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Abstract— The development of drug resistance is a major
obstacle in cancer treatment, leading to frequent tumor re-
currence. Upon being first diagnosed, many tumors tend to
respond well to chemotherapy, only to later display resistance
to previously effective drugs. Understanding the mechanisms
behind this emergent drug resistance is crucial for designing
more effective treatment protocols. In this study, we present
a novel mathematical model that investigates the competition
between heterogeneous tumor cell populations with varying
metabolic strategies and drug resistance profiles. Rather than
hypothesizing metabolic plasticity (cells switching metabolic
pathways), our model hypothesizes the coexistence of two (or
more) cell populations, of which one has greater growth po-
tential and greater drug sensitivity than the other. Considering
this metabolic heterogeneity, together with potentially flexible,
environment-induced genetic variations, would help us better
characterize variable tumor response to treatment. The model
parameters are here estimated using data from mice tumors
treated with pegylated liposomal doxorubicin. Simulations using
the model reveal that an initial period of drug sensitivity, during
which the tumor shrinks, can mask the expansion of a small
subpopulation of metabolically less efficient but drug-resistant
cells. Over time, the resistant subpopulation outcompetes the
originally expanding, metabolically more efficient subpopula-
tion, leading to the observed resurgence of the tumor in a
drug-resistant form.

I. INTRODUCTION

Cyber-medical systems comprise many engineering and
IT solutions applied in medicine. Physiological control is
an emerging approach that can enhance therapy for many
diseases, e.g., cancer [1]–[3], artificial pancreas [4]–[9], or
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control of anesthesia [10]–[12]. These approaches are based
on mathematical models, which are then personalized to the
patient through identification techniques and, finally, therapy
is generated by control engineering or other mathematical
optimization methods.

Chemotherapy optimization methods rely on mathematical
models describing the effect of the drug on tumor dynamics.
There are some results of therapy optimization validated
with mice experiments [1], [2], using a simple mathematical
model [13], [14]. A notable difference of this model from
other models in the literature is that it contains dead tumor
dynamics, which is important in the applications since,
generally, the measured tumor contains both living and dead
tumor cells. Most models in the literature lack these features.
For a review of the tumor models, see, e.g., [15], [16]. Most
models in the literature describe living tumor cell dynamics
and pharmacokinetics, some incorporate immune cell and
healthy cell dynamics (the models describing immunother-
apy), and the dynamics of the vascular support of the tumor
(the models describing antiangiogenic therapy).

Development of resistance during therapy is a critical issue
that often leads to inefficient therapy and the death of the
patient [17]. Modeling resistance acquired during the therapy
may help us understand the nature of the process through
simulation and develop treatment strategies that can reduce
the chance of resistance. Greene et al. published a model that
can describe drug resistance [18], where there is a population
of sensitive and resistant cells that compete with each other.
The sensitive cells proliferate faster than the resistant cells,
but as the sensitive cells die due to the treatment, the resistant
cells gain ground for proliferation, and the tumor becomes
resistant to the drug [19].

We introduce a model in Section III, which describes the
tumor as being composed of three parts: the sensitive, the
resistant, and the dead tumor cells. Similar to the model
created by Greene et al. [18], we model the competition
of the cell populations and the mutation that may turn
sensitive cells into resistant cells. Significant differences in
our approach reside in the use of an exponential growth
form for the two cell subpopulations and in the inclusion
of dead cells for the total volume calculation (as dead cells
are not eliminated instantly from the organism, but turn into
scar tissue). Moreover, in this work, a procedure for the
model parameter estimation was carried out by adapting the
mathematical model to experimental data. The results of the
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fitting procedure are reported in Section IV. We define the
experimental setting and the parameter estimation approach
in Section II, and end the paper with conclusions in Section
V.

II. METHODS

In Section IV, we fit the model introduced in the next sec-
tion to measurements from mouse experiments. We discuss
the experimental setting in Subsection II-A, and the fitting
process in Subsection II-B.

A. Experimental settings

We use data from experiments that were carried out to
test our previously published therapy optimization methods
[1], [2] on a clinically relevant, genetically engineered mouse
model of breast cancer. The Brca1, a DNA repair gene, and
p53, a regulator of cell cycle and genome stability, were
knocked out in breast epithelial cells. Thus, the resulting
mammary tumors highly resemble the Brca1-linked, triple-
negative, hereditary breast cancer in humans: the molecu-
lar, immunohistochemical, morphological, and genetic char-
acteristics are almost indistinguishable from their human
counterparts [20]. These tumors in the mice respond to
chemotherapy very similarly; initial treatment with doxoru-
bicin significantly reduces tumor size and induces remission.
However, long-term therapy often fails due to the emergence
of drug resistance [21].

We use the data of six mice from the experiment. These
mice received a 4 mg·kg−1 dose of Pegylated Liposomal
Doxorubicin (PLD) the first time the tumor volume reached
200 mm3. After tumor remission, when the tumor started to
grow and reached 200 mm3 again, we applied our strategies,
model predictive control [2] and PDPK control [1]. The
tumor size was measured with a digital caliper, and a formula
was used to approximate the tumor volume [22]. This tumor
is composed of living and dead tumor cells; this gave rise to
the need to model dead tumor cell dynamics.

The doses were provided in mg·kg−1; the injected dose
was calculated using the weight of the mouse. The available
data for model fitting are the tumor volume approximations
based on caliper measurements, tumor weight measurements,
and the injected doses in mg· kg−1.

B. Parameter estimation

The model was adapted to experimental data obtained
from the experimental procedure described in the previous
subsection. Data over time from six mice were used in an
Ordinary Least-Squares estimation procedure [23] to obtain
mouse-specific parameter estimates. Each mouse presented
about 50 experimental time points, and the parameter vector
consisted of 6 free parameters.

The Runge-Kutta 4 method was used for integrating the
model equations with a fixed time step of 0.1day. The model
implementation and parameter estimation were performed
using Julia V1.9.3.

The parameters of the model introduced in the next section
are shown in Table II, which contains the free, determined,

TABLE I
THE STATES VARIABLES AND THE INPUT OF THE MODEL.

Variable Units Meaning
X1 # Number of tumor cells sensitive to therapy
X2 # Number of tumor cells resistant to therapy
Z # Number of dead cells
X # Total number of cells
V mm3 Tumor volume

U mg Drug level in the administration compart-
ment

u mg· kg−1 Dose of the administered drug
Y mg Drug level in the absorption compartment

or fixed ("given") parameters. As the model could be over-
parameterized, some parameters were kept fixed to specific
values obtained with preliminary estimation procedures and
with calibration. The choice of which parameters is most
reasonable to leave free to vary was made by considering the
smallest set of parameters able to represent the phenomenon
under study, as well as able to differentiate between two
characteristic behaviors: mice that respond to the therapy
and mice that develop a resistance to the chemotherapy.

For example, the competition effect between the two cell
populations has been evaluated by fixing λ12 and estimating
only parameter λ21. Parameter ρV X , which is used to cal-
culate tumor volume from the number of tumor cells, was
calculated by considering the diameter of a cell of about
6-8µm. The algorithm used for optimizing the objective
function was the Nelder-Mead method [24].

III. MATHEMATICAL MODEL

The model developed in this work is structured in two
submodels, five differential and two algebraic equations. The
variables are summarized in Table I, and the 18 parameters
of the model are shown in Table II. The mathematical
formulation includes the presence of two types of cells
(sensitive and resistant to the therapy) [18], [19]. Moreover,
the contribution of the scar tissue [25], mainly composed
of dead cells, is also considered in the total tumor volume
calculation.

The first submodel describes the pharmacokinetics of the
drug and the drug administration as

U̇ = −kY UU +

N∑
i=1

δ(t− ti)uiMi

U(t0) = U0

(1)

Ẏ = kY UU − kEY Y

Y (t0) = Y0

(2)

where U represents the kinetics of the administered drug,
ui is the i-th dose of drug, administered at time ti, and N
is the total number of drug administrations. Mi is the mass
of the mouse at time ti, and Y represents the bioavailable
drug that produces the effect on the tumor cells.

The second submodel represents tumor growth, consider-
ing a sensitive and resistant tumor cell population, and dead
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TABLE II
MODEL PARAMETERS. IN THE "VALUE" COLUMN A NUMBER IS REPORTED WHEN THE RELATIVE PARAMETER IS FIXED AT A CERTAIN VALUE (FROM

CALIBRATION OR A PRELIMINARY ESTIMATION PROCEDURE); THE WORD "FREE" IS USED IN THE CASE THE PARAMETER IS LEFT FREE TO BE TUNED

AND IS THEREFORE ESTIMATED; PARAMETERS DESIGNED AS "DETERMINED" ARE COMPUTED FROM THE INITIAL CONDITIONS; "GIVEN"
PARAMETERS ARE PROVIDED FROM EXPERIMENTS.

Parameter Units Meaning Value
k11 day−1 tumor cell proliferation rate free
λ12 # parameter representing the sensitivity of the X1 growth rate to X2 0.0005
ρ21 day−1 rate of X1 that converts to X2 subpopulation free
k22 day−1 X2 tumor cell proliferation rate free
λ21 # parameter representing the sensitivity of the X2 growth rate to X1 free
kZ1 day−1 X1 elimination rate 0.06
kZ2 day−1 X2 elimination rate 0.06
kEZ day−1 Z elimination rate 0.2
ηZ1Y mg−1· day−1 effect of the therapy on X1 free
ηZ2Y mg−1· day−1 effect of the therapy on X2 free
ρV X mm3 per million of cells volume conversion factor 0.2
X10 # X1 at time t = 0 determined
X20 # X2 at time t = 0 0
kEY day−1 drug absorption rate 0.25
kY U day−1 drug transport rate from compartment U to compartment Y 0.3
Z0 # Z at time t = 0 0
X0 # X at time t = 0 determined
V0 mm3 V at time t = 0 given

tumor cells. Thanks to their higher proliferation rate, the
most responsive (i.e., the sensitive) tumor cells compete with
the drug-resistant subpopulation until the latter outcompetes
the original one, leading to therapy resistance and tumor
increase. This can happen when the sensitive population
decreases due to therapy, and its inhibiting effect on the
resistant cell population growth decreases significantly.

The dynamics of the sensitive cell population is described
by

Ẋ1 = k11X1e
−λ12X2 − ρ21X1 − kZ1X1 − ηZ1Y Y X1

X1(t0) = X10

(3)

with X1 being the number of sensitive tumor cells. The
first term in the differential equation defines the proliferation
(with competition with the resistant cells X2), the second
term describes that sensitive cells can mutate and become
resistive cells, and the third term defines necrosis. The last
term describes the effect of the drug.

The dynamics of the resistive cell population is given by

Ẋ2 = ρ21X1 + k22e
−λ21X1X2 − kZ2X2 − ηZ2Y Y X2

X2(t0) = X20

(4)

where X2 is the number of resistant cells. The first term
in the differential equation describes the mutation of the
resistant cells, the second term describes the cell proliferation
(with the competition with the sensitive cells), the third term
describes the necrosis, and the last term describes the effect
of the drug. Note that resistant does not mean total resistance
against the drug; the resistant cell population is only less
sensitive to the drug compared to the sensitive population,
i.e., for the parameters ηZ1 and ηZ2 we have that ηZ1 > ηZ2.

The dynamics of the dead tumor cells is described as

Ż = kZ1X1 + ηZ1Y Y X1 + kZ2X2 + ηZ2Y Y X2 − kEZZ

Z(t0) = Z0

(5)

where Z is the number of dead cells. The first term defines
the necrosis of the sensitive cells, the second term describes
the effect of the drug on the sensitive cells, the third term
represents the necrosis of the resistant cells, and the fourth
term describes the effect of the drug on the resistant cells.
The last term describes the washout of the dead cells.

The total number of tumor cells and their initial value are
given by

X = X1 +X2 + Z,

X(t0) = X0 = X10 +X20 + Z0,
(6)

while the total (i.e., the measured) tumor volume is

V = ρV XX,

V (t0) = ρV XX0.
(7)

In the absence of therapy, it is assumed that the number of
resistant population cells is equal to zero (at the beginning
of the experiment, there is still no mutation process); the
number of dead cells is set at zero; therefore the initial
number of total cells is equal to the number of cells sensitive
to the therapy. Thus, from (7) it follows that

X10 = X0 =
V0

ρV X
. (8)
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Fig. 1. Measurement and simulation results for the total tumor volume of
mouse 1.

Fig. 2. Dosages and drug level over time for the mouse 1.

IV. RESULTS

The results of the model fit are presented in Figs. 1-
12. Figures 1, 3, 5, 7, 9, and 11 show the tumor volume
measurements denoted with red dots and the results carried
out with the simulation of the fitted model for mice 1,2,
. . ., 6, respectively. The corresponding injected doses and
the simulated drug levels in the administration compartment
are shown in Figs. 2, 4, 6, 8, 10, and 12. The parameters
resulting from the parameter estimation are shown in Tables
III and IV.

The six mice in the experiments showed two different
behaviors: tumors in mice 1,2 and 3 developed resistance
during the treatment, and their tumor started to grow expo-
nentially regardless of the injected drug. We will call this
group of mice the "Resistant" group. Tumors in mice 4, 5,
and 6 showed no resistance during the therapy; their tumors
did not start to grow exponentially during treatment. We will
call this group the "Not Resistant" group.

The different behaviors are reflected in the obtained pa-
rameters shown in Tables III and IV. Table III contains
parameters for the "Resistant" group, and Table IV contains
parameters for the "Not Resistant" group.

Fig. 3. Measurement and simulation results for the total tumor volume of
mouse 2.

Fig. 4. Dosages and drug level over time for the mouse 2.

Although parameter ηZ1, representing the drug effect on
the sensitive cells, is similar for both groups, we see a
significant difference in the parameter ηZ2 representing the
effect of the drug on the resistant cell population. In the
"Resistant" group, the value of ηZ2 is smaller than in the
"Not Resistant" group. The mean of parameter ηZ2 in the
"Not Resistant" group is 336% of the mean of the same
parameter in the "Resistant" group. This reflects that the
"Resistant" group is less sensitive to the drug than the "Not
Resistant" group, which is in line with the hypotheses of the
modeling.

The value of the parameter kEZ = 0.2 [1/day], even if
obtained from a calibration procedure, is perfectly compa-
rable to the value of parameter w = 0.214 [1/day] (Dead
tumor cell washout) in the work of L. Kovács et al. [2].

Regarding the tumor dynamics parameters, the growth
rate of the sensitive cells k11 is similar in both groups,
with a mean value in line with the parameter value a =
0.226 [1/day] (Tumor growth rate) from [2]. This is also
true for the mutation rate ρ21, which characterizes the rate of
mutation of the sensitive cells into resistant cells. However,
in the case of the "Resistant" group, the proliferation rate
of the resistant cells (k22) is larger (the mean is 248%
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TABLE III
MODEL PARAMETER ESTIMATES OF THE "RESISTANT" GROUP (MICE 1,2, AND 3).

Parameters Mouse 1 Mouse 2 Mouse 3 Mean Standard Deviations
k11 0,475583 0,273432 0,191653 0,31356 0,14615614
ρ21 0,054943 0,029465 0,000106 0,02817 0,02744105
k22 0,096442 0,106717 0,137548 0,11357 0,02139278
λ21 0,044887 0,001539 0,007941 0,01812 0,02339861
ηZ1Y 22,92304 8,355523 10,54997 13,9428 7,85409636
ηZ2Y 6,91E-14 0,007749 0,046335 0,01803 0,02481878

TABLE IV
MODEL PARAMETER ESTIMATES OF THE "NOT RESISTANT" GROUP (MICE 4,5, AND 6).

Parameters Mouse 4 Mouse 5 Mouse 6 Mean Standard Deviations
k11 0,499719 0,252323 0,472718 0,408254 0,135712754
ρ21 0,056246 0,008369 0,02918 0,031265 0,024006644
k22 0,047043 0,051064 0,038818 0,045642 0,00624229
λ21 5,19E-08 3,69E-16 2,92E-12 1,73E-08 2,99599E-08
ηZ1Y 22,43253 9,369059 24,22907 18,67689 8,110711154
ηZ2Y 0,034729 0,113285 0,034136 0,060717 0,045526682

Fig. 5. Measurement and simulation results for the total tumor volume of
mouse 3.

compared to the "Not Resistant" group). This implies that
when the sensitive cell population becomes small enough
to have a small inhibiting effect on the proliferation of the
resistant cells, we can examine a steep growth in the resistant
population.

There is a significant difference in the parameter λ21

characterizing the competition between the sensitive and
resistant tumor cells. In the case of the "Not Resistant" group,
this parameter is almost zero, showing that the sensitive cells
have no significant effect on the growth of the resistant cells.
This means that the treatment can eliminate the resistant
cells; there is no need for the taming effect of the sensitive
cells. It also gives rise to simplification of the model, i.e., we
can neglect the resistant cell dynamics, getting back a model
similar to the one used in our experiments [1], [2], [14].

However, in the case of the "Resistant" group, parameter
λ21 is not zero. This means that initially, the sensitive tumor
cells hold the resistant cells back from proliferating. When
the size of the sensitive cell population decreases, this effect
decreases as well, which leads to the increased proliferation

Fig. 6. Dosages and drug level over time for the mouse 3.

of the resistant cells.

V. CONCLUSIONS

The model introduced in Section III aims to describe the
development of drug resistance through modeling a sensitive
and resistant cell population. The model also contains a
second-order pharmacokinetic model of the drug and the
dynamics of the dead tumor cells, making it suitable for
modeling the dynamics of a tumor mass consisting of living
and dead cells.

The parametric identification showed results that validated
the hypotheses of the model, i.e., in the case of developed
resistance, the effect of the drug on the resistant population
is smaller, while the proliferation rate of the resistant cells is
larger compared to the case when no resistance is developed
during the treatment. An interesting result showed that in the
cases when there was no resistance during the treatment, the
effect of the sensitive cells on the resistant cell proliferation
was negligible. This suggests that the model, if no resistance
develops, can be simplified by removing the dynamics of the
resistant cells.
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Fig. 7. Measurement and simulation results for the total tumor volume of
mouse 4.

Fig. 8. Dosages and drug level over time for the mouse 4.

The results suggest that the model has the potential to
be used in a future study, where a larger population of mice
would increase the amount of experimental data and facilitate
the validation process. It would be interesting to set up an
experiment aimed at identifying the different types of tumor
cells and establishing the ratio of resistant cells to sensitive
cells under different therapy regimes. Moreover, the inclusion
of the mice diet in the model, as well as the consideration
of a saturation effect for the therapy due to a limited cell
receptor availability, could be interesting improvements in a
future study.

It has been hypothesized that the competition between
drug-resistant and drug-sensitive cells can be exploited to
prevent the development of resistance during treatment. By
strategically eliminating sensitive cells with an optimized
protocol, it is possible to hinder the expansion of emerging
resistant cells. This approach aims to maintain a balance
that suppresses the resistant population, ensuring that drug
resistance does not render the therapy ineffective. The model
proposed in this study can be used to design such therapies
in the future.

Fig. 9. Measurement and simulation results for the total tumor volume of
mouse 5.

Fig. 10. Dosages and drug level over time for the mouse 5.
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Fig. 11. Measurement and simulation results for the total tumor volume
of mouse 6.

Fig. 12. Dosages and drug level over time for the mouse 6.
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