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Abstract— We present an active learning algorithm for learn-
ing dynamics that leverages side information by explicitly
incorporating prior domain knowledge into the sampling pro-
cess. Our proposed algorithm guides the exploration toward
regions that demonstrate high empirical discrepancy between
the observed data and an imperfect prior model of the dynamics
derived from side information. Through numerical experiments,
we demonstrate that this strategy explores regions of high
discrepancy and accelerates learning while simultaneously re-
ducing model uncertainty. We rigorously prove that our active
learning algorithm yields a consistent estimate of the underlying
dynamics by providing an explicit rate of convergence for the
maximum predictive variance. We demonstrate the efficacy of
our approach on an under-actuated pendulum system and on
the half-cheetah MuJoCo environment.

I. INTRODUCTION

Model-based and data-driven methods typically represent
two alternative approaches to stochastic optimal control.
While purely data-driven control typically neglects prior
domain knowledge (side information) to reduce bias, in-
corporating such knowledge into data-driven control can
yield more accurate learned models of dynamical systems.
For example, prior domain knowledge in the form of an
imperfect physics-based model can be combined with data-
driven modeling to more accurately approximate the true
system dynamics. Despite the focus on side information in
the learned model, there are foreseeable benefits to also
leveraging side information to select informative data, and
the question of how to select data according to available
side information remains an open challenge.

We present an active dynamics learning method that uti-
lizes side information to select sample data in regions where
the observed discrepancy between prior domain knowledge
and the observed data is highest. Our approach is based on
the upper confidence bound (UCB) algorithm [1]–[3], known
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for its ability to balance exploration and exploitation in
multi-armed bandit and Bayesian optimization settings. We
specifically consider the Gaussian process (GP) setting [4],
known as GP-UCB [5], which offers a principled approach
to characterizing uncertainty—a key component utilized by
the UCB algorithm. Our key innovation lies in incorporating
side information during the sampling phase. We actively
sample control inputs along trajectories that favor exploration
in regions that demonstrate a higher discrepancy between our
observed data and an imperfect prior model of the dynamics.
This emphasizes sampling in regions of the state-action space
where prior knowledge does not align with the data-driven
estimate while avoiding redundant sampling in regions where
our data-driven model aligns with the observed dynamics.

Our approach is enabled by two key elements: 1) actively
learning dynamics in an episodic setting, and 2) incorporat-
ing side information.

Active sampling has been explored in the context of
learning dynamical systems [6]–[9]. In the case of linear
dynamics, active learning approaches can provide optimal
or near-optimal sample complexity results [6]–[8]. However,
these results often impose unrealistic assumptions–such as
the ability to sample any state-action pair without regards to
dynamic constraints. In the general case, sample complexity
guarantees are more elusive. Optimistic planning approaches,
such as OpAx [10] and H-UCRL [11] actively sample data
in an episodic setting by selecting policies in an open-
loop fashion to maximize information gain via an optimistic
planner. We likewise consider an episodic setting, but we
consider using prior domain knowledge to determine our
exploration policy. Notably, GP-UCB has been used in a
different context for robot kinematic calibration [9], in which
the authors use active sampling to learn the correction to
a prior, parametric model of the robot’s kinematics. While
they allow for arbitrary sampling of states and control inputs
throughout a single sampling process, we restrict to the
selection of control input sequences along trajectories in
an episodic fashion. That is, we must account for planning
action sequences under uncertain dynamics in an MPC-like
framework.

Active sampling methods typically do not incorporate prior
domain knowledge into the model or the sampling process.
In particular, except for [9], the previously mentioned active
learning methods (i.e., [6]–[8, 10]) do not utilize side infor-
mation in the data-driven model of the system dynamics. The
use of side information has been investigated for two-armed
bandit problems in [12, 13], where the sampler has access
to information of the reward. However, these results do not
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translate easily to the setting of dynamics learning. To our
knowledge, our proposed active dynamics learning method is
the first to leverage side information in the sampling process.

Our main contribution is an active dynamics learning
algorithm based on GP-UCB that incorporates prior domain
knowledge into both the sampling process and the learned
model. Specifically, our approach incorporates a discrepancy
term in the UCB sampling function that empirically models
the difference between the data-driven portion of our model
and the prior domain knowledge. Unlike existing approaches,
we exploit prior domain knowledge via this discrepancy term
to focus sampling in regions where the prior model is most
misaligned with the true dynamics. In addition, we provide
a proof that our approach yields a consistent estimator of the
dynamics as more episodes are considered. It is often difficult
to guarantee consistency for active sampling algorithms due
to the non-i.i.d. nature of the sampling. We prove that as
long as the trajectory generated during each episode explores
state-action pairs that possess greater than average predictive
variance under the GP model, our estimate converges to
the true dynamics as the number of episodes increases. We
demonstrate our approach on a simple pendulum system,
and compare our approach against OpAx [10] and greedy
variance-based sampling, which represents a pure exploration
strategy. We then demonstrate that we can use our learned
dynamics model for control on a high-dimensional half-
cheetah MuJoCo environment.

The rest of the paper is outlined as follows. In Section II,
we formally state the problem setting and provide prelimi-
nary background information to inform the discussion and
introduction of our sampling method. We present our active
sampling method in Section III and provide the consistency
argument in Subsection III-A. In Section IV, we demonstrate
our active sampling approach.

II. PRELIMINARIES & PROBLEM STATEMENT

A. Problem Statement

Consider the following discrete-time dynamical system,

xt+1 = f(xt, ut) + wt, (1)

where xt ∈ X is the state of the system at time t, ut ∈ U
is the control action applied to the system at time t, and
wt ∼ N (0, σ2I) is an independent Gaussian noise term.

Given a cost function c : X × U → R, we formulate
the following stochastic optimal control problem, where the
goal is to select a sequence of control inputs u0, . . . , uN to
minimize the expected cumulative cost,

min
u0,...,uN

E
[ N∑
t=1

c(xt, ut)

]
(2a)

s.t. xt+1 = f(xt, ut) + wt (2b)

We presume that the system dynamics f in (1) are unknown,
meaning the control problem (2) is intractable. However,
we presume access to an imperfect model of the dynamics
p0 : X × U → X . Such side information may be available,
for instance, if we have a coarse approximation of system

parameters, a first-order estimate of the dynamics, or access
to a low-fidelity model through a virtual simulation.

We consider the problem of sequentially computing a data-
driven estimate µn of the system dynamics (1) by actively
selecting the dataset Dn consisting of n ∈ N observed state
transitions,

Dn = {(xi, ui, yi)}ni=1, (3)

where x and u are in X and U , respectively, and y =
f(x, u) + w with w ∼ N (0, σ2I).

We study an episodic setting, where in each episode τ =
1, 2, . . . , T , we compute an exploratory policy πτ : X → U
that we employ to collect new data. As we obtain new obser-
vations, we update the dataset, Dn+1 = Dn ∪ {(x′, u′, y′)}
and subsequently update the data-driven estimate of the
dynamics.

To that end, our goal is to develop an active sampling
algorithm that defines an exploratory policy πτ in each
episode τ = 1, 2, . . . to leverage (i) prior domain knowledge
and (ii) information from prior episodes to efficiently learn
a predictive model of the dynamics f(x, u) in (1). Further-
more, we seek a consistent estimator, meaning µτ (x, u) →
f(x, u) as τ → ∞.

Our key insight is that a non-zero mean GP can be used
to model the residual between our observed data and a prior
model derived from side information. Then, we modify the
UCB algorithm to maximize the discrepancy between our
data-driven model and the prior, and periodically accumulate
observed data into our prior model at the end of each episode.
This leads the active sampling process to sample more in
areas where the prior model is empirically incorrect, and less
in areas where our prior is closely aligned with the data.

B. Gaussian Processes

We use a Gaussian process [4] to estimate the dynamics.
For notational simplicity, we denote Z = X × U as the
state-action space and zt = (xt, ut). A Gaussian process
f(z) ∼ GP(m(z), k(z, z′)) is completely specified by a
mean function m(z) and a positive definite covariance func-
tion k(z, z′) [4],

m(z) = E[f(z)] (4)
k(z, z′) = E[(f(z)−m(z))(f(z′)−m(z′))] (5)

In the following, we presume that the covariance function
k is given by the squared exponential, or RBF function,
k(z, z′) = exp(−γ∥z − z′∥2), where γ > 0, and that the
mean function m(z) is non-zero [4, § 2.7]. The non-zero
mean is key to our approach since we use this term to capture
prior knowledge of the system dynamics. Critically, we will
periodically update the prior to reflect the new data gathered
during each episode.

Given a dataset Dn as in (3) consisting of n data points,
the predictive mean µn and variance σ2

n can be evaluated at
a given test point z∗ ∈ Z as,

µn(z
∗) = (y −m)⊤(Gn + σ2I)−1kz∗ +m(z∗) (6)

σ2
n(z

∗) = k(z∗, z∗)− k⊤
z∗(Gn + σ2I)−1kz∗ (7)
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where y and m are vectors, with the ith elements given by
yi = yi and mi = m(xi, ui), Gn = (gij) is an n × n
matrix with elements gij = k(zi, zj), kz∗ is a vector where
the ith element is given by k(zi, z∗). As we collect new
observations and augment the dataset Dn, the predictive
mean µn and variance σ2

n are recomputed using the new
dataset. In practice, these equations can be solved efficiently
using Cholesky factorization, see [4, Algorithm 2.1], and the
Cholesky factors can be updated via rank-1 updates as new
data becomes available.

C. Active Sampling in the GP Setting

We are concerned with fitting a GP model to a minimal
dataset, i.e. sampling a limited number of data points that
provide significant information about the true dynamics of
the system, f . We utilize an adaptation of the GP-UCB algo-
rithm [5] to guide the selection of actions along trajectories
to regions of greatest mismatch (discrepancy) between the
prior model and the true, underlying dynamics. The GP-UCB
algorithm [5] for maximizing a function g(z) for z ∈ Z uses
the predictive mean µn and variance σn of a GP to decide the
next sample point, and chooses points based on the following
acquisition function,

A(z) = µn(z) + β1/2
n σn(z), (8)

where µn is as in (6), σn is the square root of the predictive
variance in (7), and β ∈ R+ is a positive real constant called
the decay schedule.

The next sample point zn+1 is then chosen to maximize
the acquisition function as

zn+1 = argmax
z∈Z

An(z). (9)

Intuitively, the acquisition function A in (8) provides a
tradeoff between sampling in areas where the predictive
mean is large, and areas of high variance. This means that in
practice, under correct choice of the decay schedule βn, the
UCB algorithm will trade off between “exploration” in areas
of high uncertainty and “exploitation” by selecting points
near the max of the predictive mean.

III. ACTIVE SAMPLING USING SIDE INFORMATION

Our key insight is to define an exploration policy πτ :
X → U in episode τ using (9) to focus sampling on N
state-action pairs, {(xτ,n, uτ,n)}Nn=1, in regions where the
previous episode’s learned model, µτ−1,N , is maximally
different from the true system dynamics, f . As described
in Section II-B, we iteratively update our GP model as

µτ,n(z) = (y −mτ )
⊤(Gτ,n + σ2I)−1kz +mτ (z) (10)

σ2
τ,n(z) = k(z, z)− k⊤

z (Gτ,n + σ2I)−1kz, (11)

where Gτ,n ∈ R(τ−1)N+n×(τ−1)N+n is the kernel Gram
matrix of all data points observed up to iteration n of episode
τ , and mτ : Z → X is an episode-dependent prior term that
we define to be

mτ (z) := µτ−1,N (z), (12)

which is the previous episode’s learned model. At τ = 1, we
define m1(z) = p0(z), which is determined by the side infor-
mation or prior domain knowledge available before sampling.
Furthermore, we define µτ,0 ≡ µτ−1,N and στ,0 ≡ στ−1,N

to accumulate observed data from the previous episode.
The main idea of the sampling procedure is that the

exploration policy πτ is computed to maximize an adapted
GP-UCB acquisition function over action sequences along
the trajectory predicted by the current model of the dynamics.
We consider an MPC-like procedure to iteratively update
and replan the action sequences at each iteration during the
episode. For simplicity of notation, we consider the time
horizon to be the same as the episode length, N .

We define the following discrepancy-based acquisition
function,

Aτ,n(u;x
τ,n) =

∣∣µτ,n(x
τ,n, u)−mτ (x

τ,n, u)
∣∣

+ β1/2
τ,nστ,n(x

τ,n, u) + sτ (x
τ,n, u).

(13)

The first term of (13) models the discrepancy between our
current model µτ,n and the prior mτ fixed at the beginning
of the current episode. Maximizing this term encourages
sampling actions where the current episode’s prior appears to
be most incorrect. As in (8), the middle term of (13) allows
for the tradeoff between exploration of actions that possess
high uncertainty (variance) and exploitation of actions that
maximize the discrepancy. The last term sτ of (13) is an
additional term to allow for further side information to be
accounted for in the exploration policy. For example, sτ (z)
could be defined to ensure the system avoids exploring states
or actions known to be unsafe, e.g. as,

sτ (z) =

{
0 z ∈ S
−∞ z ̸∈ S

, (14)

where S ⊂ Z is an episode-dependent safe set.
At each iteration n during an episode τ , we solve the

following optimization problem,

max
u0,...,uN−1⊂U

N−1∑
t=0

Aτ,n(ut;xt) (15a)

s.t. xt+1 = µτ,n(xt, ut) (15b)
x0 = xτ,n (15c)

Intuitively, we plan a sequence of actions u0, . . . , uN−1 from
the current state xτ,n that, given the current estimate of the
dynamics µτ,n, will maximize the sum of the discrepancy-
based acquisition function in (13) along the predicted trajec-
tory. After solving (15), we execute the first control action
in the planned sequence, accumulate a new data point in our
dataset, and update the dynamics estimate µτ,n.

At the first iteration n = 0 during each episode τ , we set
xτ,0 to be the state in X with the maximum predictive vari-
ance σ2

τ,n. Note that by definition of mτ ≡ µτ−1,N ≡ µτ,0,
the discrepancy term in the first iteration is

∣∣µτ,0(x
τ,n, u)−

mτ (x
τ,n, u)

∣∣ = 0, and so at the first step, the problem in (15)
reduces to selecting action sequences that maximize the sum
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of the variances along the trajectory (plus whatever other
side information is included in the term sτ ).

At subsequent iterations, the discrepancy is no longer
uniformly 0 throughout the state-action space, and the solu-
tions of action sequences will incorporate how the observed
dynamics (as represented by the updated models µτ,n) differ
from the previous episode’s learned model µτ−1,N . In this
way, our method prioritizes the selection of actions that
are likely to explore in regions of state-action space where
our current data model mτ is misaligned with the true
dynamics f .

At each iteration n in episode τ , we solve (15) to compute
the exploration policy. In practice, solving (15) can pose
a challenge due to the presence of the square root of the
variance στ,n in the objective. Thus, we can use a sample-
based MPC method to compute a sequence of control actions,
for instance via Cross Entropy Maximization (CEM) [14].

A. Consistency Guarantee

Active sampling procedures should possess guarantees
that they lead to consistent estimators of the underlying
dynamics. It is usually the case that consistency arguments
are made under the assumption that the observed data is
given i.i.d., which is not the case in most active learning
settings. We establish consistency of our GP model µτ,n

within our active sampling framework by leveraging the
useful property that GPs are all-time calibrated statistical
models [10, 11]. Our key insight is to leverage the decrease
in predictive variance values of our GP model at key points
along observed trajectories to control the overall decrease in
predictive variance values over the state-action space Z .

We begin by stating important definitions and assumptions
that will allow us to conclude consistency of the GP mean
µτ,N → f from an argument on the convergence of the
predictive variance values σ2

τ,N → 0. We make the following
assumption and give a useful definition:

Assumption 1. We assume that the coordinate-wise func-
tions [f(·)]ℓ = fℓ : Z → R lie within a RKHS with kernel
k and have bounded norm B. That is, f ∈ Hd

k,B = {f :
∥fℓ∥k ≤ B, ℓ = 1, . . . , d}.

Definition 1 (All-time calibrated statistical model of f ,
[15]). Let z = (x, u) and Z := X × U . An all-time
calibrated statistical model for the function f is a sequence
{µj , σj , βj(δ)}j≥0 such that for all z ∈ Z, ℓ ∈ {1, . . . , d},
and j ∈ N

|[µj(z)]ℓ − [f(z)]ℓ| ≤ βj(δ)[σj(z)]ℓ, (16)

with probability greater than or equal to 1 − δ. Here we
denote the ℓth element of a vector v ∈ Rd as [v]ℓ. The
scalar function, βn(δ) ∈ R+ quantifies the width of the 1−δ
confidence intervals. We assume without loss of generality
that βj monotonically increases with n, and that [σj(z)]ℓ ≤
σmax for all z ∈ Z, j ≥ 0, and ℓ ∈ {1, . . . , d}.

Then, assuming that the true dynamics f we wish to model
is a bounded function (i.e., Assumption 1) within an RKHS

of vector-valued functions, then we can conclude that the GP
model is a well-calibrated statistical model for f :

Lemma 1 (Well-calibrated confidence intervals for RKHS,
[15]). Let f ∈ Hd

k,B and suppose that µj and σj are the
posterior mean and variance of a GP with kernel k. There
exists βj(δ), for which the tuple (µj , σj , βj(δ)) is an all-
time-calibrated statistical model (Definition 1) of f .

Note that while these definitions of the predictive variance
are considered to be vector-valued, our GP model simply
considers scalar variance values (i.e., the case that all entries
of the vector-valued variance are equivalent). Thus, while
our result could be stated in terms of bounding the norm of
a vector-valued variance, ∥σ2

τ,N∥22, we will just consider the
convergence of the scalar value σ2

τ,N .
To summarize, to show consistency of the underlying GP

model µτ,N (z) → f(z) as τ → ∞, one simply needs to
show that the variance of the GP model σ2

τ,N vanishes as
more episodes occur. We consider this guarantee under the
following additional assumptions

Assumption 2. The state-action space Z is finite; that is,
|Z| = Nz < ∞.

Assumption 3. The side information term sτ is already
captured in the definition of the domain of possible state-
action pairs, Z (i.e., sτ ≡ 0 for our purposes).

Assumption 4. In each episode τ , there exists at least one
index n∗ ∈ {1, . . . , N} at which the value zτ,n∗ in the
sampled trajectory {zτ,n = (xτ,n, uτ,n)}Nn=1 satisfies

σ2
τ,n∗

(zτ,n∗) ≥ 1

Nz

∑
z∈Z

σ2
τ,n∗

(z), (17)

where Nz is the cardinality of the state-action space Z .

Our results can be straightforwardly extended to bounded
state-action spaces, but assuming that Z is finite (Assumption
2) simplifies the presentation of our proofs hereafter. The
final assumption (Assumption 4) is a technical assumption
that simply asserts that the trajectory in each episode will
contain at least one state-action pair z = (x, u) that has
a relatively large variance value. We suggest that this is
a rather mild condition which is reasonable to assume in
various settings, such as in our case of discrepancy-based
GP-UCB planning, since we take into account the variance
values when identifying action sequences. A setting in which
this assumption is obviously satisfied is when trajectories are
allowed to start at arbitrary z ∈ Z , such as those points with
maximal variance.

Finally, we prove a useful Lemma that writes the iteration
update in the predictive variance values in terms of the
previous variance values.

Lemma 2. Consider a GP utilizing kernel k with predictive
mean (6) and variance (7). Upon observation at z∗ ∈ Z , then
the update to the predictive variance at the point z ∈ Z can
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be written as

σ2
n+1(z) = σ2

n(z)−
cov2σ2 (z∗, z)

σ2
n(z

∗) + σ2
. (18)

Proof. First, we write the definition of the predictive variance
upon observing at z∗:

σ2
n+1(z) = k(z, z)

− (kz k(z∗, z))

(
Gn + σ2I kz∗

kT
z∗ k(z∗, z∗) + σ2

)−1(
kz

k(z∗, z)

)
(19)

=: k(z, z)− (kz k(z∗, z))Wn+1

(
kz

k(z∗, z)

)
. (20)

Defining Wn = (Gn + σ2I)−1 and a−1 = k(z∗, z∗) + σ2 −
kT
z∗Wnkz∗ = σ2

n(z
∗) + σ2, we can use the block matrix

inversion formula to compute

Wn+1 =

(
Wn 0
0 0

)
+ a

(
Wnkz∗kT

z∗Wn −Wnkz∗

−kT
z∗Wn 1

)
(21)

=

(
Wn 0
0 0

)
+ a

(
Wnkz∗

−1

)(
kT
z∗Wn − 1

)
. (22)

Now, we can compute the inner product(
kT
z∗Wn − 1

)( kz

k(z∗, z)

)
= −

(
k(z∗, z)− kT

z∗Wnkz

)
(23)

= − covσ2 (z∗, z) , (24)

which allows us to conclude

σ2
n+1(z) = k(z, z)− kT

z Wnkz − a (covσ2 (z∗, z))
2 (25)

= σ2
n(z)−

cov2σ2 (z∗, z)

σ2
n(z

∗) + σ2
, (26)

which concludes the proof.

With the stated assumptions and Lemma 2, we now state
our main theorem regarding the convergence of variance
values resulting from our proposed active sampling method.

Theorem 1. If for all τ ≥ 1 we have that Assumptions 2-4
are satisfied and that the regularization parameter is scaled
as σ2 = ((τ − 1)N + n)

−2, then we have that sampling
action sequences based on the finite-horizon planning using
discrepancy-based GP-UCB acquisition function (15) gives
convergence of the posterior variance values,

max
z∈Z

σ2
τ,0(z) → 0, (27)

as τ → ∞.
If Assumption 1 holds, then Lemma 1 implies consistency

of the corresponding predictive mean µτ,0 → f as τ → ∞.

Proof. Let τ ≥ 2 denote a given episode and let n∗ ∈
{1, . . . , N} be the iteration index given by Assumption 4.
Furthermore, let z∗ := zτ,n∗ be the corresponding state-
action pair selected at the identified iteration. Due to the

monotonic decreasing nature of the variance over iterations
and episodes, we can write

max
z∈Z

σ2
τ+1,0(z) ≤

∑
z∈Z

σ2
τ,N (z) ≤

∑
z∈Z

σ2
τ,n∗+1(z). (28)

According to Lemma 2, the decrease in the variance for
z∗ at the identified iteration n∗ can be written as

σ2
τ,n∗+1(z∗) = σ2

τ,n∗
(z∗)−

σ4
τ,n∗

(z∗)

σ2 + σ2
τ,n∗

(z∗)
(29)

=

(
σ2

σ2 + σ2
τ,n∗

(z∗)

)
σ2
τ,n∗

(z∗) (30)

≤
(

((τ − 1)N)−2

((τ − 1)N)−2 + σ2
τ,n∗

(z∗)

)
σ2
τ,n∗

(z∗)

(31)

≤
(

N−2

N−2 + σ2
τ,n∗

(z∗)

)
σ2
τ,n∗

(z∗), (32)

where we have used the property that σ2 =
((τ − 1)N + n)

−2 ≤ ((τ − 1)N)−2 and that τ ≥ 2.
Plugging this into (28) and using (17) from Assumption 4,
we bound

max
z∈Z

σ2
τ+1,0(z)

≤
∑
z ̸=z∗

σ2
τ,n∗

(z) +

(
N−2

N−2 + σ2
τ,n∗

(z∗)

)
σ2
τ,n∗

(z∗) (33)

≤
∑
z∈Z

σ2
τ,n∗

(z)−

(
σ2
τ,n∗

(z∗)

N−2 + σ2
τ,n∗

(z∗)

)
σ2
τ,n∗

(z∗) (34)

≤

(
1− 1

Nz

(
σ2
τ,n∗

(z∗)

N−2 + σ2
τ,n∗

(z∗)

))∑
z∈Z

σ2
τ,n∗

(z) (35)

≤

(
1−

∑
z∈Z σ2

τ,n∗
(z)

Nz

(
NzN−2 +

∑
z∈Z σ2

τ,n∗
(z)
))∑

z∈Z
σ2
τ,n∗

(z)

(36)

≤

(
1−

∑
z∈Z σ2

τ,0(z)

Nz

(
NzN−2 +

∑
z∈Z σ2

τ,0(z)
))∑

z∈Z
σ2
τ,0(z),

(37)

where in the last line we have used the monotonic decreasing
property of the predictive variance values over the iterations.

Defining vτ = 1
Nz

∑
z∈Z σ2

τ,0(z), we see the recurrence
relation

vτ+1 − vτ ≤ −v2τ
Nz(NzN−2 + vτ )

, (38)

with initial condition v1 = Nz (since σ2
1,0(z) = 1 for all

z ∈ Z). Noting that the function f(v) = −v2/(a(b+ v)) is
decreasing on v ∈ (0,∞), we can pass to a corresponding
differential equation to serve as an upper bound for vτ :

v′(t) =
−v2

Nz(NzN−2 + v)
, v(0) = 1, (39)
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Fig. 1. Average reduction of maximum variance (uncertainty) over 8000
test points T spaced evenly over the entire state space. The shaded region
shows the maximum and minimum values over 10 independent trials.

for which we can solve for the “time” t(ϵ) > 0 for which
v(t(ϵ)) = ϵ by separation of variables:

t(ϵ) = −Nz

(
NzN

−2

∫ ϵ

Nz

1

v2
dv +

∫ ϵ

Nz

1

v
dv

)
(40)

=
Nz(Nz − ϵ)

N2ϵ
+Nz log

(
Nz

ϵ

)
. (41)

That is to say, by episode τ(ϵ) ≥ t(ϵ), we are ensured that

max
z∈Z

σ2
τ(ϵ),0(z) ≤ ϵ. (42)

With this explicit convergence rate, we can see that as τ →
∞ we then obtain that σ2

τ,0(z) → 0 for all z ∈ Z .

The proof of Theorem 1 relies on the convenient fact
that our discrepancy-based GP-UCB acquisition function
reduces to maximum variance sampling in the first iteration
of each episode. As such, the monotonicity of predictive
variance in combination with the assumption that we can
start trajectories at arbitrary z ∈ Z gives that we can bound
the variance at each iteration in an episode by the variance
of the value z∗ given by Assumption 4.

IV. NUMERICAL RESULTS

For all experiments, we use a Gaussian (RBF) kernel
k(x, x′) = exp(−γ∥x − x′∥2), γ = 0.5, and the regular-
ization parameter is chosen to be σ2 = 1/n2, where n is the
size of the dataset.

A. Estimating a Simple Pendulum System

We first consider the problem of estimating the system
dynamics of the controlled pendulum system as in [16]. The
equations of motion of the pendulum are given by ml2θ̈ +
3mgl sin(θ) = 3u, where g = 9.81 is the acceleration due
to gravity, the link mass is m = 1, and the link length is
l = 1. The state of the system is given by the angle θ and
angular velocity θ̇ of the pendulum, x = [θ, θ̇]⊤ ∈ R2, and
the control input is the torque applied to the pendulum, u ∈
R. For the benchmark, the angle θ is adjusted to be within
the range θ ∈ [−π, π], the angular velocity is bounded such

Fig. 2. Mean squared error (MSE) of the learned models over test points T .
The inclusion of side information leads to reduced error. The shaded region
shows the maximum and minimum values over 10 independent trials.

Fig. 3. Average discrepancy between the prior model and the true,
underlying dynamics at the points visited by the algorithms during each
episode.

that θ̇ ∈ [−8, 8], and the control input is bounded to u ∈
[−2, 2], meaning the system is under-actuated. We presume
that the true dynamics are unknown but that we have access
to an imperfect prior model of the system with mis-specified
parameters g = 9.0, link mass m = 0.5, and link length
l = 2.0.

We implement two baselines for comparison. First, we
consider OpAx [10], which uses optimistic planning to
identify action sequences that decrease predictive variance.
At the beginning of each episode, OpAx computes an open-
loop policy that maximizes the information gain during the
episode using an optimistic estimate of the dynamics. It is
called “optimistic” since it uses a planner that adds additional
control variables to artificially steer plausible rollouts to
states that maximize information gain [11]. Second, we
consider a greedy variance-based exploration algorithm that
myopically selects the control input at each iteration that has
maximum variance. In other words, this σn-greedy policy is
a purely exploration-based policy.

For all approaches, we use a GP model as in (4) and
(5) and sample over 30 episodes with a time horizon of
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N = 10. For our approach and OpAx, we use the improved
cross-entropy MPC planner (iCEM) [14] to compute the
exploration policy. We use a planning horizon of 10, with 10
iterations, 50 action sequence samples at each iteration, and
an elite set size of 10, holding 5 elites between iterations. See
[14] for more details. In each episode, we choose the initial
condition x0 to be the point in X with the highest variance
according to the current GP estimate of the dynamics (11).

In order to compare our approach to OpAx and the σn-
greedy policy, we compute the maximum uncertainty and
mean prediction accuracy at a set of 8000 test points T =
{(xj , uj)}8000j=1 spaced uniformly in the state space. Figure
1 shows the reduction in maximum variance and Figure 2
shows the mean squared error (MSE) between the learned
model µτ,N as in (10) and the true underlying dynamics
f . To demonstrate good performance, an active learning
algorithm must balance exploration (reducing uncertainty or
variance) while simultaneously improving accuracy.

We see in Figure 1 that our approach performs comparably
to OpAx at reducing uncertainty, though we explore the
state-action space at a slightly reduced rate. Nevertheless,
we see in Figure 2 that our approach initially starts with
a significantly reduced MSE due to the inclusion of side
information via a non-zero mean prior. While it is possible
to augment the GP model in OpAx to utilize such a prior,
we note that the exploration procedure in OpAx does not
take the prior into account during exploration. This is key
because it means that even though both methods explore at
a similar rate, our approach focuses its exploration in areas
with the highest mismatch (discrepancy) between the prior
and the observations, providing higher intrinsic value for the
learning task. We can see this clearly in Figure 3, which
shows the average discrepancy between the prior model p0
and the true dynamics f of the visited states during each
episode. This is an important result, since it means we favor
regions with high model mismatch while avoiding redundant
regions where our prior model aligns closely with the true
dynamics. As expected, we see in Figure 1 that the σn-greedy
policy performs the best at reducing the uncertainty of the
GP-based estimate, but note that this does not correspond to
a commensurate improvement in the approximation quality.

B. Control Performance Using Learned Dynamics

We next consider the problem of computing a control
policy using the model learned via our proposed active
learning approach. Our goal is to measure whether the
learned model is sufficiently high-fidelity for the purpose of
control. We consider the half-cheetah environment from the
MuJoCo benchmark suite [17]. The half-cheetah system is
specified by a collection of rigid links, joints, and actuators
(see Figure 4). The state is in R18, consisting of the position
and velocity of the various links, and the input space is in
R6, representing the torques applied to each motor, bounded
to be in [−1, 1].

We consider solving an optimal control problem as in (2),
where the objective is to maximize the travel speed to the
right (the positive x direction), while minimizing control

Fig. 4. The true half-cheetah system (left) and the imperfect half-cheetah
system used as the bias for our algorithm (right).

Fig. 5. Cumulative reward of our approach at a downstream control task
compared to the oracle using the true dynamics.

effort. We presume that the true system is unknown, but
that we have access to side information in the form of an
imperfect model with a torso that is 1.8 times as long as the
actual system (Figure 4, right).

As before, we use the iCEM planner [14] to compute the
exploration policy. We use a planning horizon of 10, with 10
iterations, 100 action sequence samples at each iteration, and
an elite set size of 10, holding 5 elites between iterations.
Then, we fix the GP model of the dynamics and compute a
separate policy to solve the optimal control problem as in (2)
using MPC, using the mean predictor µτ,n as in (10) for the
predictive model of the dynamics in (2b). We similarly use
iCEM to compute the control inputs, only using 200 action
sequence samples, an elite set size of 50, and holding 15
elites per iteration.

Figure 5 shows the average cumulative reward of the
system over 10 independent runs using the learned model as
the predictive model. For comparison, we also computed the
average cumulative reward using the actual system dynamics
(oracle). We can see in Figure 5 that our approach yields a
model that demonstrates good empirical performance at a
downstream control task.

V. CONCLUSION

In this paper, we present an active learning method
that incorporates prior domain knowledge in the sampling
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procedure as well as the learned model. Under reasonable
assumptions, we prove that our active sampling method
provides a consistent estimator of the dynamics. Through
numerical experiments, we demonstrate that our active learn-
ing approach produces an empirical dynamics estimate with
lower error than methods that neglect prior knowledge,
while simultaneously prioritizing exploration in regions that
demonstrate a higher discrepancy between the prior model
and our data-driven estimate.
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