in-
cludes the mathematical setup and the modeling assumptions;
Sec. III contains the proposed methodology accompanied
with an error analysis; and section IV presents several numer-
ical experiments that serve as proof of concept and compares
the proposed algorithm with alternative approaches.

II. PROBLEM FORMULATION

A. Mathematical setup

In this paper, we consider a discrete-time stochastic dy-
namic system given by the update equations

Xt ∼ at(·|Xt−1), X0 ∼ π0 (3a)
Yt ∼ ht(·|Xt) (3b)

for t = 1, 2, . . . where Xt ∈ Rn is the hidden state of the
system, Yt ∈ Rm is the observation, π0 is the probability
distribution for the initial state X0, at(x′|x) is the transition
kernel from Xt−1 = x to Xt = x′, and ht(y|x) is the
likelihood of observing Yt = y given Xt = x.

The dynamic and observation models are used to introduce
the following propagation and conditioning operators

(propagation) π 7→ At(π) :=

∫
Rn

at(·|x)π(x)dx, (4a)

(conditioning) π 7→ Bt(y)(π) :=
ht(y|·)π(·)∫

Rn ht(y|x)π(x)dx
, (4b)

for an arbitrary probability distribution π. The propagation
operator At represents the update for the distribution of
the state according to the dynamic model (3a), and the
conditioning operator Bt represents Bayes’ rule that carries
out the conditioning according to the observation model (3b).
The composition of these maps is denoted by

Ft(y) := Bt(y) ◦ At

and consecutive application of Ft is denoted by

Ft,s(yt, . . . , ys+1) := Ft(yt)◦Ft−1(yt−1)◦ . . .◦Fs+1(ys+1),

for t > s. For simplicity, hereon, we introduce the compact
notation yt,s := {yt, . . . , ys+1} for t > s ≥ 0.

We are interested in two conditional distributions:

• Exact posterior: The exact posterior πt is defined
as the conditional distribution of Xt given Yt,0 :=
{Yt, . . . , Y1}, i.e.

πt(·) := P(Xt ∈ · | Yt,0). (5)

In terms of our notation earlier, it can be identified via

πt = Ft,0(Yt,0)(π0). (6)

• Truncated posterior: The truncated posterior, denoted
by πµ

t,s, is defined as the conditional distribution of Xt,
given Yt,s := {Ys+1, . . . , Yt}, with the prior distribution
Xs ∼ µ, i.e.

πµ
t,s(·) := PXs∼µ(Xt ∈ · | Yt,s). (7)

It is given by the equation

πµ
t,s = Ft,s(Yt,s)(µ). (8)

B. Modelling assumptions

To ensure the applicability of our proposed method, we
make the following two critical assumptions.

Assumption 1: The stochastic process (Xt, Yt) is station-
ary. In particular, the model (3) is time invariant, i.e. at = a
and ht = h for all t = 1, 2, . . ., and π0 is equal to the
unique stationary distribution of A, i.e. Aπ0 = π0. The
stationary distribution has finite second moments, and it
admits a density with respect to the Lebesgue measure.

This assumption implies that

Ft,s = Ft−s,0, ∀t > s ≥ 0. (9)

Remark 1: The assumption that π0 is equal to the sta-
tionary distribution is made to facilitate the error analysis in
Sec. III-C. This assumption may be replaced with geometric
ergodicity of the Markov process Xt at the cost of the extra
term appearing in the error bound (22). In our numerical
simulations, we simulate the true model for a burn-in period
to ensure the probability distribution of Xt is close to being
stationary.

The second assumption is related to the stability of the
filtering dynamics (6). Consider the following metric on
(possibly random) probability measures µ, ν:

d(µ, ν) := sup
g∈G

√
E
∣∣∣∣∫ gdµ−

∫
gdν

∣∣∣∣2 (10)

where the expectation is over the possible randomness of
the probability measures µ and ν, and G := {g : Rn →
R; |g(x)| ≤ 1, |g(x) − g(x′)| ≤ ∥x − x′∥, ∀x, x′} is
the space of functions that are uniformly bounded by one
and uniformly Lipschitz with a constant smaller than one
(this metric is also known as the dual bounded-Lipschitz
distance [33]).

Assumption 2: The filter is uniformly geometrically sta-
ble, i.e. ∃λ ∈ (0, 1) and a positive constant C > 0 such that
for all µ, ν and t > s ≥ 0 it holds that

d(Ft,s(Yt,s)(µ), Ft,s(Yt,s)(ν)) ≤ Cλt−sd(µ, ν). (11)
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Remark 2: The filter stability is a natural assumption that
ensures the applicability of a numerical filtering algorithm.
Similar stability assumptions also appear in [12], [33] for the
error analysis of particle filters. However, finding necessary
and sufficient conditions that ensure filter stability is chal-
lenging; see [1, Remark 1] and [32], [9], [22] for example
conditions that ensure filter stability.

C. Objective

In the usual filtering setup, the dynamic and observation
models, a and h, are known. However, we assume that these
models are unknown. Instead, we have access to J recorded
independent state-observation trajectories of length tf , i.e.
{Xj

0 , (X
j
1 , Y

j
1 ), . . . , (X

j
tf
, Y j

tf
)}Jj=1. Then, our objective is

Given:
{
Xj

0 , (X
j
1 , Y

j
1 ), . . . , (X

j
tf
, Y j

tf
)
}J

j=1

Approximate: πt = P(Xt ∈ · | Yt, . . . , Y1) ∀t ≥ 0,

for a new set of observations {Yt, . . . , Y1}.

III. THE OPTIMAL TRANSPORT DATA-DRIVEN FILTER

A. OT formulation for conditioning

The proposed methodology is based on the OT formulation
of the Bayes’ law that is used to represent conditional distri-
butions as a push-forward of OT maps [30], [20]. Consider a
joint probability distribution νXY and its conditional νX|Y .
Then, the goal is to find a map T such that

νX|Y (·|y) = T (·, y)#ηX (12)

where ηX is an arbitrary probability distribution. Further-
more, the map T (·, y) is the OT map from ηX to νX|Y (·|y)
for νY -almost every y; where we used νY to denote the
Y -marginal of νXY . The OT formulation is useful because
the map T can be obtained as the solution to a max-min
stochastic optimization problem [1], [2]

max
f∈c-Concavex

min
T∈M

Jη,ν(f, T ) (13)

where η = ηX ⊗ νY is the independent coupling of ηX and
νY ,M denotes the set of measurable maps, f ∈ c-Concavex
means x 7→ 1

2∥x∥
2 − f(x, y) is convex in x for all y [34,

Def. 2.33], and the objective function

Jη,ν(f, T ) := E(X,Y )∼ν [f(X,Y )]+

E(X,Y )∼η[
1

2
∥T (X,Y )−X∥2 − f(T (X,Y ), Y )].

(14)

A justification for (14) appears in [2, Appendex B]. The well-
posedness of the max-min problem is stated in the following
theorem.

Theorem 1: If ηX has a finite second moment and admits
density with respect to the Lebesgue measure, then the max-
min problem (13) admits a unique optimal pair (f, T ), mod-
ulo additive constant shifts for f , and the relationship (12)
holds νY -almost everywhere.

Remark 3: The proof of this result appears in [2, Propo-
sition 2.3] which is an extension of the existing results
[8, Theorem 2.3] and [23, Theorem 2.4]. The extension to

the Riemannian manifold and infinite-dimensional functional
space settings appear in [18] and [20], respectively.

The following result relates the error in approximating the
conditional distribution with the optimality gap of solving
the max-min problem. In particular, let (f̂ , T̂ ) be the output
of an algorithm that approximately solves (13) and consider
T̂ (·, Y )#ηX as an approximation to νX|Y (·|y). Define the
max-min optimality gap

ϵ(f̂ , T̂ ) :=Jη,ν(f̂ , T̂ )−min
T

Jη,ν(f̂ , T )

+max
f

min
T

Jη,ν(f, T )−min
T

Jη,ν(f̂ , T ),
(15)

where the first term specifies the gap in the minimization,
and the second term specifies the gap in the maximization.
Then we have the following lemma, the proof of which is
given in [2, Proposition 2.4].

Lemma 1: Consider the assumptions of Theorem 1. Then,
for any pair (f̂ , T̂ ) such that x 7→ 1

2∥x∥
2 − f̂(x, y) is α-

strongly convex in x for all y, we have the bound

d(T̂ (·, Y )#ηX , νX|Y (·|Y )) ≤
√

4

α
ϵ(f̂ , T̂ ). (16)

B. Proposed methodology

The proposed methodology is summarized in four steps:
Step 1: We propose to approximate the truncated poste-
rior (7) instead of the exact posterior (5). This step introduces
an error that is bounded due to filter stability Assumption 2.
In particular, replacing ν by πs in (11), and the fact that
Ft,s(Yt,s)(πs) = πt and Ft,s(Yt,s)(µ) = πµ

t,s , we conclude
the bound

d(πµ
t,s, πt) ≤ Cλt−sd(µ, πs). (17)

The error bound can be made arbitrarily small by choosing a
large window size w := t−s and assuming a uniform bound
on d(µ, πs) for all s.
Step 2: We use the OT formulation (12) with the min-
max problem (13) to characterize the truncated posterior.
In order to do so, we choose the target distribution ν
to be the joint distribution of (Xt, Yt,s) where Xt and
Yt,s := {Yt, . . . , Ys+1} are generated using the stochastic
model (3a)-(3b) with Xs ∼ µ. We further choose the source
distribution η to be equal to the independent coupling of
Xs ∼ µ (i.e. ηX = µ) and Yt,s, i.e.

ν = Law(Xt, Yt,s) with Xs ∼ µ,

η = Law(Xs)⊗ Law(Yt,s) with Xs ∼ µ.
(18)

With this setup, the conditional distribution νX|Y equals the
truncated posterior πµ

t,s. Let T
µ

t,s denote the optimizer of the
max-min problem (13) with ν and η chosen as explained
above. Then, the relationship (12) implies that

πµ
t,s(·) = T

µ

t,s(·, Yt,s)#µ.

Using the fact that πµ
t,s is also given by (8), we can also

conclude the identity

Ft,s(Yt,s)(µ) = T
µ

t,s(·, Yt,s)#µ, (19)

for all probability distributions µ.
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Step 3: By the time-invariance Assumption 1 and the
identity (19) we conclude, with w = t − s, that T

µ

t,s =

T
µ

w,0 ∀ t > s ≥ 0.
Step 4: We use the recorded data to numerically approximate
the map T

µ

w,0 by solving the max-min problem (13). In
this problem, the target distribution ν is equal to the joint
distribution of (Xw, Yw,0) with X0 ∼ µ and the source
distribution η is equal to the independent coupling of X0

and Yw,0. The source and target distributions are empirically
approximated as

ν ≈ ν̂ :=
1

J

J∑
j=1

δ(Xj
w,Y j

w,0)
, η ≈ η̂ :=

1

J

J∑
j=1

δ
(X

σj
0 ,Y j

w,0)

(20)

where {Xj
0 , (X

j
1 , Y

j
1 ), . . . , (X

j
w, Y

j
w)}Jj=1 are independent

realizations of the state and observation available from
recorded data, and {σ1, . . . , σJ} is a random permutation
of {1, 2, . . . , N}. We use stochastic optimization methods
to approximately solve the resulting optimization problem
by searching for the functions f and map T inside the pa-
rameterized classes F and T respectively (algorithm details
appear in Sec. IV-A). We denote the resulting approximate
pair by (f̂µ

w,0, T̂
µ
w,0), i.e.

(f̂µ
w,0, T̂

µ
w,0)← max

f∈F
min
T∈T

Jη̂,ν̂(f, T ). (21)

Summary: The four-step procedure is summarized as

πt

(1)
≈ πµ

t,s

(2)
= T

µ

t,s(·, Yt,s)#µ

(3)
= T

µ

w,0(·, Yt,s)#µ
(4)
≈ T̂µ

w,0(·, Yt,s)#µ,

where the first step is approximation due to truncation, the
second step is identity using the OT formulation, the third
step is identity using the stationarity of the model, and the
fourth step is numerical and algorithmic approximation.

C. Error analysis

The objective of the error analysis is to bound the er-
ror between the exact posterior πt and the approximation
T̂µ
w(·, Yt,s)#µ obtained from the four step procedure. Two

steps of the procedure involve approximation. The first step
is due to the truncation, and the fourth step is due to
approximation in solving the max-min problem. The error,
due to the first step, is bounded using the filter stability
according to (17). The error, due to the second step, is
bounded by the optimality gap using Lemma 1. The two
results are combined to conclude an error bound under the
following assumptions about the algorithm.

Assumption 3: The following conditions, regarding the
algorithm, hold:
A.3a µ is equal to the stationary distribution of Xt.2

A.3b ∃M > 0 such that d(πt, µ) < M for all t.
A.3c x 7→ 1

2∥x∥
2− f̂µ

w,0(x, y) is α-strongly convex in x for
all y.

2In numerical experiments this can be approximately satisfied using a
large enough burn-in time.

Proposition 1: Consider a window side w > 0 and sup-
pose Assumptions 1, 2, and 3 hold. Then, for all t > w,

d(T̂µ
w,0(·, Yt,t−w)#µ, πt) ≤ CλwM +

√
4

α
Eϵ(f̂µ

w,0, T̂
µ
w,0),

(22)

where the expectation is with respect to the randomness of
training data and possibly the optimization procedure.

Remark 4: The first term in the bound is due to the trun-
cation and becomes small as the window size w increases.
The second term depends on the optimality gap, and it is
expected to decrease as the class of functions F , T becomes
more expressive and the number of samples J becomes large.
Analysis of the optimality gap is the subject of ongoing work,
and it is expected to follow from existing results for statistical
generalization of optimal transport map estimation in [13]
and approximation theory in [3].

Proof: [Proof of Proposition 1] For simplicity, introduce
the notation Ŝ := T̂µ

w,0(·, Yt,t−w) and S := T
µ

w,0(·, Yt,t−w).
Upon the application of the triangle inequality and the
identity πµ

t,t−w = S#µ, we obtain the decomposition

d(Ŝ#µ, πt) ≤ d(Ŝ#µ, S#µ) + d(πµ
t,t−w, πt).

Application of the bound (17) and Assumption A3b on
d(πµ

t,t−w, πt) concludes the first term in (22). Application of
inequality (16) to d(Ŝ#µ, S#µ) concludes the second term
in (22). Assumption A3a about the probability distribution
µ is required to ensure that the probability distribution of
the observation process νY that is used for the max-min
optimization is equal to the probability distribution of Yt,t−w

that comes from the true model (3).

IV. NUMERICS

A. The numerical algorithm
The OT-DDF algorithm consists of two stages: (i) an

offline stage which approximately solves (21) to obtain the
transport map T̂µ

w,0; (ii) an online stage which uses the
truncated history of observations Yt,t−w and the learned map
T̂µ
w,0 to approximate the posterior πt for each time t.
In the offline stage, we use the ADAM stochastic optimiza-

tion algorithm to solve (21). The algorithm consists of inner
and outer loops. The inner loop consists of kinner iterations
of ADAM to update the map T , while the outer loop consists
of kouter iterations of ADAM to update f . The functions f
and T are parameterized with neural networks with archi-
tectures described separately for each example. The samples
(Xj

t0 , Y
j
t0+w,t0)

J
j=1 are used to form the approximation of

ν̂ and η̂ in (20). A burn-in time t0 is included to ensure
that the training data is stationary and assumption A3.a is
satisfied approximately. The offline stage is summarized in
Algorithm 1.

The subsequent stage is the online stage, where the output
map T̂µ

w,0 of algorithm 1 is used to approximate the posterior
πt using the observations Yt that are received online. In
particular, the posterior πt is approximated with the empirical
measure 1

N

∑N
i=1 δXi

t
where

Xi
t = T̂µ

w,0(X
i
t0 , Yt,t−w),
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Algorithm 1 Offline Training of OT-DDF

Input: Recorded data {Xj
0 , (X

j
1 , Y

j
1 ), . . . , (X

j
w, Y

j
w)}Jj=1,

burn-in time t0, window w, batch size bs,
architecture, optimizer and learning rates for f, T ,
inner and outer loop iterations kinner, kouter.
Initialize: initialize neural net f, T weights θf , θT .
Create a random permutation {σi}Ji=1

for k = 1 to kouter do
Select random batch (Xσi

t0 , X
i
t0+w, Y

i
t0+w,t0)

bs
i=1

Define T i = T (Xσi
t0 , Y

i
t0+w,t0) for i = 1, . . . , bs

for j = 1 to kinner do
Update θT to minimize 1

bs

∑bs
i=1

[
1
2∥X

σi
t0 − T i∥2 −

f(T i, Y i
t0+w,t0)

]
end for
Update θf to minimize
1
bs

∑bs
i=1

[
− f(Xi

t0+w, Y
i
t0+w,t0) + f(T i, Y i

t0+w,t0)
]

end for
Output: Map T̂µ

w,0 = T .

and {Xi
t0}

N
i=1 are N random samples from {Xj

t0}
J
j=1.

The proposed OT-DDF method is evaluated against three
other algorithms: the Ensemble Kalman filter (EnKF) [16],
OTPF [1], [2], and the sequential importance resampling
(SIR) PF [14]. Unlike the OT-DDF, these algorithms are
not data-driven and require the active usage of a simulator.
The OTPF algorithm involves the online solution of the
optimization problem (13) at each time step. The details for
the three algorithms appear in [2], and the numerical code
used to produce the results is available online3.

B. Linear dynamics with linear and quadratic observation

Consider

Xt =

[
α

√
1− α2

−
√
1− α2 α

]
Xt−1 + σVt (23a)

Yt = h(Xt) + σWt (23b)

for t = 1, 2, . . . where Xt ∈ R2, Yt ∈ R, {Vt}∞t=1

and {Wt}∞t=1 are i.i.d sequences of 2-dimensional and one-
dimensional standard Gaussian random variables, α = 0.9
and σ2 = 0.1. Two observation functions are of interest:

h(Xt) = Xt(1), and h(Xt) = Xt(1)
2

where Xt(1) is the first component of the vector Xt. We
refer to these observation models as linear and quadratic,
respectively.

We implemented algorithm 1 with different window sizes
w = 1, 10, 50. The burn-in time was t0 = 100 − w. The
functions f and T were parameterized as ResNets with
one and two blocks of size 64 and 48, respectively. The
optimization learning rates for f and T was 10−3 and
5 × 10−4 with kinner = 10, kouter = 12000, and batch
size bs = 64.

The numerical results for the linear observation model are
presented in Figure 1. The left column shows the trajectory

3https://github.com/Mohd9485/OT-DDF

of the particles along with the trajectory of the unobserved
component X(2) of the state for all methods and OT-DDF
with w = 50. We also included the Kalman filter (KF)
because it provides the ground truth for this case. The
performance of the algorithms is quantified by computing
the mean-squared-error (MSE) in estimating the true state
Xt. The result is depicted in the top-right panel. The MSE
is averaged over 50 independent simulations. The bottom
right panel shows the time-averaged MSE for the OT-DDF
method as the window size varies. In the linear Gaussian
setting, the KF is optimal and yields the least MSE. The
EnKF, OTPF, and SIR also provide the same performance as
expected. The error for the OT-DDF is due to the window
size and, as expected, decreases for larger windows.

Similar results for the quadratic observation model are
presented in Figure 2. In this case, the posterior is bimodal
due to the symmetry in the model. The trajectories from the
left panel show that OTPF and OT-DDF were able to capture
the bimodal distribution while EnKF and SIR experienced
mode collapse. To quantify the performance, we used the
maximum mean discrepancy (MMD) [19] with respect to
the true posterior approximated with the SIR method with a
large number of particles (N = 105). The result is presented
in the top right panel, where the MMD is averaged over 10
independent simulations. The bottom right panel shows the
time-averaged MMD as the window size varies. The results
show that the error initially decreases as the window size
increases, but it starts to grow after a certain window size.
We conjecture that this is due to the tradeoff between the
two terms in the error bound (22). For small window size
w, the truncation error is dominating, which decreases as w
increases. For a large window size, the optimization gap is
dominating which grows as w increases. This is due to the
fact that the neural net architecture and the number of data
points are kept fixed while the input size increases.

C. Lorenz 63

We repeated our experiments on a discrete-time (with
time-discretization step-size ∆t = 0.01) chaotic Lorenz 63
model [24] with the observation function h(x) = x(1) with
additive zero-mean Gaussian noise of variance 10−1. Algo-
rithm 1 was implemented for window sizes w = 10, 50, 200
and burn-in time of t0 = 1000 − w. The functions f and
T were parameterized with ResNets of hidden size 32, with
learning rate of 10−3 and 5 × 10−3, number of iterations
kinner = 10 and kouter = 15000.

The numerical results are presented in Figure 3. The left
panel shows the trajectory of the particles and the true state
(only the second component is shown). The right column
shows the MSE of estimating the true state, averaged over
10 independent simulations, as a function of time in the top
and as a function of the window size in the bottom. The
performance of the OT-DDF filter is expected to improve
with further fine-tuning, increasing the iteration number of
training and the number of parameters in the neural net.

We also report the wall-clock complexity of all algorithms
in Table I. The simulations are carried out on a MAC
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Fig. 1. Numerical results for the linear dynamic example with linear observation function. The left column shows the trajectory of the second component
of the particles along with the trajectory of the true state, where w = 50 for the OT-DDF method. The right column shows the MSE in estimating the
state as a function of time in the upper corner and as a function of the window size w in the lower corner.

Fig. 2. Numerical results for the linear dynamic example with quadratic observation function. The left column shows the trajectory of the second
component of the particles along with the trajectory of the true state, where w = 5 for the OT-DDF method. The right column shows the MMD distance,
with respect to the true posterior, as a function of time in the upper corner and as a function of the window size w in the lower corner.

Fig. 3. Numerical results for the Lorenz 63 example. The left column shows the trajectory of one of the unobserved components of the particles along
with the trajectory of the true state, where w = 50 for the OT-DDF method (the other components exhibit similar behavior). The right column shows the
MSE, in estimating the true state, as a function of time in the upper corner and as a function of the window size w in the lower corner.
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STUDIO M2 Max with a 12-core CPU, 30-core GPU, and
64GB unified memory. The offline training time for the OT-
DDF with window size w = 50 is 46.29 seconds. The
computational time per one-time step update for all methods
appears in Table I. The time complexity of all methods except
the OTPF algorithm is at the same level of magnitude, which
allows the OT-DDF algorithm to be implemented in an online
setting once we have access to the map T̂µ

w,0.

TABLE I
THE TIME COMPLEXITY FOR ONE-TIME STEP.

Method EnKF SIR OTPF OT-DDF
time 1.7× 10−4 2.0× 10−4 6.8× 10−2 1.5× 10−4

V. DISCUSSION

We introduced OT-DDF, a completely data-driven non-
linear filtering algorithm applicable to models that admit
stationary processes and stable filters. The method provides
significant improvement to the original OTPF method in
terms of computational cost by limiting the costly training
of an OT map to an offline stage using recorded data
leading to very fast computations during online inference.
Preliminary error analysis and numerical experiments show
that in comparison to OTPF, the loss in accuracy is not
significant when the window size is chosen properly, and
the optimization problem is solved to a reasonable accuracy.
Future work will aim to refine the error analysis further and
explore the algorithm’s scalability and adaptability to a wider
range of applications.
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