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Abstract— This paper deals with the exponential stability of
systems made of a hyperbolic PDE coupled with an ODE with
different time scales, the dynamics of the PDE being much
faster than that of the ODE. Such a difference of time scales
is modeled though a small parameter ε multiplying the time
derivative in the PDE, and our stability analysis relies on the
singular perturbation method. More precisely, we define two
subsystems: a reduced order system, representing the dynamics
of the full system in the limit ε = 0, and a boundary-layer
system, which represents the dynamics of the PDE in the fast
time scale. Our main result shows that, if both the reduced
order and the boundary-layer systems are exponentially stable,
then the full system is also exponentially stable for ε small
enough, and our strategy is based on a spectral analysis of
the systems under consideration. Our main result improves
a previous result in the literature, which was proved using a
Lyapunov approach and required a stronger assumption on the
boundary-layer system to obtain the same conclusion.

Index Terms— Singular perturbation, Transport equation,
Stability, Spectral methods, Time scales

I. INTRODUCTION
Systems defined by partial differential equations (PDEs)

coupled with ordinary differential equation (ODEs) appear in
many applications, either through the modeling of coupled
physical phenomena of different natures, one described by a
PDE and the other by an ODE, such as the heated gas flow
model from [1], or through the boundary control systems
described by PDEs using a dynamic controller, such as the
control of a network of liquid fluids through its nodes using
proportional-integral controllers from [2]. Such a class of
coupled systems has attracted much research effort in recent
years and its analysis and control is an active subject [1]–[7].

In applications, the constituents of a coupled system may
model different physical phenomena taking place in different
time scales. This is the case, for instance, of electric motors,
in which the electrical time scale is typically much faster
than the mechanical one (see, e.g., [8, Example 11.1]). A
natural question in these situations, which is the basis of the
singular perturbation theory, is whether one can approximate
the fastest time scale by an instantaneous process. For linear
finite-dimensional systems, its answer is given by Tikhonov’s
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theorem, which states roughly that such an approximation is
valid as soon as the dynamics of the fastest time scale is
stable [9], and the nonlinear theory for finite-dimensional
systems is also well-established [8]. Broadly speaking, the
main idea of singular perturbation is to decouple the full
system into two approximated subsystems under the assump-
tion that the fast dynamics is fast enough. The approximated
slow system is called the reduced order system and the fast
one, after a suitable time rescaling, is called the boundary-
layer system. Singular perturbation for infinite-dimensional
systems is a more delicate topic which has attracted much
research effort in recent years [1], [5], [10]–[13], both for
coupled PDEs and for PDEs coupled with ODEs, and several
examples show that a straightforward generalization of the
finite-dimensional theory is not possible [1], [10], [12].

The purpose of this paper is to study the stability proper-
ties of a system composed by a transport equation coupled
through its boundary data with an ODE, when the dynamics
of the transport equation is much faster than that of the ODE.
More precisely, we consider here the system

ż(t) = Az(t) +By(1, t), t > 0,

εyt(x, t) + Λyx(x, t) = 0, x ∈ (0, 1), t > 0,

y(0, t) = G1y(1, t) +G2z(t), t > 0,

z(0) = z0

y(x, 0) = y0(x), x ∈ (0, 1),

(1)

where z : [0,∞) → Rn is the state of the ODE, y : [0, 1] ×
[0,∞) → Rm is the state of the PDE, yx and yt denote the
partial derivatives of y with respect to its first and second
variables, respectively, Λ is a diagonal matrix in Rm×m with
positive diagonal entries, A,B,G1, G2 are matrices with
appropriate dimensions, Im − G1 is invertible, and ε > 0.
The parameter ε is supposed to be small, meaning that the
dynamics of the transport PDE is faster than that of the ODE.

The analysis of (1) at the light of the singular perturbation
method was previously carried out in [1] through the use of
a suitable Lyapunov functional, and it was shown that, if the
reduced order system associated with (1) is exponentially
stable and the matrices Λ and G1 satisfy a suitable matrix
inequality, then the corresponding boundary-layer system
is also exponentially stable in L2(0, 1;Rm), and (1) is
exponentially stable in Rn×L2(0, 1;Rm) if ε is small enough
(see Theorem 4.1 below for a precise statement). Here, we
rely instead in a spectral approach, which allows us to obtain
a stronger result than that of [1].

The sequel of this paper is organized as follows. Section II
provides a description of the singular perturbation method
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applied to (1), describing the corresponding reduced order
and boundary-layer systems, and addresses well-posedness
issues and the definitions of exponential stability used here.
The statement of our main result and its proof are the subject
of Section III. Section IV compares our result to that of [1],
and a numerical illustration of our main result is provided in
Section V. Finally, Section VI concludes the paper.

Notation. Given a matrix M in Rn×n, M−1, MT , eM , and
ρ(M) denote, respectively, the inverse (when it exists), the
transpose, the matrix exponential, and the spectral radius of
M (i.e., the largest absolute value of the eigenvalues of
M ). The identity matrix in Rn×n is denoted by In. For
p ∈ [1,∞], we use |·|p to denote the p norm in Rn as well as
the induced matrix norm in Rn×m, and the index p is omitted
from this notation when it is clear from the context or when
the choice of the norm is not important. The norm ∥·∥p in
Lp(0, 1;Rm) is defined for ξ ∈ Lp(0, 1;Rm) by ∥ξ∥pp =∫ 1

0
|ξ(x)|pp dx if p < ∞ and ∥ξ∥∞ = ess supx∈[0,1]|ξ(x)|∞

if p = ∞. Given a real interval I and a normed space
J,C0(I; J) denotes the set of continuous functions from I
to J , and C0([0, 1];Rm) is endowed with the norm ∥·∥∞.

II. PRELIMINARIES

A. Singular perturbation method

Let us briefly describe the idea of the singular perturbation
method applied to (1). As ε → 0+, we expect solutions of
the transport PDE in (1) to become close to solutions of
Λŷx = 0. Hence, for every t > 0, x 7→ ŷ(t, x) is constant,
and we denote its value by ŷ∗(t). Using the third equation of
(1) and the invertibility of Im −G1, we obtain that ŷ∗(t) =
(Im −G1)

−1G2z(t). Inserting this into the first equation of
(1), we obtain that ż(t) = (A+B(Im−G1)

−1G2)z(t). This
motivates the introduction of the reduced order system{

˙̄z(t) = (A+B(Im −G1)
−1G2)z̄(t), t > 0,

z̄(0) = z0.
(2)

Let us now consider the function ỹ defined by ỹ(x, τ) =
y(x, ετ) − ŷ∗(ετ) = y(x, ετ) − (Im − G1)

−1G2z(ετ), the
difference between the real solution y and its expected
approximation ŷ in a fast time scale τ = t/ε. Then ỹτ (x, τ)+
Λỹx(x, τ) = −ε(Im − G1)

−1G2(Az(ετ) + By(1, ετ)) and
the boundary condition on ỹ becomes ỹ(0, τ) = G1ỹ(1, τ).
Hence, as ε → 0+, one expects ỹ to be approximated by
solutions of the boundary-layer system

ȳτ (x, τ) + Λȳx(x, τ) = 0, x ∈ (0, 1), τ > 0,

ȳ(0, τ) = G1ȳ(1, τ), τ > 0,

ȳ(x, 0) = y0(x)− (Im −G1)
−1G2z0, x ∈ (0, 1).

(3)

B. Well-posedness

The reduced order system (2) is a well-posed linear ODE,
whose solutions belong to C∞([0,∞);Rn).

The well-posedness of the full system (1) and the boun-
dary-layer system (3) were studied in L2(0, 1;Rm) in [14,
Appendix A]. In particular, [14, Theorem A.4] shows that (3)
has a unique weak solution ȳ ∈ C0([0,∞);L2(0, 1;Rm))

(in the sense of [14, Definition A.3]) provided that the
initial condition belongs to L2(0, 1;Rm), and [14, Theo-
rem A.6] shows that (1) has a unique solution (z, y) ∈
C0([0,∞);Rn × L2(0, 1;Rm)) in the sense of [14, Defi-
nition A.5], provided that z0 ∈ Rn and y0 ∈ L2(0, 1;Rm).

One can also obtain the well-posedness of (3) replacing
the Hilbert space L2(0, 1;Rm) by Lp(0, 1;Rm) for any
p ∈ [1,∞] or by C0([0, 1];Rm) when exploring its link
with continuous-time difference equations. This was done
in [15] in Lp(0, 1;Rm), which proves well-posedness in its
Proposition 4.6, in the sense of its Definition 4.1, while the
well-posedness in C0([0, 1];Rm), under the compatibility
condition ȳ(0, 0) = G1ȳ(1, 0) on the initial condition, can
be proved by combining the equivalence between (3) and a
difference equation established in [15, Proposition 4.2] and
the well-posedness result for the latter from [16, Chapter 9].

As for the well-posedness of (1) in spaces other than
the Hilbert space Rn × L2(0, 1;Rm), one can make use of
the techniques transforming transport equations into delay
systems, such as those used in [14, Chapters 2 and 3]. More
precisely, denoting by yi the ith component of y and by λi

the ith diagonal entry of Λ, the method of characteristics
shows that, for every i ∈ {1, . . . ,m}, the ith component of
the transport equation of (1) is equivalent to having

yi(x+ λi

ε h, t+ h) = yi(x, t) for all t ≥ 0, h ≥ 0, x ∈ [0, 1].

In particular, we have yi(1, t) = yi(0, t− ε
λi
), and hence (1)

can be rewritten in terms of the functions z(·) and y(0, ·) as
the delay system of neutral type{

ż(t) = Az(t) +
∑m

i=1 Beie
T
i y(0, t− ε

λi
),

y(0, t) =
∑m

i=1 G1eie
T
i y(0, t− ε

λi
) +G2z(t),

(4)

where e1, . . . , em are the vectors of the canonical basis of
Rm. The well-posedness of (1) in Rn × C0([0, 1];Rm) can
hence be deduced from the classical theory of neutral func-
tional differential equations, and can be found in [16, Chap-
ter 9], under the compatibility condition y0(0) = G1y0(1)+
G2z0, while the well-posedness in Rn × Lp(0, 1;Rm) is
covered by the results of [17].

C. Exponential stability

The reduced order system (2) is said to be exponentially
stable in norm p if there exist positive constants C and ν
such that |z̄(t)|p ≤ Ce−νt|z̄(0)|p for every solution z̄ of
(2) and t ∈ [0,∞). Since all norms are equivalent in finite
dimension, the notion of exponential stability turns out to
be independent of p. Moreover, (2) is exponentially stable if
and only if all complex roots of its characteristic functions
∆ros have negative real part, where

∆ros(s) = det(sIn −A−B(Im −G1)
−1G2). (5)

Let us now consider the notions of exponential stability
for (1) and (3).

Definition 2.1: Let B denote one of the Banach spaces
C0([0, 1];Rm) or Lp(0, 1;Rm) for some p ∈ [1,∞]. We
say that (1) is exponentially stable in Rn ×B if there exists
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positive constants C, ν such that, for every z0 ∈ Rn and
y0 ∈ B, the corresponding solution (z, y) : [0,∞) → Rn×B
of (1) satisfies, for every t ≥ 0,

|z(t)|+ ∥y(·, t)∥B ≤ Ce−νt(|z0|+ ∥y0∥B), (6)

where |·| is an arbitrary norm in Rn. Analogously, we say
that (3) is exponentially stable in B if there exists positive
constants C, ν such that, for every initial condition in B, the
corresponding solution ȳ : [0,∞) → B of (3) satisfies (6)
with z = 0 and z0 = 0.

Even though the definition of exponential stability of (3)
depends on the space B, it turns out that all these definitions
are equivalent for the spaces B from Definition 2.1, as
discussed in [14, Remark 3.6] (see also [15, Corollary 4.11]
for the equivalence in Lp spaces, p ∈ [1,∞]). For this
reason, in the sequel, we will say that (3) is exponentially
stable if it is exponentially stable in some (and hence every)
space B among C0([0, 1];Rm) or Lp(0, 1;Rm), p ∈ [1,∞].
Exponential stability of (3) can also be characterized through
the characteristic function of (3), ∆bls, given by

∆bls(s) = det(Im − e−sΛ−1

G1), (7)

as stated in the next result, taken from [14, Theorem 3.5 and
Remark 3.6].

Proposition 2.2: System (3) is exponentially stable if and
only if there exists α > 0 such that all roots s of ∆bls satisfy
Re s ≤ −α.

Similarly to (3), exponential stability of (1) is also inde-
pendent of the space B chosen among the ones in Defini-
tion 2.1. Indeed, (1) is equivalent to (4), and the indepen-
dence of the exponential stability of the latter on the space
B was established in [18, Corollary II.1.8] for the Lp spaces,
obtaining the same criterion of exponential stability as [16,
Chapter 9] for C0 (see also [19]). Hence, as for (3), we
will say that (1) is exponentially stable if it is exponentially
stable in some (and hence every) space Rn × B with B
among C0([0, 1];Rm) or Lp(0, 1;Rm), p ∈ [1,∞]. Taking
the Laplace transform of (4), the characteristic function of
(1) is

∆full(s, ε) = detM(s, ε), (8)

where

M(s, ε) =

[
sIn −A Be−Λ−1εs

G2 Im −G1e
−Λ−1εs

]
. (9)

From [14, Theorem 3.14], we have the following result
relating stability of (1) and roots of ∆full.

Proposition 2.3: System (1) is exponentially stable if and
only if there exists α > 0 such that all roots s of ∆full satisfy
Re s ≤ −α.

The roots of ∆full, ∆ros, and ∆bls are referred to in the
sequel as poles of systems (1), (2), and (3), respectively.

III. MAIN RESULT

We are now able to state the main result of this article.

Theorem 3.1: Suppose that (2) and (3) are exponentially
stable. Then there exists ε∗ > 0 such that (1) is exponentially
stable for every ε ∈ (0, ε∗].

The proof of Theorem 3.1 relies on the spectral charac-
terizations of exponential stability from Propositions 2.2 and
2.3. The first step is to provide a suitable rewriting of the
characteristic function ∆full. For that purpose, we define, for
each s ∈ C and ε > 0 such that ∆bls(εs) ̸= 0,

M1(s, ε) = sIn −A−Be−Λ−1εs(Im −G1e
−Λ−1εs)−1G2.

We now remark that, for such s and ε, we have

M(s, ε)

[
In 0n×m

−(Im −G1e
−Λ−1εs)−1G2 Im

]
,

=

[
M1(s, ε) Be−Λ−1εs

0m×n Im −G1e
−Λ−1εs

]
. (10)

Taking the determinant of the above identity, we deduce that

∆full(s, ε) = detM1(s, ε)∆bls(εs). (11)

To explain the idea of the proof of Theorem 3.1, let us
note that, formally, taking ε = 0 in (11), we obtain that
∆full(s, 0) = detM1(s, 0)∆bls(0). Since detM1(s, 0) =
∆ros(s) and ∆bls(0) = det(Im − G1) ̸= 0, we have that
the roots of ∆full(·, 0) coincide with those of ∆ros(·). If the
behavior of the system is continuous with respect to ε as
ε → 0+, we may then expect that the asymptotic behavior of
(1) is similar to the asymptotic behaviour of (2) as ε → 0+.
The main idea of the proof is to show that this expected
behavior is indeed correct. More precisely, we will prove
the following result.

Proposition 3.2: Suppose that (2) and (3) are exponen-
tially stable and let α > 0 be such that Re s < −α for
every root s of ∆ros. Then there exists ε∗ > 0 such that, for
every ε ∈ (0, ε∗], we have Re s < −α for every root s of
s 7→ ∆full(s, ε).

Due to Proposition 2.3, Theorem 3.1 will follow as an
immediate corollary of Proposition 3.2 once the latter is
proved. Note that the existence of an α as in the statement
of Proposition 3.2 is guaranteed by the exponential stability
of (2).

The proof of Proposition 3.2 is based in the decomposition
(11) and it is split into several technical lemmas. We start
by the following property of the roots of ∆bls.

Lemma 3.3: Assume that (3) is exponentially stable. Then
there exist α̃ > 0 and κ > 0 such that Re s ≤ −2α̃ for every
root s of ∆bls and |∆bls(s)| ≥ κ for every s ∈ C with
Re s ≥ −α̃.

Proof: The existence of α̃ > 0 such that Re s ≤ −2α̃
for every root s of ∆bls is a straightforward consequence of
Proposition 2.2. In addition, we have that

lim
Re s→+∞

∆bls(s) = det Im = 1,

and the above limit is uniform in Im s. Hence, there exists
ζ > 0 such that |∆bls(s)| ≥ 1

2 for every s ∈ C with Re s ≥ ζ.
Note that ∆bls is an exponential polynomial (in the sense

of [20]), i.e., it can be written under the form ∆bls(s) = 1+
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∑N
j=1 aje

−sτ ·γj , where N is a positive integer, a1, . . . , aN
are nonzero real coefficients, τ = (1/λ1, . . . , 1/λm), λ1,
. . . , λm are the diagonal entries of Λ, and γ1, . . . , γN are
vectors in Nm, where N denotes the set of nonnegative
integers. In addition, for every s ∈ C with −α̃ ≤ Re s ≤ ζ,
s is at a distance of at least α̃ > 0 from every zero of ∆bls,
in the usual metric of C. Hence, using [20, Lemma 2.1(ii)],
there exists κ̃ > 0 such that |∆bls(s)| ≥ κ̃ for every s ∈ C
with −α̃ ≤ Re s ≤ ζ. The conclusion of the lemma follows
by taking κ = min{ 1

2 , κ̃}.
Using Lemma 3.3, we obtain the following property on

the behavior of s 7→ ∆bls(εs) for ε small.
Lemma 3.4: Assume that (2) and (3) are exponentially

stable and let α > 0 be as in Proposition 3.2. Then there
exist ε̄ > 0 and κ > 0 such that, for every ε ∈ (0, ε̄], we
have Re s ≤ −2α for every root s of s 7→ ∆bls(εs), and
|∆bls(εs)| ≥ κ for every s ∈ C with Re s ≥ −α.

Proof: Let α̃ > 0 and κ > 0 be given by Lemma 3.3,
set ε̄ = α̃

α , and let ε ∈ (0, ε̄]. If s is a root of s 7→ ∆bls(εs),
then εs is a root of ∆bls, thus Re(εs) ≤ −2α̃, implying that
Re s ≤ − 2α̃

ε ≤ −2α, as required. In addition, if s ∈ C is
such that Re s ≥ −α, then Re(εs) ≥ −εα ≥ −α̃, and thus
|∆bls(εs)| ≥ κ by Lemma 3.3.

We now turn to the analysis of the first term of (11), i.e.,
of detM(s, ε).

Lemma 3.5: Assume that (2) and (3) are exponentially
stable, let α > 0 be as in Proposition 3.2, and ε̄ > 0 be
given by Lemma 3.4. Then there exists R > 0 such that,
for every ε ∈ (0, ε̄], we have |s| ≤ R for every root s of
s 7→ detM(s, ε) with Re s ≥ −α.

Proof: Thanks to Lemma 3.4, Im − G1e
−Λ−1εs is

invertible for every ε ∈ (0, ε̄] and s ∈ C with Re s ≥ −α,
and thus M1(s, ε) is well-defined for all such ε and s.

Fix ε ∈ (0, ε̄] and let s ∈ C be such that detM1(s, ε) = 0
and Re s ≥ −α. Since detM1(s, ε) = 0, we have that
s is an eigenvalue of the matrix A + Be−Λ−1εs(Im −
G1e

−Λ−1εs)−1G2, and thus

|s| ≤ ρ(A+Be−Λ−1εs(Im −G1e
−Λ−1εs)−1G2),

≤ |A|1 +
∣∣∣Be−Λ−1εs

∣∣∣
1

∣∣∣(Im −G1e
−Λ−1εs)−1

∣∣∣
1
|G2|1,

(12)
which comes from the fact that the ρ(M) ≤ |M | for any
induced matrix norm |·|. Note that∣∣∣Be−Λ−1εs

∣∣∣
1
= max

j∈{1,...,m}
|Bj |1

∣∣∣e− εs
λj

∣∣∣ ≤ |B|1e
ε̄α

λmin , (13)

where B1, . . . , Bm denote the columns of B and λmin is the
smallest diagonal entry of Λ. On the other hand, using [21,
Chapter 1, (4.12)], there exists a constant C > 0 depending
only on the dimension m such that

|(Im −G1e
−Λ−1εs)−1|1 ≤ C

|Im −G1e
−Λ−1εs|m−1

1

det(Im −G1e−Λ−1εs)
.

Similarly to the estimate of |Be−Λ−1εs|1, we obtain that

|(Im −G1e
−Λ−1εs)−1|1 ≤ C

κ

(
1 + |G1|1e

ε̄α
λmin

)m−1

, (14)

where κ is the constant from Lemma 3.4. Combining (12),
(13), and (14), we obtain the conclusion.

We are now in position to prove Proposition 3.2 and
conclude the proof of Theorem 3.1.

Proof of Proposition 3.2: Let ε̄ and R be given by
Lemma 3.5 and assume, to obtain a contradiction, that there
exist a sequence of positive real numbers (εk)k∈N and a
sequence of complex numbers (sk)k∈N such that εk → 0
as k → ∞ and, for every k ∈ N, we have ∆full(sk, εk) = 0
and Re sk ≥ −α.

Up to excluding finitely many terms of the sequence, we
have εk ∈ (0, ε̄] for every k ∈ N, and thus, by Lemma 3.5,
we have |sk| ≤ R for every k ∈ N. Hence, up to extracting a
subsequence (which we still denote using the same notation
for simplicity), there exists s∗ such that sk → s∗ as k → ∞.
In particular, Re s∗ ≥ −α.

Note that, by Lemma 3.4, we have ∆bls(εksk) ̸= 0
for every k ∈ N and thus, using (11) we obtain that
detM1(sk, εk) = 0 for every k ∈ N. Since M1 is con-
tinuous on the set {s ∈ C : Re s ≥ −α} × [0, ε̄], we
deduce, letting k → +∞, that detM1(s∗, 0) = 0. Since
∆ros(·) = detM1(·, 0), we deduce that ∆ros(s∗) = 0, which
is a contradiction since Re s∗ ≥ −α but Re s < −α for
every root s of ∆ros, by definition of α. This contradiction
establishes the result.

IV. COMPARISON WITH RESPECT TO THE
LYAPUNOV APPROACH

We now compare our main result, Theorem 3.1, to [1,
Theorem 1], which is the main result of that reference for the
singular perturbation of (1). In this section, we shall denote
by D+

m be the set of m×m diagonal matrices with positive
diagonal entries.

Theorem 4.1 ([1, Theorem 1]): Suppose that (2) is expo-
nentially stable and there exist µ > 0 and Q ∈ D+

m

such that e−µQΛ − GT
1 QΛG1 is positive definite. Then

there exists ε∗ > 0 such that (1) is exponentially stable in
Rn × L2(0, 1;Rm) for every ε ∈ (0, ε∗].

The existence of µ > 0 and Q ∈ D+
m such that e−µQΛ−

GT
1 QΛG1 is positive definite is shown in [1, Proposition 2]

to imply the exponential stability of (3). Hence, Theorem 4.1
can be seen as a particular case of Theorem 3.1: whenever the
assumptions of Theorem 4.1 are satisfied, the assumptions of
Theorem 3.1 are satisfied as well.

Before proving that Theorem 3.1 is strictly stronger than
Theorem 4.1, let us provide the following criterion.

Lemma 4.2: Let G1 be an m×m matrix with real entries
and Λ ∈ D+

m. The following assertions are equivalent.
1) There exist µ > 0 and Q ∈ D+

m such that e−µQΛ −
GT

1 QΛG1 is positive definite.
2) infD∈D+

m
∥DG1D

−1∥2 < 1.
Proof: Note that 2) holds true if and only if there

exists D ∈ D+
m such that ∥DG1D

−1∥2 < 1 and, using the
expression of the induced matrix 2-norm, the latter condition
is equivalent to ρ(M) < 1, where M = D−1GT

1 D
2G1D

−1.
Since M = (D−1GT

1 D)(D−1GT
1 D)T , it follows that M is a

symmetric positive semi-definite matrix, and thus there exists
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a real orthogonal matrix U such that UMUT is diagonal,
and its diagonal entries are the eigenvalues of M . Hence,
ρ(M) < 1 if and only if there exists µ > 0 such that
e−µIm − UMUT is positive definite. Multiplying by UT

on the left and by U on the right, we deduce that the latter
condition is equivalent to e−µIm−M being positive definite,
which, up to multiplying by DT = D on the left and D on
the right, is equivalent to e−µD2 −GT

1 D
2G1 being positive

definite. We have thus shown that 2) holds true if and only if
there exists D ∈ D+

m and µ > 0 such that e−µD2−GT
1 D

2G1

is positive definite. The conclusion follows by imposing the
relation QΛ = D2 between Q, Λ, and D, which is possible
since these three matrices belong to D+

m.
Remark 4.3: The quantity infD∈D+

m
∥DG1D

−1∥2 from
assertion 2) of Lemma 4.2 is usually denoted in the literature
by ρ2(G1), and the condition ρ2(G1) < 1 is a sufficient
condition for the stability in L2 of (3) (see, e.g., [14,
Section 3.1]).

We now provide an example showing that Theorem 3.1
is strictly stronger than Theorem 4.1, i.e., that there exist
Λ ∈ D+

m and a matrix G1 of size m × m such that (3) is
exponentially stable but, for every µ > 0 and Q ∈ D+

m, the
matrix e−µQΛ−GT

1 QΛG1 is not positive definite.
Example 4.4: Let m = 2 and consider

G1 =

[
1 −2
1
4 − 1

2

]
, Λ =

[
1 0
0 1

2

]
.

In this case, the characteristic function (7) of the boundary-
layer system (3) is

∆bls(s) = 1− e−s + 1
2e

−2s,

whose roots s satisfy es =
√
2
2 e±iπ

4 , i.e., the set of roots
of ∆bls is

{
− 1

2 ln 2± i(π4 + 2kπ) : k ∈ Z
}

. Since all these
roots have real part equal to − 1

2 ln 2, the boundary-layer
system (3) is exponentially stable, and hence the assumption
on (3) from Theorem 3.1 is satisfied.

On the other hand, for every D ∈ D+
2 , denoting by d1, d2

the diagonal entries of D and δ = d1

d2
, we have

D−1GT
1 D

2G1D
−1 =

[
1 + 1

16δ2 −2δ − 1
8δ

−2δ − 1
8δ 4δ2 + 1

4 .

]
The eigenvalues of the above matrix are 0 and 5

4+4δ2+ 1
16δ2 ,

and thus ∥DG1D
−1∥22 = ρ(D−1GT

1 D
2G1D

−1) = 5
4+4δ2+

1
16δ2 > 1 for every D ∈ D+

2 . Hence, using Lemma 4.2, we
conclude that the assumption on G1 and Λ from Theorem 4.1
is not satisfied.

V. NUMERICAL ILLUSTRATION

As an illustration of Theorem 3.1, we provide a numerical
simulation1 of (1) when the parameters G1 and Λ of the

1Simulations were done in Python, with an explicit computation of
the solution of (2), an upwind scheme in space and an explicit Euler
scheme in time for the hyperbolic PDEs of (1) and (3), and an ex-
plicit Euler scheme in time for the ODE in (1). The time step was
adapted according to the value of ε and the space step was chosen in
order to satisfy a CFL stability condition for the numerical scheme. The
simulation code is available in https://gitlab.inria.fr/mazanti/
singular-perturbation-fast-transport-pde-and-slow-ode.

boundary-layer system are those of Example 4.4 and with

n = 1, A = 2, B =
[
1 2

]
, G2 =

[
−1 0

]T
,

z0 = 1, y0(x) =
[
− cos

(
5π
2 x

)
0
]T

,

for different values of ε. Note that (3) is exponentially stable
with this choice of parameters, as shown in Example 4.4,
and (2) reads ˙̄z(t) = −2z̄(t), so it is also exponentially
stable. Hence, the assumptions of Theorem 3.1 are satisfied.
In addition, the initial conditions were chosen so that the
compatibility condition y0(0) = G1y0(1) + G2z0 required
for the existence of solutions in C0 is satisfied.

0 1 2 3 4 5
Time t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z
(t
)

Solution of the ODE

Reduced order system
ε = 0.01

ε = 0.03

ε = 0.05

ε = 0.1

ε = 0.125

Fig. 1. Solution of the ODE in (1) for various values of ε and solution of
the reduced order system (2).

The solution of the ODE in (1) is represented in Fig. 1 for
various values of ε, together with the solution of the reduced
order system (2). We observe that, for ε large, the system (1)
seems unstable, as z oscillates with an increasing amplitude,
but stability is recovered as ε is reduced, and the behavior
of z becomes close to that of the solution z̄ of (2).

Fig. 2(a) represents the trace at x = 0 of the solution
of the PDE in (1) for the same values of ε as those
from Fig. 1. Following the discussion in Section II-A, we
expect y(t, x) to be close, when ε is small enough, to
ȳ∗(t) = (Im − G1)

−1G2z̄(t) (which is constant in x), and
so the latter function is also represented in Fig. 2(a). As in
Fig. 1, we observe an unstable behavior for ε large, but it
becomes stable as ε is small. For small ε, we observe strong
oscillations of the solution for small times, corresponding
to the fast dynamics of the system. Fig. 2(b) represents the
solution of the PDE in (1) when ε = 0.01, detailing, in the
left, the behavior of such solutions in the small time interval
[0, 8ε]. We observe that, at t = 8ε, the solution y is close to
being constant in space, as expected following the discussion
in Section II-A.

VI. CONCLUSION

In this article we have applied the singular perturbation
method to system (1), showing that it is exponentially stable
as soon as both subsystems (2) and (3) are exponentially
stable and ε is small enough. This result was proved using
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Fig. 2. (a) Trace of the solution of the PDE in (1) at x = 0 for various values of ε, compared with the function ȳ∗(t) = (Im − G1)−1G2z̄(t). (b)
Solution of the PDE in (1) with ε = 0.01, in the time intervals [0, 8ε] (left) and [0, 5] (right). In both (a) and (b), the top and bottom figures represent
the components y1 and y2 of y, respectively.

a suitable analysis of the behavior of the spectrum of (1)
when ε is small enough, through the spectral information of
(2) and (3). Moreover, our approach improves the previous
result from [1, Theorem 1], which had been obtained through
a Lyapunov analysis: the condition on (3) of our main result,
Theorem 3.1, is less restrictive than that from [1, Theorem 1].
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[9] P. Kokotović, H. K. Khalil, and J. O’reilly, Singular perturbation
methods in control. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1999.

[10] E. Cerpa and C. Prieur, “Effect of time scales on stability of coupled
systems involving the wave equation,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), 2017, pp. 1236–1241.

[11] S. Marx and E. Cerpa, “Singular perturbation analysis for a coupled
KdV-ODE system,” preprint arXiv:2211.04103.

[12] Y. Tang, C. Prieur, and A. Girard, “Tikhonov theorem for linear
hyperbolic systems,” Automatica, vol. 57, pp. 1–10, 2015.

[13] ——, “Singular perturbation approach for linear coupled ODE-PDE
systems,” in Delays and interconnections: methodology, algorithms
and applications, ser. Adv. Delays Dyn. Springer, Cham, 2019,
vol. 10, pp. 3–17.

[14] G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D
hyperbolic systems. Springer, 2016.

[15] Y. Chitour, G. Mazanti, and M. Sigalotti, “Stability of non-autonomous
difference equations with applications to transport and wave propaga-
tion on networks,” Netw. Heterog. Media, vol. 11, no. 4, pp. 563–601,
2016.

[16] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional-
differential equations. Springer-Verlag, 1993.

[17] J. A. Burns, T. L. Herdman, and H. W. Stech, “Linear functional-
differential equations as semigroups on product spaces,” SIAM J. Math.
Anal., vol. 14, no. 1, pp. 98–116, 1983.

[18] M. A. Kaashoek and S. M. Verduyn Lunel, “Characteristic matrices
and spectral properties of evolutionary systems,” Trans. Amer. Math.
Soc., vol. 334, no. 2, pp. 479–517, 1992.

[19] J. K. Hale and S. M. Verduyn Lunel, “Strong stabilization of neutral
functional differential equations,” IMA J. Math. Control Inform.,
vol. 19, no. 1-2, pp. 5–23, 2002.

[20] C. E. Avellar and J. K. Hale, “On the zeros of exponential polynomi-
als,” J. Math. Anal. Appl., vol. 73, no. 2, pp. 434–452, 1980.

[21] T. Kato, A short introduction to perturbation theory for linear opera-
tors. Springer-Verlag, 1980.

1954


