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Abstract— This paper considers deterministic sensor decep-
tion attacks in closed-loop insulin delivery. Since the quality of
decision-making in control systems heavily relies on accurate
sensor measurements, timely detection of attacks is imperative.
To this end, we consider a model-based anomaly detection
scheme based on Kalman filtering and sequential change detec-
tion. In particular, we derive the minimax robust CUSUM and
Shewhart tests that minimizes the worst-case mean detection
delay and maximizes the instant detection rate, respectively.
As a byproduct of our analysis, we show that the notorious
χ2 test shares an interesting optimality property with the two-
sided Shewhart test. Finally, we show that one-sided sequential
detectors can significantly improve sensor anomaly detection
for preventing overnight hypoglycemia which can be fatal.

I. INTRODUCTION

Sequential change detection (SCD) has a wide variety of
applications including anomaly detection in control systems.
SCD involves detecting an abrupt change in the distribution
of a random observation sequence at an unknown point in
time. The goal is then to detect the change as early as pos-
sible with respect to a certain criterion subject to a specified
false alarm constraint. In this work, we consider state-of-
the-art SCD methods for detecting non-stealthy false data
injection (FDI) attacks on the glucose sensor of an automated
insulin delivery system termed the artificial pancreas (AP).

AP systems automatically regulate the blood glucose (BG)
levels in individuals with type 1 diabetes (T1D) by means
of a portable insulin infusion pump. The required insulin
rate is determined based on real-time glucose measurements
provided by the continuous glucose monitor (CGM). Due
to closed-loop operation, the safety and efficacy of an AP
are highly dependent on accurate CGM readings. Hence,
it is of utmost importance to detect erroneous readings
and mitigate their effect in a timely manner. The bulk of
the previous work on detecting CGM failures utilizes data-
driven methods that solely depend on sensor data such as
support vector machines [1], wavelets [2], and principal
component analysis [3]. In [4], the authors proposed a hybrid
physiological model and data-driven scheme for the detection
and diagnosis of CGM failures. The fundamental difference
between the aforementioned works and ours is that they
consider natural sensor failures. In contrast, we consider an
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FDI attack staged by a smart adversary who can exploit the
vulnerabilities present in system dynamics.

Model-based anomaly detection in control systems may
be divided into two subsequent steps: residual generation
and evaluation [5]. In this work, we consider a stochastic
linear time-invariant (LTI) model for the AP system. The
Kalman filter is a common approach for residual generation
in LTI systems, where the filter innovations are selected
as the residual signal due to their well-known statistics
[6]. The detection of deterministic FDI attacks can then
naturally be formulated as an SCD problem where the pre-
change (i.e., before the attack) distribution of the residual is
known. However, it is not possible to know the post-change
distribution without the knowledge of the attack sequence.

In detection theory, there are two main approaches to deal
with uncertain post-change distributions: adaptive and min-
imax detectors [7]. In particular, adaptive detectors such as
the generalized likelihood ratio test aim to reduce the uncer-
tainty by estimating the unknown parameters. However, their
implementation can be prohibitively complex or unfeasible
in real-time embedded systems such as the AP. A minimax
detector, on the other hand, aims to guarantee a certain
worst-case performance without parameter estimation. Under
mild regularity conditions, a minimax detector is a simple
detector that is optimal under the least favorable post-change
distribution [8]. This approach is better suited for anomaly
detection in the AP due to its low complexity.

For residual evaluation, two well-known SCD procedures
are the cumulative sum (CUSUM) and Shewhart tests [9].
In particular, the CUSUM test minimizes the worst-case
mean detection delay while the Shewhart test maximizes the
probability of instant detection for a given false alarm rate
(FAR) [10]. The Shewhart test may be preferable over its
arguably more popular competitor CUSUM test for deception
attacks that are stealthy in the transient phase but become
non-stealthy in the steady state. Such examples include
replay attacks [11] and constant bias injection attacks if the
plant has an integrator [12].

In this work, we define the uncertainty set of possible post-
change distributions based on a minimal assumption on the
attack (Assumption 1). The main contributions of this paper
are summarized as follows:

• We establish the minimax robust optimality of the
Shewhart test for detecting mean shifts in Gaussian
processes with fixed variance (Proposition 2 and 3).

• We show that the optimality of the Shewhart test is
preserved even when the true change parameter does
not match the presumed change parameter for imple-
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mentation as opposed to the CUSUM test. Furthermore,
we establish the equivalence of the two-sided Shewhart
and χ2 tests (Proposition 4). The implication is that the
seemingly naive χ2 test enjoys an interesting optimality
property in that it maximizes the instant detection
probability at the attack onset for a desired FAR.

• We demonstrate that one-sided SCD tests are superior
to their two-sided counterparts in preventing overnight
hypoglycemia.

The rest of the paper is organized as follows. Section II
presents the SCD formulation of deterministic FDI attacks
on the CGM. Section III lays out the theoretical foundations
and presents the minimax robust SCD problems for attack
detection. Section IV presents the corresponding solutions.
Section V demonstrates the effectiveness of the proposed
simple detection scheme via numerical simulations. Section
VI concludes the paper.

Notation: N,R denote the set of natural and real numbers,
respectively. Rn denotes the n-dimensional Euclidean space.
AT denotes the matrix transpose of A. N (µ,Σ) denotes the
Gaussian distribution with mean µ and (co)variance Σ. The
short-hand notations for an ordered sequence and the ReLU
function are, respectively as, xk

j ≜ (xj , xj+1, . . . , xk),
(x)+ ≜ max{0, x}.

II. PROBLEM FORMULATION

Since the paper focuses on sensor attacks, we consider the
following autonomous discrete-time LTI system:

xk+1 = Fxk + wk

yk = Hxk + vk + ak
(1)

where k ∈ N is the discrete-time index, xk ∈ Rn is the state
vector, yk ∈ R is the measured output, and ak ∈ R is the
FDI on the sensor. The state and the output are driven by
mutually independent white Gaussian noises wk ∼ N (0, Q)
and vk ∼ N (0, R), respectively.

We employ the Kalman filter for residual generation. For
ease of exposition, we assume the filter has already reached
the steady-state. Then, the filter dynamics may be written as:

x̂k+1 = (F −KH)x̂k +Kyk (2)

K = FPHTS−1 (3)

S = HPHT +R (4)

P = F (P −KHP )FT +Q (5)

where x̂k ≜ E[xk | yk−1
0 ] is the one-step prediction of xk, K

is the filter gain, and P is the steady-state estimation error
covariance that solves the algebraic Riccati equation (5).

The Kalman filter innovation sequence is the difference
between the measured and predicted output as follows:

rk ≜ yk −Hx̂k. (6)

In the absence of anomalies (e.g., FDI), it is well-known
that rk ∼ N (0, S) [13]. On the other hand, when the attack
sequence ak is deterministic, the innovation sequence rk
follows a Gaussian distribution with a time-varying mean

with the same (co)variance. The attacked residual mean µk

evolves as follows:

x̃a
k+1 = (F −KH)x̃a

k −Kak, x̃
a
0 = 0

µk = Hx̃a
k + ak

(7)

where x̃a
k denotes the isolated contribution of the attack to

the state estimation error x̃k ≜ xk − x̂k. The linearity of the
Kalman filter is exploited while deriving (7). Hence, non-
stealthy FDI detection is an SCD problem of the form:

H0 : rk ∼ N (0, S) for 0 ≤ k

H1 : rk ∼ N (0, S) for 0 ≤ k < v

rk ∼ N (µk, S) for k ≥ v

(8)

where v is the change point. The null hypothesis H0 defines
the nominal behavior whereas the alternative hypothesis H1

implies that an anomaly has occurred in the observation
sequence rk. As can be seen from (8), H1 is rather rich in
parameters, which is the major challenge in attack detection.
So as to make the detection problem tractable, we introduce
a simplifying yet reasonable assumption.

Assumption 1. For a given attack sequence ak, the corre-
sponding change in the magnitude of the residual mean is
bounded from below such that |µk| ≥ m.

In the sequel, we explain how to tackle (8) under this
assumption through minimax robust SCD.

III. SEQUENTIAL CHANGE DETECTION

In this section, we formally define SCD procedures as
well as their operating characteristics. In order to facilitate
understanding, we present the following key definitions [9].

Definition 1 (Simple and Composite Hypotheses). A hypoth-
esis is said to be simple if all parameters of the underlying
distribution are specified, and is said to be composite other-
wise.

In other words, the parameter space of a composite hy-
pothesis has at least 2 elements.

Definition 2 (Stopping Time). A stopping time with respect to
a random sequence (Xn)n≥1 is a random variable T such
that for each discrete-time instant n, the event {T = n}
belongs to the sigma-algebra generated by Xn

1 .

To put it simply, T does not depend on any future
observation Xj>n. An SCD procedure is simply a stopping
time on an observation sequence:

T = inf{n ≥ 1 : d(Xn
1 ) > τ} (9)

where d(·) is the test statistic which is a causal function of
observations, τ is the decision threshold, and inf{Ø} = ∞.
Thus, T is the number of observations taken until an alarm
is raised for the first time.

The stopping time concept is analogous to the impulse
response of LTI systems in that it uniquely defines the
characteristics of SCD procedures. Thus, the SCD theory
is essentially the study of designing optimal stopping times.
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The optimality is defined with respect to certain detection
performance measures given a false alarm constraint.

For notational brevity, let Pv(T ) be the probability mea-
sure on T when the change point is v, and Ev[T ] is
the corresponding expectation. Consequently, P∞(T ) and
E∞[T ] are convenient short-hand notations for when no
change is present. In the absence of a priori information
on v, a common and natural metric to quantify the FAR is
the average frequency of false alarms as follows [10]:

FAR(T ) ≜ 1/E∞[T ]. (10)

Hence, we define the feasible set for the SCD procedures as:

Cα ≜ {T : 0 < FAR(T ) ≤ α ≤ 1}. (11)

The detection delay (T − v)+ is a random variable. Thus,
one can either opt to minimize the mean detection delay
or maximize the probability of detection within a certain
window of length N +1. The first can be formulated as the
following optimization problem:

minimize ADDv(T ) ≜ Ev[T − v | T ≥ v]
subject to T ∈ Cα.

(12)

while the latter can be formulated as:

maximize Pv(T = v +N | T ≥ v)
subject to T ∈ Cα,

(13)

Clearly, detection performance depends heavily on the
unknown change point v. Unfortunately, an SCD procedure
that solves (12) or (13) uniformly over all v ≥ 1 does not
exist [9]. Instead, one can employ a minimax approach, that
is, optimize with respect to the worst-case scenario. For the
first problem, we resort to Lorden’s measure of worst-case
detection delay [14]:

Jd(T, µk) ≜ sup
v≥1

{
ess supEv

[
(T − v)+ | rv−1

0

]}
. (14)

It is basically the maximal mean detection delay conditioned
on the worst admissible realizations. As for the second prob-
lem, we consider the minimal detection probability originally
proposed by Moustakides [15]:

Jp(T, µk, N) ≜ inf
v≥1

Pv(T = v +N | T ≥ v). (15)

Let U ⊂ R denote the uncertainty set, that is, the set of
all values that µk can take. Then, we seek the minimax
robust SCD procedures that solve the following optimization
problems:

minimize sup Jd(T, µk)
T ∈ Cα µk ∈ U (16)

maximize inf Jp(T, µk, 0)
T ∈ Cα µk ∈ U (17)

In (17), we restrict to the special case when N = 0 as no
results for the general case N > 0 have been reported to
our best knowledge. Next, we present the state-of-the-art
algorithms for these problems.

A. One-sided Sequential Change Detection

First, let us consider a simple SCD problem with U = {n}
where n ∈ R is a known constant. Let f0 and f1 be the pre-
and post-change distributions such that

f0 ≜ N (0, S), f1 ≜ N (n, S). (18)

The log-likelihood ratio (LLR) of the observation sequence
rk with respect to f0 and f1 read as:

ℓk+1 = log
f1(rk)

f0(rk)
=

nrk − 0.5n2

S
. (19)

The first procedure we shall present is the Shewhart test,
which is a repeated Neyman-Pearson test as follows [9]:

Tsh = inf{k ≥ 1 : ℓk > τsh} (20)

where Tsh denotes the corresponding stopping time. Despite
being the earliest SCD procedure, its optimality properties
were relatively recently discovered [15]. Pertinent to our
work, this test solves (17) when the threshold τcs is chosen to
ensure FAR(Tsh) = α, or equivalently P∞(ℓk > τsh) = α
[16]. In other words, it maximizes the worst-case instant
detection probability for a given FAR.

Next, we present the CUSUM test, which minimizes the
worst-case mean detection delay for a given FAR:

Tcs = inf{k ≥ 1 : gk = (gk−1+ℓk)
+ > τcs}, g0 = 0. (21)

Similarly, to solve (16), τcs must be chosen to ensure
FAR(Tcs) = α [17]. To determine the value of τcs, one
can either numerically solve the Fredholm integral equations
or use Monte Carlo simulations to approximate it [9]. In
the next subsection, we consider a natural extension of this
simple SCD problem to its composite counterpart to handle
bidirectional changes in µk.

B. Two-sided Sequential Change Detection

Now suppose we know the magnitude but not the direction
of change such that U = {−m, m}. A simple and intuitive
solution is to run two tests for n = m and n = −m in
parallel. The LLRs corresponding to the positive and negative
changes, respectively, read as:

ℓ+k+1 =
mrk − 0.5m2

S
, ℓ−k+1 =

−mrk − 0.5m2

S
. (22)

Then, the two-sided Shewhart test is defined as:

Tsh2 = inf{k ≥ 1 : ℓ+k > τsh2 or ℓ−k > τsh2}. (23)

When FAR(Tsh2) = α, or equivalently P∞(ℓ+k > τsh2) =
α/2, it enjoys the same optimality property as the one-sided
Shewhart test [16].

Similarly, the two-sided CUSUM test is defined as:

Tcs2 = inf{k ≥ 1 : g+k > τcs2 or g−k > τcs2}
g+k+1 = (g+k + ℓ+k )

+, g+0 = 0

g−k+1 = (g−k + ℓ−k )
+, g−0 = 0.

(24)

This test is asymptotically optimal as FAR(Tcs2) → 0 [9].
To our best knowledge, whether the two-sided CUSUM test
is globally optimal remains an open problem.
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IV. ROBUST SEQUENTIAL CHANGE DETECTION

In this section, we show that when assumption 1 holds,
the Shewhart and CUSUM tests tuned for |µk| = m are
minimax optimal.

Proposition 1. Consider the robust SCD problem (16). The
one-sided CUSUM test (21) with FAR(Tcs) = α is a
solution for the uncertainty sets U = {µk : µk ≥ n > 0}
and U = {µk : µk ≤ n < 0}.

Proof: Please see Theorem III.2 in [8]. ■
This result is in line with the intuition that the CUSUM

test tuned with respect to the minimum change in magnitude
should be worst-case optimal since larger deviations should
get detected even faster. Recalling the discussion in Section
III-B, the following corollary is easily seen:

Corollary 1.1. The two-sided CUSUM (24) is asymptotically
optimal as for U = {µk : |µk| ≥ m} as FAR(Tcs2) → 0 in
the sense of (16).

Next, we prove the robust optimality of the Shewhart test
in the sense of (17). We begin by introducing the relationship
between saddle points and minimax theory.

Definition 3 (Saddle point). The pair (a∗ ∈ A, b∗ ∈ B) is
a saddle point for f(a, b) if f(a∗, b) ≤ f(a∗, b∗) ≤ f(a, b∗)
for all a ∈ A and b ∈ B.

Lemma 1 (Minimax optimality [18]). Suppose we have the
following optimization problem:

maximize inf f(a, b)
a ∈ A b ∈ B.

The pair (a∗, b∗) is a solution to this problem if and only if
it is a saddle point for f(·).

Proposition 2. Consider the minimax robust SCD
problem (17). The one-sided Shewhart test (20) with
FAR(Tsh) = α is a solution for the uncertainty sets
U = {µk : µk ≥ n > 0} and U = {µk : µk ≤ n < 0}.

Proof: Let Tn
sh denote the stopping time (20) which sat-

isfies FAR(Tsh) = α. In what follows, we prove (Tn
sh, n, 0)

is a saddle point for Jp(T, µk, 0). More precisely, we show

Jp(T
′
, n, 0) ≤ Jp(T

n
sh, n, 0) ≤ Jp(T

n
sh, µk, 0)

where T
′

is any stopping time in Cα. Then, the statement
of the proposition follows by the virtue of Lemma 1.

As discussed in Section III-A, the left-hand side inequality
was proved in [16]. Thus, it suffices to prove the right-
hand side inequality. Using E[rk] = µk and (19), the LLR
sequence is a Gaussian variable as follows:

ℓk ∼ N
(
(nµk − 0.5n2)/S, n/

√
S
)
. (25)

The right tail probability for X ∼ N (µ, σ2) is equal to

P(X > τ) = 0.5erfc((τ − µ)/
√
2σ) (26)

where erfc(·) is the complementary error function. Thus,
the instant detection probability of Tn

sh2 becomes:

Jp(T
n
sh, µk, 0) = Pv(ℓk > τsh)

= 0.5erfc

(
Sτsh − nµk + 0.5n2

n
√
2S

)
(27)

Since erfc(·) is monotonically decreasing, (27) attains its
minimum at µk = n for both µk ≥ n > 0 and µk ≤ n < 0.
■

Next, we establish a similar result for the two-sided
Shewhart test.

Proposition 3. Consider the minimax robust SCD
problem (17). The two-sided Shewhart test (23) with
FAR(Tsh) = α is a solution for the uncertainty set
U = {µk : |µk| ≥ m}.

Proof: Let Tm
sh2 denote the stopping time (23) which

satisfies FAR(Tsh2) = α. Then, we show the following
holds:

Jp(T
′
, m, 0) ≤ Jp(T

m
sh2, m, 0) ≤ Jp(T

m
sh2, |µk|, 0).

As should be clear from the previous discussion, proving
right-hand side inequality completes the proof. Using (22)
and (23), the two-sided Shewhart detection rule may be
rewritten as:

|rk| >
Sτsh2
m

+0.5m ⇐⇒ r2k
S

> S

(
τsh2
m

+
0.5m

S

)2

≜ τχ2 .

(28)
The test statistic r2k/S under attack is a one-degree-of-
freedom non-central χ2 distributed random variable with a
noncentrality parameter of µ2

k/S. Consequently, the instant
detection probability of Tm

sh2 read as:

Jp(T
m
sh2, |µk|, 0) = Pv(r

2
k/S > τχ2) = Q0.5(|µk|/

√
S, τχ2)

(29)
where Qv(a, b) denotes the generalized Marcum Q−function
of real order v > 0, which is strictly increasing in a [19].
Thus, as in the unidirectional case, (29) attains its minimum
value at |µk| = m. ■

Propositions 2 and 3 establish the minimax robust optimal-
ity of the Shewhart test for detecting mean shifts in Gaussian
processes with fixed variance. They verify our intuition that
larger deviations should get detected with higher probability.
The next proposition shows that this test enjoys a remarkable
robustness property.

Proposition 4. For any fixed FAR of α, the one-sided
Shewhart test (20) is equivalent to the simpler test rk > τ
where P∞(rk > τ) = α. Similarly, the two-sided Shewhart
test (23) is equivalent to the simpler χ2 test: r2k/S > τχ2

where P∞(r2k/S > τχ2) = α.

Proof: By definition, we have α = P∞(rk > τ). From
(26), we get τ =

√
2S erfc−(2α). Similarly, for the one-

sided Shewhart test, we have α = P∞(ℓk > τsh) which
yields the following relation between τ and τsh:

(Sτsh + 0.5n2)/n =
√
2S erfc−(2α) = τ. (30)
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The above equation clearly shows rk > τ ⇐⇒ lk > τsh.
The proof of Proposition 3 readily establishes the equivalence
of the two-sided Shewhart and χ2 tests. ■

Please note that the detection rules rk > τ and r2k/S > τχ2

are independent of the post-change distributions. Hence, the
optimality of the Shewhart test is insensitive to the true value
of the change parameter µk. In contrast, the optimality of the
CUSUM test holds only when the true change parameter is
equal to the presumed value [9].

Remark. The proof of Proposition 4 is constructed for the
scalar case since this paper focuses on the AP where the only
measured quantity is BG levels. However, changing to vector
notation, the equivalence of the two-sided Shewhart and χ2

tests can easily be extended to multiple output systems.

V. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we perform numerical simulations to illus-
trate the analytical results obtained in the previous section
and to demonstrate an application in the context of the AP.

A. Performance Measures

Based on Propositions 3 and 4, a natural question may
arise: Should we always employ the χ2 test to detect bidi-
rectional changes in the mean of white Gaussian processes?
The answer is no, because the χ2 test is optimal with respect
to the instant detection criterion which is too stringent. In
particular, the maximum achievable instant detection rate
becomes so low that this performance measure is no longer
practical for the cases where the magnitude of change and/or
FAR is too low. To illustrate this, we consider a scenario
where the pre-change distribution is N (0, 1) and the post-
change distribution is N (m, 1). Then, we compute the
two performance measures via Monte Carlo simulations:
Jd(T,m) as in (14) and Jp(T,m, 0) as in (15) for the χ2

and CUSUM tests with a moderate and a large value of m.
The results are reported in Fig. 1a and 1b, respectively. As

stipulated by Proposition 4, the χ2 test has a higher instant
detection rate than that of the CUSUM test at all times as
shown in Fig 1b. However, when m = 0.5 and the FAR is
0.5 %, the instant detection rate of the χ2 test is less than
3% while the detection delay is as high as 70 samples as
shown in Fig 1a. Clearly, this detection performance is not
acceptable for most applications. On the other hand, when
m = 1.5, the detection delays of the χ2 and the CUSUM
tests are comparable. Thus, for sufficiently large changes, the
χ2 detector may be preferable over the celebrated CUSUM
detector as it maximizes the probability of detection right at
the attack onset at the expense of a slightly higher worst-case
mean detection delay.

B. Overnight Hypoglycemia Prevention

In this subsection, we show an application of the proposed
model-based anomaly detection scheme for overnight hypo-
glycemia prevention. Hypoglycemia is a state of having too
low BG levels which can be lethal. Automatic suspension
of insulin delivery before entering hypoglycemia is the first
step of the six-step pathway toward a fully automated AP
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(a) Worst-case mean detection delay versus -log(FAR)

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

-log FAR(T)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

J p
(T

, m
, 0

)

2 test (m=0.5)
2-sided CUSUM  (m=0.5)

2 test (m=1.5)
2-sided CUSUM  (m=1.5)

(b) Worst-case instant detection rate versus -log(FAR)

Fig. 1: Performance comparisons of the χ2 and two-sided
CUSUM tests for a small and a large change.

proposed by the Juvenile Diabetes Research Foundation [20].
We consider the model developed by Bequette to predict the
future sensor glucose trajectory with the aid of a Kalman
filter [21]. The model parameters are summarized as follows:

F =

(
1 1
0 1

)
, Q =

(
0 0
0 0.01

)
, H =

(
1 0

)
, R = 4

Based on this simple model, an automatic insulin pump shut-
off algorithm has been developed and tested with 15 real
patients in a hospital setting [20]. The algorithm successfully
prevented hypoglycemia in 11 patients. Three of the four
unsuccessful cases were due to a positive bias in the CGM.
Had these sensor failures been detected earlier, the algorithm
could have also prevented hypoglycemia in those cases.

Please note that F has eigenvalues at unity which can
be exploited by the attacker. In particular, a constant bias
injection attack is steady-state stealthy in the sense that
limk→∞ µk = 0 if the plant has an integrator [12]. Moreover,
this holds for any linear observer not just for the Kalman
filter. Clearly, in this case, bias injection is a good strategy for
an FDI attack since an arbitrarily large bias can be injected
without risking detection so long as it is not detected in the
transient phase of the filter response. Thus, we assume the
attacker designs a slowly increasing bias injection attack to
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Fig. 2: Residual evaluation with one- and two-sided Shewhart
tests for detecting a bias injection attack.

remain stealthy during the transients. In this case, the attack
sequence reads as follows:

ak+1 = βak + (1− β)ā (31)

where β determines the speed of injection, ā determines the
final value of the injected bias. In the simulations, the attack
starts at 30 min with the following parameter values ā = 15
mg/dl and β = 0.2. The attack will be detectable only for a
short period of time since the effect of the injected bias on
the residual statistics quickly vanishes. Since the Shewhart
test maximizes the instant detection rate, it is more suitable
for detecting the attack during transients. We apply one- and
two-sided Shewhart tests on the innovations with an FAR of
α = 1%. Fig. 2 demonstrates the outcomes of a particular
realization of the simulations for this scenario. The one-sided
test was able to detect the attack instantly while the two-sided
test missed detection.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we investigated a common model-based
anomaly detection scheme against non-stealthy sensor decep-
tion attacks in AP systems. The detection scheme is based
on Kalman filtering and state-of-the-art minimax robust SCD.
We established an interesting robust optimality property of

the celebrated χ2 detector. In a sense, the χ2 test maximizes
the best-case detection delay (i.e., instant detection) while
the CUSUM test minimizes the worst-case delay. Finally, we
advocated the use of a one-sided Shewhart test for preventing
overnight hypoglycemia. In future work, we plan to study
robust sequential detection in the presence of nuisance pa-
rameters and provide more insights into the tradeoff between
robust detectability and the impact of the attack.
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