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Abstract— We consider online reinforcement learning in
episodic Markov decision process (MDP) with unknown transi-
tion function and stochastic rewards drawn from some fixed but
unknown distribution. The learner aims to learn the optimal
policy and minimize their regret over a finite time horizon
through interacting with the environment. We devise a simple
and efficient model-based algorithm that achieves Õ(LX

√
TA)

regret with high probability, where L is the episode length, T
is the number of episodes, and X and A are the cardinalities of
the state space and the action space, respectively. The proposed
algorithm, which is based on the concept of “optimism in the
face of uncertainty”, maintains confidence sets of transition and
reward functions and uses occupancy measures to connect the
online MDP with linear programming. It achieves a tighter
regret bound compared to the existing works that use a similar
confidence set framework and improves computational effort
compared to those that use a different framework but with a
slightly tighter regret bound.

–Keywords: Markov decision process, online learning,
reinforcement learning, regret minimization, occupation
measure, linear programming.

I. INTRODUCTION

Sequential decision-making in an unknown environment
is one of the central problems in many disciplines, such as
control and game theory, operations research, and computer
science [2]–[5]. In that regard, Markov decision process
(MDP) provides a powerful paradigm for modeling and ana-
lyzing sequential decision-making in the face of uncertainty.
In a standard discrete-time MDP, the system is in a certain
state at each time, and the decision-maker has to choose
an action based on the current state. Depending on the
action taken, the decision-maker receives a reward from the
environment, and the system transitions to the next state
stochastically based on some state transition function. In
reality, the decision-maker often may not have information
about the underlying dynamics of the system and must
learn them in real-time by executing different policies while
interacting with the environment. Such problems are referred
to as online reinforcement learning, and the decision-maker
is called the learner or the player. MDPs and reinforcement
learning have emerged in many applications such as robotic
control [6], [7], game playing [8], partially observable opti-
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mal feedback control [9], [10], cyber-physical security [11],
[12], healthcare [13], and among many others [5], [14].

In this paper, we study online reinforcement learning in
episodic MDPs, where the learner’s interaction with the
environment proceeds in repeated episodes. In other words,
the system “restarts” or gets to some initial state after a
time period (episode), and learning takes place between
episodes. This is a realistic model for many real scenarios.
For example, each round of playing chess with an opponent
can be viewed as an episode, and each episode contains
multiple time steps for moving the chess pieces. Therefore,
a chess player learns winning strategies after each round of
the game and becomes more expert by means of rounds of
play and learning.

Specifically, we consider an episodic MDP with finite X
states, A actions, T episodes, and L steps in each episode.
We devise a learning algorithm based on the optimism princi-
ple, which comprises two parts: model estimation and policy
optimization. The first part estimates the model of MDP,
and the second part optimizes the policy for implementation
based on the estimated model. Our benchmark to measure
the algorithm performance is regret, which is defined as
the difference between the maximum expected cumulative
reward that one can obtain given the MDP model and the
expected cumulative reward returned by the algorithm (see
Section II for a formal definition). The objective is to design
a tractable reinforcement learning algorithm that achieves a
regret sublinear in T and polynomial in other parameters.

A. Related Works

The concept of “optimism in the face of uncertainty”
is a generally well-understood and strategic principle for
decision-making over a fixed time horizon. It is widely
applied in multi-armed bandit and reinforcement learning
problems. Under such a principle, the algorithm maintains
a plausible estimate of the model and chooses the action
that yields the most optimistic reward. Earlier works such
as UCRL algorithm of [15], UCRL2 algorithm of [16],
and REGAL algorithm of [17] apply this principle and
study a similar MDP model with unknown environment
dynamics where the reward is randomly drawn from some
unknown fixed distribution. These algorithms are composed
of two parts: model estimation and policy optimization.
UCRL2 algorithm achieves a regret bound of Õ(L

3
2X
√
TA).

UCBVI algorithm for episodic MDP, which is introduced in
[18], improves this bound to Õ(L

√
TXA) and achieves the

best-known regret bound so far. UCBVI algorithm adopts
a different optimism approach for reinforcement learning,
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combining the upper confidence bound (UCB) approach with
a Q-learning-type algorithm. In a more recent work [19], the
authors propose a variant of model-free Q-learning algorithm
that directly parameterizes and updates the value functions
without explicitly modeling the environment. The Q-learning
algorithm is combined with the UCB algorithm and achieves
a regret of Õ(L2

√
TXA). Another notable algorithm-design

principle is posterior sampling, a.k.a. Thompson Sampling.
In [20], the authors present a posterior-sampling-based learn-
ing algorithm that achieves a regret bound of Õ(L

√
TXA).

Recently, several works have extended the approach of
confidence sets to adversarial MDPs. In adversarial MDP,
the reward functions can change arbitrarily between episodes
as if they were chosen by an adversary, whereas the envi-
ronment dynamics still remain fixed. [21]–[23] tackle the
reinforcement learning in episodic adversarial MDPs and
apply online mirror descent on the space of occupancy
measures instead of optimizing policies directly. Inspired by
UC-O-REPS and UOB-REPS algorithms in [22] and [23]
respectively, we adopt the concept of occupancy measure in
our paper for non-adversarial setting.

B. Contributions

In this work, we devise a reinforcement learning algo-
rithm for episodic MDPs which achieves a regret bound of
Õ(LX

√
TA) and requires at most XA log T times of model

update and optimization by combining UCRL2 algorithm
and UOB-REPS algorithm and extending their analysis.
Moreover, the optimization problem for policy update is
essentially a linear program and can be solved efficiently
using standard linear programming solvers. Our contribution
is twofold:

• Compared to the best regret bound of existing algo-
rithms that adopt the same method based on confidence
set, we reduce the regret bound from Õ(L

3
2X
√
TA)1

in [16] to Õ(LX
√
TA).

• Compared to the best regret bound of all existing
algorithms regardless of methods or principles, which
is Õ(L

√
TXA) in [18], we have improved the compu-

tational efficiency by reducing the number of steps for
model estimation and policy update from T to at most
XA log T at the cost of an additional factor of

√
X in

the regret bound.

Notations: For any non-negative integer k, we let [k] ≜
{0, 1, · · · , k}. For any positive integer k, we let [k]+ ≜
{1, · · · , k}. For any finite set A, ∆(A) denotes the prob-
ability simplex of A. I{·} denotes the indicator function.
We use Ω and O to denote the asymptotic lower and upper
bounds, respectively, and use Õ to represent O by hiding
the logarithmic factors. We use calligraphic and uppercase
letters to denote sets and their cardinalities, respectively (e.g.,
X = |X |, Xh = |Xh|, A = |A|).

1We have translated the bounds into our notations and model defined in
Section II. Therefore, the bounds shown here differ slightly from how they
appear in the original paper [16].

II. PROBLEM FORMULATION

We study an episodic discrete-time MDP defined by a
tuple M = (X ,A, P, r), where X is the finite state space,
A is the finite action space, P : X × A × X → [0, 1]
is the transition function, and r : X × A → [0, 1] is
the expected reward function (shortened as reward function
hereinafter). When the learner takes action a ∈ A in state
x ∈ X , the system transitions to state x′ ∈ X with
probability P (x′|x, a), and the learner receives a realized
reward randomly drawn from some distribution on [0, 1] with
mean r(x, a). The process proceeds in episodes, where each
episode has the same length of L time steps. The system
restarts at the end of each episode, and a new episode
begins with an initial state. Moreover, following the previous
literature [21]–[25], we shall focus on the layered episodic
MDP model as described in the following assumption.

Assumption 1: The episodic MDP model satisfies the fol-
lowing conditions:

• The state space X can be partitioned into (L+1) non-
intersecting layers X0, · · · ,XL.

• X0 and XL are singletons, i.e., X0 = {x0}, XL = {xL}.
• State transition takes place only between two consec-

utive layers, i.e., P (x′|x, a) > 0 only if x ∈ Xh and
x′ ∈ Xh+1 for some h ∈ [L− 1].

• The transition function P and the reward function r are
time-invariant.

Remark 1: In fact, restriction to the class of layered
episodic MDPs is without loss of generality because any
general setting of episodic MDP can be reduced to such a
layered structure [22], [23]. The reason is that non-layered
structures with time-variant transition and reward functions
can be reduced to layered models by creating L identical
copies of the state space to construct the layers. Therefore,
the algorithm and results in this paper can be applied to
any general episodic MDP model up to a scaling factor that
depends on the length of each episode.

The learner interacts with the environment over a fixed
finite time horizon T and follows a learning algorithm to
learn the optimal policy for the MDP. Only the state space
X and the action space A are known to the learner ahead
of time, whereas the transition function P and the reward
function r remain unknown. In episode t ∈ [T ]+, the
learner determines a stochastic policy πt : X → ∆(A)
where πt(a|x) denotes the probability of choosing a in
state x and executes the policy πt over the entire episode.
In each step h ∈ [L − 1], the learner chooses an action
ah ∼ πt(·|xh) and receives a realized reward rh which is
randomly drawn from some unknown distribution with mean
r(xh, ah). Such information feedback is often referred to as
the bandit feedback.

For any policy π, we define the expected reward over an
episode as follows:

V (π) ≜ E

[
L−1∑
h=0

r(xh, ah)

∣∣∣∣∣P, π
]
. (1)
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An optimal policy is the policy π∗ which maximizes the
expected reward over an episode, i.e., π∗ ∈ argmaxπ V (π).
The objective of the learner is to minimize the total regret,
which is defined as

RegT = T · V (π∗)−
T∑

t=1

V (πt). (2)

III. PRELIMINARIES: OCCUPANCY MEASURE IN
EPISODIC MDP

In this section, we provide some preliminary results and
analytical tools that will leverage to establish our main
results. We begin with the notion of occupancy measure
that was introduced in [26] and extensively used for online
learning in MDPs [21]–[25].

Definition 1: Given a layered episodic MDP, the occu-
pancy measure qP,π : X × A × X → [0, 1] induced by
transition function P and policy π is defined as

qP,π(x, a, x′) = P{xh(x) = x, ah(x) = a, xh(x)+1 = x′|P, π},
(3)

where h(x) is the index of the layer to which state x belongs.
In other words, qP,π(x, a, x′) represents the probability

of visiting the state-action-state triple (x, a, x′) in the MDP
with transition function P under policy π. Next, let us define
Q to be the set of all valid occupancy measures that can be
induced by some arbitrary transition function P and some
policy π. We have the following statement about Q.

Proposition 1 ( [22], [23], [25]): Q is a non-empty poly-
tope and has the following representation:

Q =

{
q ∈ RXAX

+

∣∣∣∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

q(x, a, x′) = 1,∀h ∈ [L− 1],

∑
x′∈Xh−1

∑
a∈A

q(x′, a, x) =
∑
a∈A

∑
x′∈Xh+1

q(x, a, x′),

∀x ∈ Xh, h ∈ [L− 1]+,

q(x, a, x′) = 0,

∀x ∈ Xh, a ∈ A, x′ /∈ Xh+1, h ∈ [L− 1]

}
. (4)

Given an episodic MDP with transition function P and
policy π, the induced occupancy measure qP,π is uniquely
determined by (3). Conversely, any occupancy measure q ∈
Q can induce some transition function P q and some policy
πq , as shown in the following proposition.

Proposition 2 ( [22], [23], [25]): Any valid occupancy
measure q ∈ Q can induce a transition function P q and
a policy πq given by

P q(x′|x, a) = q(x, a, x′)∑
y∈Xh(x)+1

q(x, a, y)
, (5)

πq(a|x) =
∑

x′∈Xh(x)+1
q(x, a, x′)∑

b∈A
∑

x′∈Xh(x)+1
q(x, b, x′)

. (6)

Moreover, when the denominators are non-zero, P q and πq

are uniquely defined.

Given a fixed transition function P , denote by QP the set
of all valid occupancy measures associated with the transition
function P . The following proposition shows that QP is a
polytope, which we shall refer to as the occupancy measure
polytope induced by P .

Proposition 3 ( [22], [23], [25], [26]): QP is a non-
empty polytope and has the following representation:

QP = Q ∩{
q ∈ RXAX

+

∣∣∣q(x, a, x′) = P (x′|x, a)
∑

y∈Xh+1

q(x, a, y),

∀x ∈ Xh, a ∈ A, x′ ∈ Xh+1, h ∈ [L− 1]

}
. (7)

The occupancy measure allows us to reduce the task
of learning the optimal policy to the task of learning the
optimal occupancy measure over QP . However, QP itself is
unknown. Therefore, a natural approach is to construct and
maintain a set of plausible transition functions P such that
with high probability, P ∈ P and QP ⊆ QP , where QP =
∪P∈PQ

P is the set of all occupancy measures associated
with the transition functions in P , and solve for the optimal
occupancy measure over QP . As learning proceeds, the hope
is that the size of P and QP shrinks, and eventually QP gets
as close to QP as possible.

With slight abuse of notation, let us define r(x, a, x′) =
r(x, a) for every (x, a, x′) ∈ X ×A×X . It has been shown
in [22], [23], [25] that

E

[
L−1∑
h=0

r(xh, ah)

∣∣∣∣∣P, π
]
= ⟨qP,π, r⟩. (8)

Therefore, if we define q∗ ∈ argmaxq∈QP ⟨q, r⟩, the regret
(2) can be represented by

RegT = T ·⟨q∗, r⟩−
T∑

t=1

⟨qP,πt , r⟩ =
T∑

t=1

⟨q∗−qP,πt , r⟩. (9)

IV. ALGORITHM

The main algorithm we propose is called “Upper Confi-
dence Reinforcement Learning using Linear Programming”
(UCRL-LP) algorithm and is presented in Algorithm 1. The
proposed algorithm is mainly inspired by UCRL [15] and
UCRL2 [16] algorithms which use upper confidence bounds
to determine an optimistic policy and O-REPS [21], and UC-
O-REPS [22] and UOB-REPS [23] algorithms which solve
online convex optimization on the occupancy measure space.
The algorithm consists of two main parts: maintaining con-
fidence sets for transition and reward functions (estimation)
and solving a linear program for occupancy measure update
(optimization). In the following subsections, we proceed to
describe in detail the main steps in Algorithm 1.

A. Confidence Sets

This idea originates from the concept of “optimism in
the face of uncertainty”. The technique of constructing
confidence set for transition and reward functions has been
widely adopted in the existing literature of online MDP and
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Algorithm 1 UCRL-LP Algorithm

Input: State space X , action space A, time horizon T ,
confidence parameter δ.

Initialization:
Epoch index: i = 1.
Confidence sets:

P1 = set of all transition functions, QP1 = Q.
Counters, occupancy measure, and estimators ∀(x, a, x′):
N1(x, a) = N1(x, a, x

′) = n1(x, a) = n1(x, a, x
′) = 0,

q̂1(x, a, x
′) =

1

XhAXh+1
,

r̄1(x, a) = 0, r̂1(x, a) = 1.

Policy: π1 = πq̂1 .

for t = 1, · · · , T do
Execute policy πi.
Obtain trajectory {xh, ah, r

(t)
h }

L−1
h=0 .

Update counters ∀h:
ni(xh, ah)← ni(xh, ah) + 1,

ni(xh, ah, xh+1)← ni(xh, ah, xh+1) + 1.

Update empirical estimator r̄i ∀h:

r̄i(xh, ah)← r̄i(xh, ah) +
r
(t)
h − r̄i(xh, ah)

Ni(xh, ah) + ni(xh, ah)
.

if ∃(x, a) ∈ X ×A, ni(x, a) ≥ Ni(x, a) then
Let t(i) be the start of epoch i. Start a new epoch

i← i+ 1, t(i)← t+ 1.

Update counters ∀(x, a, x′):
Ni(x, a)← Ni−1(x, a) + ni−1(x, a),

Ni(x, a, x
′)← Ni−1(x, a, x

′) + ni−1(x, a, x
′),

ni(x, a)← 0, ni(x, a, x
′)← 0.

Update empirical estimator r̄i ∀(x, a):
r̄i(x, a)← r̄i−1(x, a).

Update confidence set Pi based on Eq. (10)-(12).
Update r̂i based on Eq. (15)-(16).
Update occupancy measure q̂i by solving LP1.
Update policy πi = πq̂i .

end if
end for

reinforcement learning [15], [16], [20], [22], [23], [25]. The
algorithm maintains confidence sets for both P and r such
that with high probability, P and r lie in those confidence
sets, and the estimate becomes more and more accurate as
learning proceeds.

To construct such confidence sets, the algorithm keeps
track of the number of visits to each (x, a)-pair and to each
(x, a, x′)-triplet and computes the empirical mean of transi-
tion and reward functions. The confidence set is constructed
based on the empirical mean and an extra term that depends
on the number of visits. The algorithm UCRL-LP proceeds in
epochs of random length, and a doubling epoch schedule is

adopted. The confidence sets for P and r and the occupancy
measure are updated only at the beginning of each epoch.
The first epoch starts at t = 1, and each epoch will end
whenever the number of visits to some (x, a)-pair is doubled
compared to its value at the beginning of the epoch. Such a
technique is deployed in existing algorithms such as UCRL2
[16], UC-O-REPS [22] and UOB-REPS [23]. This ensures
that the confidence sets and the occupancy measure to be
implemented will be updated only when there are significant
improvements in the confidence sets. Therefore, this tech-
nique largely improves the computational efficiency of the
algorithm without negatively affecting its performance. The
total number of steps for policy (occupancy measure) update
is at most XA log T [16], compared to T steps of policy
update from general reinforcement learning algorithms which
update the policy after each episode.

Specifically, let Ni(x, a) and Ni(x, a, x
′) be the number

of visits to (x, a)-pair and (x, a, x′)-triplet at the beginning
of epoch i. The empirical estimation of P in epoch i is

P̄i(x
′|x, a) = Ni(x, a, x

′)

max{1, Ni(x, a)}
. (10)

The confidence set Pi includes the transition functions that
are “close enough” to P̄ with respect to a confidence radius
ϵi(x, a) defined by

ϵi(x, a) =

√
2Xh(x)+1 log(TXA/δ)

max{1, Ni(x, a)}
, (11)

where δ ∈ (0, 1) is some confidence parameter. The confi-
dence set Pi is defined by

Pi = {P : ∥P (·|x, a)− P̄i(·|x, a)∥1 ≤ ϵi(x, a),

∀x ∈ X , a ∈ A}. (12)

The following lemma provides a closed-form description
of QPi , which can be represented by a system of linear
constraints. This allows us to update the occupancy measure
efficiently by simply solving a linear program over the
polytope QPi .

Lemma 1 (Theorem 4.2 in [22]): If Pi is defined by Eq.
(12), QPi is a non-empty polytope and has the following
representation:

QPi = Q ∩

{
q ∈ RXAX

+ , ϵ ∈ RXAX
+

∣∣∣
q(x, a, x′)− P̄i(x

′|x, a)
∑

y∈Xh+1

q(x, a, y) ≤ ϵ(x, a, x′),

∀x ∈ Xh, a ∈ A, x′ ∈ Xh+1, h ∈ [L− 1],

P̄i(x
′|x, a)

∑
y∈Xh+1

q(x, a, y)− q(x, a, x′) ≤ ϵ(x, a, x′),

∀x ∈ Xh, a ∈ A, x′ ∈ Xh+1, h ∈ [L− 1],∑
x′∈Xh+1

ϵ(x, a, x′) ≤ ϵi(x, a)
∑

x′∈Xh+1

q(x, a, x′),

∀x ∈ Xh, a ∈ A, h ∈ [L− 1]

}
. (13)
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Next, we consider the following lemma, which states that
Pi contains P with high probability.

Lemma 2 (Lemma 4.1 in [22]): For any δ ∈ (0, 1), with
probability at least 1− δ, P ∈ Pi for all i.

Similarly, the empirical estimation of r in epoch i is

r̄i(x, a) =

∑t(i)−1
t=1 I(t){(x, a)} · r(t)h

max{1, Ni(x, a)}
, (14)

where t(i) denotes the starting time of epoch i, I(t){(x, a)} is
the indicator function that equals 1 if the (x, a)-pair is visited
in round t and 0 otherwise, and r

(t)
h denotes the realized

reward at step h in round t. The confidence radius is defined
by

bi(x, a) =

√
2 log(TXA/δ)

max{1, Ni(x, a)}
. (15)

The upper and lower confidence bounds (UCB and LCB,
respectively) for r are defined by

r̂i(x, a) = min{1, r̄i(x, a) + bi(x, a)}, (16)
ři(x, a) = max{0, r̄i(x, a)− bi(x, a)}. (17)

A similar lemma below states that r(x, a) is bounded by
r̂i(x, a) and ři(x, a) with high probability. The proof of this
lemma follows directly using Hoeffding inequality and union
bound.

Lemma 3: For any δ ∈ (0, 1), with probability at least
1−2δ, ři(x, a) ≤ r(x, a) ≤ r̂i(x, a) for all i and all (x, a) ∈
X ×A.

B. Linear Programming for Occupancy Measure Update
In each epoch, the algorithm updates the occupancy mea-

sure by solving a linear program. As we have seen in Section
II, the reinforcement learning problem is associated with an
optimization problem over some occupancy measure space.
As a result of Lemma 1, such an optimization problem
reduces to a linear program, which can be efficiently solved
by standard linear program solvers. Moreover, the occupancy
measure is updated only at the beginning of each epoch,
requiring at most XA log T steps for the update.

Finally, to update occupancy measure in epoch i, the
algorithm determines an optimistic occupancy measure by
solving the following linear program:

q̂i ∈ argmax
q∈QPi

⟨q, r̂i⟩. (LP1)

The algorithm implements the policy πi ≜ πq̂i induced by
q̂i for entire epoch i.

V. MAIN RESULTS

In this section, we present the regret bound of UCRL-
LP algorithm. The proof follows by decomposing the regret
into four components and bounding each of those terms
separately.

Theorem 4: With probability at least 1 − 5δ, UCRL-LP
algorithm achieves the following regret:

RegT ≤ O

(
LX

√
TA log

(
TXA

δ

))
. (18)

Proof: Define qi ≜ qP,πi , i.e., qi is the occupancy
measure induced by the policy πi implemented in epoch
i and the true (unknown) transition function P . Note that
q̂i and qi are not the same: they are induced by the same
policy πi; however, they do not necessarily induce the same
transition function. Furthermore, denote by i(t) the index of
epoch for round t ∈ [T ]+. Following [23], the regret defined
by Eq. (9) can be decomposed into the following four terms:

RegT =

T∑
t=1

⟨q∗ − qi(t), r⟩

=

T∑
t=1

⟨q∗, r − r̂i(t)⟩︸ ︷︷ ︸
BIAS-I

+

T∑
t=1

⟨q∗ − q̂i(t), r̂i(t)⟩︸ ︷︷ ︸
DIFF

+

T∑
t=1

⟨q̂i(t) − qi(t), r̂i(t)⟩︸ ︷︷ ︸
ERROR

+

T∑
t=1

⟨qi(t), r̂i(t) − r⟩︸ ︷︷ ︸
BIAS-II

.

(19)

BIAS-I and BIAS-II are due to the use of a biased estimator
r̂i in the algorithm. DIFF represents the difference in solu-
tions to the linear program. ERROR measures the error in
estimating P . Each term will be analyzed separately.

Firstly, as a result of Lemma 3, with probability at least
1 − 2δ, r̂i(t)(x, a) is an upper bound of r(x, a) for all t ∈
[T ]+ and all (x, a) ∈ X × A. Therefore, BIAS-I ≤ 0 with
probability at least 1 − 2δ. Then, as a result of Lemma 2,
with probability at least 1 − δ, QP ⊆ QPi(t) , and hence,
q∗ ∈ QPi(t) for all t ∈ [T ]+. By the definition of q̂i(t) in LP1
and by optimality, with probability at least 1− δ, DIFF ≤ 0.
Next, we proceed to bound the remaining terms ERROR and
BIAS-II.
Bounding ERROR: The term ERROR is due to the learner’s
lack of knowledge about transition function P and hence
comes from the estimation error for P , which is associated
with the confidence set Pi. The following lemma is the key
lemma for bounding ERROR, the proof of which is in [1].

Lemma 4: With probability at least 1 − 2δ, UCRL-LP
algorithm ensures that

T∑
t=1

∥q̂i(t) − qi(t)∥1 ≤ 12LX

√
TA log

(
TXA

δ

)
. (20)

Lemma 4 bounds the accumulated difference between
occupancy measures induced by the implemented policy over
the actual and the estimated transition functions. As a result,
ERROR can be bounded using the following lemma, whose
proof uses Lemma 4 and can be found in [1].

Lemma 5: With probability at least 1− 2δ,

ERROR ≤ O

(
LX

√
TA log

(
TXA

δ

))
. (21)

Bounding BIAS-II: The term BIAS-II represents the accu-
mulated difference between the UCB of r and its expectation.
Note that Lemma 3 states that a high-confidence lower bound
of r is ři(t) for all t ∈ [T ]+. Therefore, it suffices to

1977



bound
∑T

t=1⟨qi(t), r̂i(t) − ři(t)⟩. BIAS-II is bounded by the
following lemma, the proof of which can be found in [1].

Lemma 6: With probability at least 1− 2δ,

BIAS-II ≤ O

(√
TLXA log

(
TXA

δ

))
. (22)

Finally, combining Lemmas 5 and 6 with (19) and using
the fact that BIAS-I ≤ 0 and DIFF ≤ 0 completes the proof.

VI. CONCLUSION

In this paper, we devise an efficient algorithm for re-
inforcement learning in episodic MDP which achieves
Õ(LX

√
TA) regret and requires at most XA log T times of

solving a linear program for its policy updates. The algorithm
maintains confidence sets and solves linear optimization on
polytope of occupancy measure which can be accomplished
by standard linear programming solvers. Our contributions
include: i) reducing an extra factor of

√
L in the regret bound

compared to the earlier works that deploy confidence set
framework, ii) reducing the computational complexity from
O(T ) to O(log T ) compared to the earlier works that adopt a
different method but with a slightly tighter regret bound. An
interesting future research direction is removing a

√
X factor

in the regret bound by combining the occupancy measure
framework used in this work with some Q-learning-based
algorithm.
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