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Abstract— Transparency of information disclosure has always
been considered an instrumental component of effective gover-
nance, accountability, and ethical behavior in any organization
or system. However, a natural question follows: what is the
cost or benefit of being transparent, as one may suspect that
transparency imposes additional constraints on the information
structure, decreasing the maneuverability of the information
provider. This work proposes and quantitatively investigates the
price of transparency (PoT) in strategic information disclosure
by comparing the perfect Bayesian equilibrium payoffs under
two representative information structures: overt persuasion and
covert signaling models. PoT is defined as the ratio between the
payoff outcomes in covert and overt interactions. As the main
contribution, this work develops a two-stage-bilinear (TSB)
programming approach to solve for non-degenerate perfect
Bayesian equilibria of dynamic incomplete information games
with finite states and actions. Using TSB, we show that it is
always in the information provider’s interest to choose the
transparent information structure, as 0 ≤ PoT ≤ 1. The
upper bound is attainable for any strictly Bayesian-posterior
competitive games, of which zero-sum games are a particular
case. For continuous games, the PoT, still upper-bounded by
1, can be arbitrarily close to 0, indicating the tightness of the
lower bound. This tight lower bound suggests that the lack of
transparency can result in significant loss for the provider.

I. INTRODUCTION

Information asymmetry refers to the imbalance among
decision-makers in their knowledge of relevant factors or
details. The double-edged nature of the imbalance of power
caused by asymmetric information is noteworthy. On the
one hand, it can foster the development of deception-based
defense mechanisms that benefit the cybersecurity realm [1].
On the other hand, it can also result in performance loss in
adversarial machine leanring [2].

One natural remedy to this asymmetry is to increase
transparency in information disclosure. However, what is
the price of being transparent the information provider
(the sender) has to pay, as transparency requirements may
impose additional constraints on the sender’s side? Does
increased transparency lead to decreased maneuverability for
the sender, thereby impairing the effectiveness of systems
built on information asymmetry, such as cyber deception
in security applications? Does one have to choose between
ethical standards and operational effectiveness?

As information asymmetry is prevalent in security appli-
cations [3] and other real-world systems [4], investigating
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Fig. 1: A schematic illustration of two juxtaposed communi-
cation games with distinct information structures. The state
variable ω is randomly generated from the prior distribution
p and privately revealed to the sender. The receiver must
infer the current state using the signal s from the sender
and then best respond to its belief. The payoff to the
sender (the receiver), denoted by u(a, ω)[v(a, ω)], is jointly
determined by the state ω and the receiver’s action a. The key
difference between the two information structures is whether
the signaling mechanism π is made public or not.

the price of transparency (PoT) is imperative. This work
initiates a quantitative study on PoT in strategic information
disclosure. We consider a communication game between the
sender and the receiver, where the state of nature is privately
revealed to the sender only. Possessing this informational
advantage, the sender discloses partial information (signal)
regarding the state to the receiver to manipulate its belief,
leading the receiver to take actions favored by the sender.
The information disclosure mechanism (i.e., how the sender
creates the signal) is referred to as the information struc-
ture in the literature [5]. To answer the questions above
on the transparency of information disclosure, we compare
two information structures: 1) overt persuasion (OP), where
the sender publicly announces its mechanism, creating a
transparent information disclosure, and 2) covert signaling
(CS), where the mechanism is kept private throughout the
gameplay, and the receiver only observes the signal. The
two information structures are summarized in Figure 1.

PoT is defined as the ratio of the sender’s equilibrium
payoff under covert signaling over its counterpart under overt
persuasion to quantify the price of choosing the transparent
information structure. Note that the equilibrium concept
considered here is the perfect Bayesian equilibrium (PBE),
as strategic information disclosure studied in this paper is
a dynamic game of incomplete information, and players are
assumed sequentially rational [6].

As the transparency requirement mandates the sender to
reveal its intention on signaling, it seems to give the receiver
an upper hand. However, as opposed to the first impression,
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the key finding is that PoT ≤ 1 for any communication
games, indicating that opting for the transparent information
structure (OP) does not degrade the sender’s payoff. On the
contrary, the opaque one (CS) creates “friction” during the
information transmission: the receiver needs to conjecture
the sender’s mechanism first, and then the conjecture must
satisfy the consistency requirement in PBE. Consequently,
covert signaling imposes more constraints on players’ ad-
missible strategies than overt persuasion. In comparison,
transparent information disclosure leads to efficient commu-
nication, as players need not consider consistency.
Contributions: Our main contributions include 1) the devel-
opment of a two-stage-bilinear (TSB) programming approach
(Theorem 2) for solving non-degenerate PBE in strategic
information disclosure; 2) the identification of a special class
of communication games, termed strictly Bayesian-posterior
competitive games, for which the upper bound is attained:
PoT = 1, (Theorem 3); 3) the construction of a family of
quadratic games for which PoT can be arbitrarily close to 0,
indicating the tightness of the lower bound (Theorem 4).
Related Works: This work stands at the intersection of two
lines of research: strategic information transmission and al-
gorithmic information design. The two information structures
are inherited from the Bayesian persuasion model in [7] and
the signaling model in [8], respectively. Starting from these
seminal models, this work carries out a comparative study
of the two information structures. Unlike early comparative
studies [9], [10] focusing on Bayesian Nash equilibrium, this
work treats perfect Bayesian equilibrium, a more challenging
concept involving belief consistency.

This work also subscribes to the recent line of works that
explores the computational aspect of information structure
design [11]–[14]. These mentioned works provide hardness
results on the computational complexity of solving for the
equilibrium information structures without showing concrete
algorithms. In contrast, not concerning the existence of PBE
or the associated complexity, we present a bilinear program-
ming approach to compute PBE, which in turn corroborates
these hardness results in [11]–[14].

II. STRATEGIC INFORMATION DISCLOSURE:
PERSUASION AND SIGNALING

Consider a communication game as in [8], where the
better-informed sender, upon receiving the state of nature,
sends a signal to the receiver who then takes an action that
determines payoffs to both players. Mathematically, the game
model is given by a tuple ⟨Ω,S,A, v, u⟩, where 1) Ω is the
set of possible states with its typical element denoted by
ω, and the realization of ω is only revealed to the sender;
2) p ∈ ∆(Ω) denotes the prior distribution over the state
space; 3) S is the set of signals possessed by the sender
with its typical element denoted by s; 4) A is the action
space of the receiver; 5) u, v : Ω×A → R are non-negative
utilities of the sender and the receiver, respectively. Here,
∆(·) denotes the set of all probability measures compatible
with the underlying σ-algebra (e.g., Borel) over the set of
interest.

Information Structures: The information structure concerns
how the sender signals to the receiver. An information
structure or signaling mechanism is defined by a mapping
π : Ω → ∆(S), i.e., π(·|ω) is a probability distribution over
the signal space.
Covert Signaling (CS): As shown in Figure 1, the informa-
tion structure π is unknown to the receiver who consequently
cannot form a posterior belief λ(·|s) ∈ ∆(Ω), as the Bayes
update requires the knowledge of the information structure
π: λ(ω|s) = π(s|ω)p(ω)∫

Ω
π(s|ω′)p(dω′)

. In this case, the receiver can
begin with a conjectural belief system, and best respond
to these beliefs. If the belief system is consistent with the
receiver’s and the sender’s strategies in the Bayesian sense,
then the belief system and players’ strategies constitute a
perfect Bayesian equilibrium (PBE) [8].

Definition 1: A triple of the sender’s information structure
π, the receiver’s strategy α : S → ∆(A), and a belief
system λ : S → ∆(Ω) is a perfect Bayesian equilibrium if
it satisfies (1): among all admissible information structures,
π maximizes the sender’s expected payoff given α; (2): for
any signal s, α(s) maximizes the receiver’s expected payoff
under λ; (3): the belief system is consistent with π and α.

π ∈ argmax
µ:Ω→∆(S)

∫
Ω

∫
S

∫
A
u(a, ω)α(da|s)µ(ds|ω)p(dω), (1)

α(·|s) ∈ argmax
µ∈∆(A)

∫
A
v(a, ω)µ(da)λ(dω|s), (2)

λ(ω|s) = π(s|ω)p(ω)/
∫
Ω

π(s|ω′)p(dω′), if γ(s) > 0, (3)

where γ(s) =
∫
Ω
π(s|ω′)p(dω′) denotes the probability of

generating a particular signal s. We refer to supp(γ) as the
set of realizable signals. The consistency (3) in PBE requires
that for any realizable signal, the belief system conforms to
the Bayes rule under equilibrium strategies π and α. For
those unrealizable (the receiver never observes these signals),
the beliefs can be arbitrary ones, as they never appear on the
equilibrium path [6, Chapter 8.2], which makes no difference
to the equilibrium strategies. Yet, these arbitrary beliefs may
cause trouble in our bilinear programming formulation in
finite games presented in Section III. Hence, we restrict the
focus to the non-dengenrate cases. For a triple (π, α, λ), if it
satisfies (1), (2), (3), and supp(γ) = S, it is a non-degenerate
PBE: every signal yields an equilibrium path.
Overt Persuasion (OP): Unlike covert signaling, the sender
in overt persuasion first reveals π to the receiver and then
draws a signal according to π(·|ω), when the realized state
is ω. Hence, the receiver need not conjecture, as the belief
λ(ω|s) is readily available through Bayesian update once the
signal is observed. The equilibrium information structure is
given by (assuming non-degenerate equilibrium)

max
π:Ω→∆(S)

∫
Ω

∫
S

∫
A
u(a, ω)α(da|s)π(ds|ω)p(dω)

s.t. α(·|s) ∈ argmax
µ∈∆(A)

∫
A
v(a, ω)µ(da)λ(dω|s),

λ(ω|s) = π(s|ω)p(ω)∫
Ω
π(s|ω′)p(dω′)

.

(4)

4268



Bayesian Plausibility: Since (4) is a bilevel optimization
of functionals, directly solving for π remains challenging.
A key observation in [7] is that an information structure is
equivalent to a distribution over posterior beliefs. Recall that
each signal s in OP leads to a posterior belief λ(s) ∈ ∆(Ω)
with respect to the information structure π. Accordingly, each
information structure π leads to a distribution over posterior
beliefs. Denote a distribution of posteriors by τ ∈ ∆(∆(Ω)),
and τ is given by τ(λ) =

∫
s:λ=λ(·|s)

∫
Ω
π(s|ω)p(dω)ds,

assuming that {s : λ = λ(·|s)} is a measurable subset of S,
and ds denotes the Borel measure. This work considers the
cases where Ω is a separable metric space (e.g., Rn or finite
sets). Consequently, ∆(Ω), endowed with weak∗-topology, is
also separable and metrizable. Hence, the Borel probability
measure is well-defined on ∆(Ω).

With a slight abuse of notation, we also denote by λ an
individual belief in ∆(Ω). A belief is Bayesian inducible
under π if τ(λ) > 0, i.e., λ ∈ supp(τ), and distribution of
posteriors τ is Bayesian plausible if the expected posterior
probability equals the prior:

∫
λτ(dλ) = p. [7] finds that for

any Bayesian plausible distribution τ , one can always find
an information structure π such that every λ ∈ supp(τ) is
π-Bayesian inducible. With this observation, searching for
the optimal information structure is equivalent to finding the
optimal posteriors distribution through backward induction
specified below. Given a posterior belief λ, denote by â(λ) =
argmaxa Eω∼λv(a, ω) the best response of the receiver,
which is assumed to be a singleton (tie breaks in favor of
the sender). Under this belief, the sender’s expected utility is
û(λ) = Eλu(â(λ), ω). If λ is further subject to a distribution
τ , then the sender’s payoff is Eτ û(λ). Since the sender’s
goal is to find the distribution τ that maximizes his expected
utility, the corresponding optimization problem is given by

max
τ

Eτ û(λ), s.t.
∫

λτ(dλ) = p. (5)

Price of Transparency Denote by UCS and UOP the
sender’s equilibrium payoff in covert signaling and overt
persuasion, respectively. The price of transparency (PoT) is
defined as PoT = UCS/UOP . Note that UOP , the optimal
value in (4) [or equivalently (5)], is unique. In contrast, the
communication game in CS may admit multiple equilibria
and hence, different equilibrium payoffs. Given that PoT is
not a definite number but a collection of possibilities, the
rest of paper aims to identify its upper and lower bounds.

III. THE PRICE OF TRANSPARENCY IN FINITE GAMES

Matrix Representation of Information Structure Our
treatment of PoT begins with finite games where Ω,S, and
A are all finite discrete sets. In finite games, the sender’s and
the receiver’s strategies and the belief system all take matrix
forms. We introduce some notations in the following to
facilitate the discussion. Let Ω = {ωi}i∈[M ],S = {si}i∈[N ],
and A = {ai}i∈[K], where [n] := {1, 2, . . . , n}, n ∈ N+.
Assume that N ≥ M . Denote by p ∈ RM the prior
distribution over Ω, and by U = [Ukm = u(ak, ωm)] ∈
RK×M , V = [Vkm = v(ak, ωm)] ∈ RK×M the sender’s and

the receiver’s utilities, respectively. The sender’s information
structure is specified by a right stochastic matrix Π =
[Πmn = π(sn|ωm)] ∈ RM×N . The receiver’s strategy is
given by a right stochastic matrix A = [Ank = α(ak|sn)] ∈
RN×K . Denote by 1 the all-one vector of a proper dimension
depending on the context, and then Π1 = 1, A1 = 1.

In addition to the above, other helpful notations are as
follows. ei refers to the i-th elementary vector of a proper
dimension depending on the context. For a vector w, diag(w)
denotes the diagonal matrix with w on its diagonal. For a
square matrix W , diag(W ) denotes the vector containing its
diagonal entries. For any two vectors w, v ∈ RN of the same
dimension, w ⪰ v (or w ≻ v) indicates entry-wise relations:
wi ≥ vi,∀i ∈ [N ]. ⊘ denotes the Hadamard division (entry-
wise): w ⊘ v = [wi/vi]i∈[N ]. Tr(W ) denotes the trace of
a square matrix W . Wj refers to the j-th column, and its
transpose of W is denoted by WT, while W ′ denotes its
perturbation within the same domain specified by the context.

Define the prior matrix as P = diag(p) ∈ RM×M . Given
the players’ strategies Π and A, the sender’s expected payoff
is

∑
m pm

∑
n Πmn

∑
k AnkUkm = Tr(PΠAU). Under the

information structure Π, the receiver’s posterior belief upon
observing signal sn is λmn = pmΠmn∑

m′ pm′Πm′n
. Define the

belief system as Λ = [λmn] ∈ RM×N . According to the
Bayes rule shown above, the information structure and the
belief system satisfies Λ = PΠ⊘ (11TPΠ). The receiver’s
strategy A is a best response to the posterior belief Λ, i.e.,∑

m λmn

∑
k AnkVkm ≥

∑
m λmn

∑
k A

′
nkVkm, for any

n ∈ [N ], and any right stochastic matrix A′. Summing up all
the equations above, we arrive at the following statement.

Proposition 1 (PBE in Matrix Form): For a finite com-
munication game, a triple of matrices (Π, A,Λ) is a perfect
Bayesian equilibrium if it satisfies

Tr(PΠAU) ≥ Tr(PΠ′AU),∀Π′ ∈ RM×N
≥0 ,Π′1 = 1, (6)

diag(AV Λ) ⪰ diag(A′V Λ),∀A′ ∈ RN×K
≥0 , A′1 = 1, (7)

Λ = PΠ⊘ (11TPΠ), (8)

Π1 = 1, A1 = 1,Π ∈ RM×N
≥0 , A ∈ RN×K

≥0 .

Proposition 1 clearly demonstrates that solving for PBE is
challenging, as Hadamard division in the belief system makes
the problem highly nonlinear. Fortunately, this nonlinear-
ity created by Hadamard division can be bypassed using
Bayesian plausibility for non-degenerate PBE, as shown later
in Section IV. Finally, we conclude this section with the
matrix representation of SPE in (4).

Proposition 2 (SPE in Matrix Form): For a finite com-
munication game, a pair of matrices (Π, A) is a sender-
preferred subgame perfect equilibrium if it satisfies

max
Π,A

Tr(PΠAU)

s.t. diag(AV Λ) ⪰ diag(A′V Λ),

∀A′ ∈ RN×K
≥0 , A′1 = 1,

ΛT = PΠ⊘ (11TPΠ),

Π1 = 1, A1 = 1,Π ∈ RM×N
≥0 , A ∈ RN×K

≥0 .

(9)
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IV. BAYESIAN PLAUSIBILITY AND TSB PROGRAMMING

This section develops the TSB programming approach to
solve for PBE in Proposition 1, further enabling us to prove
that PoT is tightly upper bounded by 1. We impose a standing
assumption on the existence of non-degenerate PBE to secure
the well-posedness of the proposed programming: for any
finite communication games in this work, there exists at least
one non-degenerate PBE.

Recall that Bayesian plausibility requires that p =∑
n γnΛn, and γn =

∑
m pmΠmn denotes the probability

of generating sn, which is a discrete counterpart to γ(s)
defined in Definition 1. For non-degenerate PBE, γn > 0
for all n ∈ [N ]. Note that λmn = pmΠmn∑

m′ pm′Πm′n
, then

pmΠmn = λmnγn. Hence, the sender’s expected payoff can
be rewritten using posterior beliefs Λ and Γ := diag(γ), as
shown below:

Tr(PΠAU) =
∑
m

pm
∑
n

Πmn

∑
k

AnkUkm

=
∑
n

∑
k

∑
m

AnkUkmpmΠmn

=
∑
n

∑
k

∑
m

AnkUkmλmnγn = Tr(AUΛΓ).

The above deduction actually gives an elementary proof of
the one-to-one correspondence between information structure
and the posterior distribution we discussed in (5). Mean-
while, as γ ≻ 0, then diag(AV Λ) ⪰ diag(A′V Λ) ⇔
diag(AV ΛΓ) ⪰ diag(A′V ΛΓ). Finally, one can see that
both the sender’s and the receiver’s best response conditions
involve the matrix product of Λ and Γ, creating another
matrix representation of PBE presented in Theorem 1.

Define Z = ΛΓ ∈ RM×N , then according to Bayesian
plausibility, Z1 = ΛΓ1 = Λγ = p. Another constraint on
Z arises from the left stochasticity of Λ, i.e., 1TΛ = 1T,
implying that 1TZ = 1TΛΓ = 1TΓ = γT ≻ 0. Hence,
0 ≺ ZT1 ≺ 1. Summarizing these constraints, we denote by
Z := {Z|Z ∈ RM×N

≥0 , Z1 = p, 0 ≺ ZT1 ≺ 1} the set of
Bayesian plausible matrices. We then arrive at the following
theorem where PBE is characterized using the Z matrix.

Theorem 1: For a finite game, a pair matrices of (Z,A) is
a non-degenerate perfect Bayesian equilibrium if it satisfies

Tr(AUZ) ≥ Tr(AUZ ′),∀Z ′ ∈ Z,

diag(AV Z) ⪰ diag(A′V Z),∀A′ ∈ RN×K
≥0 , A′1 = 1,

AT1 = 1, Z ∈ Z. (10)
The significance of Theorem 1 is self-evident: no Hadamad
division is involved, and (10) is a constrained bilinear pro-
gramming with respect to Z and A. Intuitively, Z matrix
transfers the equilibrium problem into the posterior belief
space, eliminating the nonlinearity introduced by the Bayes
rule [see (8)]. Due to the page limit, all proofs are deferred
to the arXiv version.
Belief-Dominant Equilibrium: Even though Theorem 1
seems to be the light at the end of the tunnel, directly
solving PBE using (10) is still daunting. It is cumbersome to
vectorize Z and A and then transform (10) into a standard

bilinear form. Since the vectorization concatenates row or
column vectors of Z and A, the resulting vectors are no
longer stochastic vectors, rendering many techniques in
bilinear programming [15, Chapter 3.4] inapplicable. The
following presents an equivalence between (10) and a two-
stage-bilinear programming, where the optimal solutions to
the first stage problem constitute the feasible set of the
second stage programming.

Recall that the first inequality in (10) gives∑
i∈[N ] a

T
i Uzi = Tr(AUZ) ≥ Tr(AUZ ′) =∑

i∈[N ] a
T
i Uz′i, where ai(a

′
i) and zi(z

′
i) are the i-th

row vector of A(A′) and i−th column vector of Z(Z ′),
respectively. The trace inequality in (10) implies that
the sender does not deviate from the equilibrium belief
system Λ and the distribution Γ, as the resulting average
payoff over every signal is optimal. Note that zi = γiλi,
λi is the i-th column of Λ, and consider the following
constraints: aTi Uλi ≥ aTi Uλ′

i, for any i ∈ [N ], λ′
i ∈ ∆([N ]).

Compared to the trace, the newly introduced ones require
the equilibrium belief itself to be optimal for each signal,
fixing the receiver’s move. The latter is stronger than the
former. We refer to the PBE characterized by the stronger
constraints as belief-dominant PBE, as the belief system Λ
best responds to A and dominates all other beliefs.

Definition 2 (Belief-Dominant PBE): Non-degenerate
PBE (Z = ΛΓ, A) is said to be belief-dominant, if the
belief system Λ best responds to A for each signal:
aTi Uλi ≥ aTi Uλ′

i, ai = (AT)i, ∀i ∈ [N ], ∀λ′
i ∈ ∆([N ]).

The notion of belief dominance only applies to non-
degenerate PBE, as the belief vector λi can be arbitrary when
γi = 0 [see (3)] in degenerate cases. The following presents
an example of belief-dominant PBE.

Example 1 (Non-degenerate and Belief-Dominant PBE):
Consider a two-state, two-action, and two-signal case:
M = N = K = 2. The sender’s and the receiver’s utility
matrices are U = [1, 0; 0, 1/2], V = [1, 0; 0, 2]. The prior
is p = (1/2, 1/2). Both parties prefer a2 in state ω2. The
sender prefers a1 in state ω1, while the receiver is indifferent
between two actions.

As shown in the utility matrices, the interests of the
sender and the receiver are aligned. Hence, one special
perfect Bayesian equilibrium strategy for the sender is the
so-called truth-telling strategy: Π = I , also referred to as the
separating equilibrium [6, Chapter 8]. As a non-degenerate
PBE, the separating equilibrium is given by

Π = Λ =

[
1 0
0 1

]
,Γ =

[
1/2 0
0 1/2

]
, A =

[
1− ϵ ϵ
0 1

]
,

where ϵ ∈ [0, 1]. The ϵ entries in A are due to the fact that the
receiver is indifferent between two actions when it observes
s1 and realizes that the state is ω1. In other words, there is a
continuum of non-degenerate PBE. Direct calculation gives
that those PBE with ϵ ∈ [0, 2/3] is belief-dominant.
Two-Stage-Bilinear Programming For belief-dominant
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PBE, the constraints in (10) reduces to

aTi Uλi ≥ aTi Uλ′
i, λ

T
i 1 = λ′T

i 1 = 1, λi, λ
′
i ≥ 0,

aTi V λi ≥ a′Ti V λi, a
T
i 1 = a′Ti 1 = 1, ai, a

′
i ≥ 0,

(11)

for any i ∈ [N ]. The benefit of considering these constraints
is that all decision variables involved are from the probability
simplex, leading to the helpful results below.

Lemma 1: A pair ({ai}, {λi}) constitutes a feasible point
to (11) if and only if there exists a pair ({xi}, {yi}) such that
({ai}, {λi}, {xi}, {yi}) solves the bilinear programming

max
ai,λi,xi,yi

∑
i∈[N ]

aTi Uλi +
∑
i∈[N ]

aTi V λi −
∑
i∈[N ]

xi −
∑
i∈[N ]

yi

s.t. UTai ⪯ xi1, V λi ⪯ yi1,

ai ≥ 0, λi ≥ 0, aTi 1 = 1, λT
i 1 = 1. (12)

Corollary 1: For any solution ({ai}, {λi}, {xi}, {yi}) to
the bilinear programming (12), if there exists a γ ∈ ∆([M ])
such that Λγ = p, Λi = λi, then (Λ, γ) is Bayesian plausible.
Under the corresponding information structure, the sender’s
(receiver’s) expected payoff under signal si is xi (yi).
The proof of Corollary 1 rests on the fact that the solution
quadruple to (12) satisfies the equations: aTi Uλi = xi,
aTi V λi = yi. As one can see from Corollary 1, an optimal
posterior distribution γ should maximize the expected payoff
of all signals:

∑
i γixi. This observation leads to Theorem 2,

where solutions to the bilinear programming in (12) consti-
tute a feasible set to another bilinear programming.

Theorem 2 (Two-Stage-Bilinear Programming): For any
solution (Z = (Λ, γ), A) to (10) that is belief-dominant, it is
also a solution to (13). Conversely, if {(AT)i,Λi, xi, yi, γi}
solves (13) and satisfies Λγ = p, γT1 = 1, γ ≻ 0, then
(Λ, γ, A) solves (10).

max
γi,xi

∑
i

γixi, s.t. {(AT)i,Λi, xi, yi} solves (12). (13)

Before inspecting the tightness of the upper and lower
bounds, we introduce a finite-time algorithm to find the exact
solution to (13). The first step is to identify the feasible
set characterized by (12). One can see from the proof and
(11) that the purpose of bilinear programming (12) is to
enumerate all solutions of the bimatrix game (U, V ). Prior
works [16], [17] have established finite-time algorithms (with
exponential complexity) to enumerate the exact solutions. An
online solver, named lrs (lexicographic reverse search), is
offered by [17]. Consider the binary communication game in
Example 1. lrs returns three solution tuples represented as
(a, λ, x): {(1/2, 1/2), (1/3, 2/3), 1/3}, {(0, 1), (0, 1), 1/2},
and {(1, 0), (1, 0), 1}. We now turn to the bilinear program-
ming in (13). Since N = 2, we only need to keep two
solution tuples as the feasible points. As 1/3 < 1/2 < 1, it is
natural to drop the solution {(1/2, 1/2), (1/3, 2/3), 1/3} and
keep the other two. In this case, the belief matrix becomes
Λ = I , and hence, γ = p = (1/2, 1/2). Since the feasible
set for the variable γ is a singleton, then the optimal solution
is exactly the truth-telling strategy in Example 1. Note that
lrs only returns extreme equilibria [17], which explains
why Example 1 presents a continuum of PBE, whereas lrs

only gives the above three. Yet, this technical nuance does not
affect the objective value in (13). A more detailed discussion
is presented in the arXiv version.
The Tight Upper Bound To evaluate the PoT, we first
transfer the SPE in (9) into the posterior belief space, which
is given by the following programming:

max
{γi,λi,ai}

∑
i

aTi Uλiγi

s.t. aTi V λi ≥ a′Ti V λi, a
T
i 1 = a′Ti 1 = 1, ai, a

′
i ≥ 0,∑

i

λiγi = p. (14)

Comparing (14) and (11), one can see that PBE admits
one more constraint regarding λ. Hence, PoT ≤ 1. The fol-
lowing introduces a special class of communication games,
referred to as strictly Bayesian-posterior competitive games,
for which we prove that the upper bound is attained.

Definition 3 (Strictly Bayesian-posterior competitiveness):
A game with payoffs (U, V ) is strictly Bayesian-posterior
competitive if for all a, a′ ∈ ∆(A) , λ, λ′ ∈ ∆(Ω),
aTUλ− a′TUλ′ and a′TV λ′ − aTV λ have the same sign.

Theorem 3 (Tightness of the Upper Bound): Assuming
that belief-dominant equilibrium exists for some strictly
Bayesian-posterior competitive game, then PoT = 1.

V. QUADRATIC GAMES AND TIGHT LOWER BOUND

Note that (10) and (13) give a TSB characterization of
PBE, which is instrumental in showing the tightness of
the upper bound in finite games. However, the bilinear
programming does not reveal the tightness of the lower
bound. This section presents a case study on the PoT in a
particular continuous game: quadratic communication game
(QCG), where PoT can be arbitrarily close to zero.

QCG consists of continuous state, signal, and action
spaces: Ω = S = A = [0, 1], as well as quadratic utilities:
u(a, ω) = −(a − ω − b)2, v(a, ω) = −(a − ω)2. The bias
term b > 0 denotes the misalignment between two players’
interests: as b → 0, the two are more aligned. The receiver
tries to guess where the actual state is (minimizing the error)
based on the signal from the sender, who tries to mislead the
receiver to somewhere else (specified by the offset b). The
prior is the uniform distribution denoted by p = unif(0, 1).
PBE in Signaling An important finding in [8] is that all PBE
in QCG are partition equilibria. Given a constant b > 0, there
exists a positive integer N(b) = ⌊− 1

2 +
1
2 (1+

2
b )

1/2⌋ (⌊·⌋ is
the ceiling function) such that there exists a PBE for every
N ∈ [N(b)]. The equilibrium information structure is in the
form of partition signaling: for any N ∈ [N(b)], there exists
a sequence 0 = k0 < k1 < . . . < kN = 1 such that

π(·|ω) = unif(ki, ki+1), if ω ∈ (ki, ki+1). (15)

In the partition equilibria, the sender randomly samples
a signal from the sub-interval within which the true state
falls, telling a half-truth to the receiver. One can clearly see
from (15) that the more nearly players’ interests coincide (the
closer b approaches zero), the finer partition there can be (the
larger N(b)). On the contrary, as b → ∞, N(b) eventually
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falls to unity, and the sender would transmit uninformative
signals to the receiver. Direct calculation shows that the
watershed is 1/4: as b exceeds 1/4, π(·|ω) = p for all ω.
For the rest of this section, we assume b ∈ (0, 1/4).

We now turn to the sender’s PBE payoff, i.e., UCS .
[8, Theorem 1] states that under the information struc-
ture (15), UCS = −

∑
i∈[N ] Varunif(ki−1,ki) −b2, where

Varunif(ki,ki+1) denotes the variance of the uniform distri-
bution over [ki−1, ki]. The equilibrium partition of number
N ∈ [N(b)], as shown in [8], is ki = i/N + 2bi(i − N),
i ∈ [N ]. Hence, a direct calculation gives

UCS = − 1

12N2
− b2(N2 − 1)

3
− b2. (16)

SPE in Persuasion The calculation of SPE in QCG rests
on the backward induction in (5). Given a posterior belief λ,
the best response is â(λ) = argmaxa Eω∼λ[−(a − ω)2] =
Eλ[ω]. The sender’s expected payoff under λ is û(λ) =
Eω∼λu(â(λ), ω) = −Varλ −b2, where Varλ denotes the
variance of the random variable ω ∼ λ. Finally, UOP is
the optimal value of the following problem:

max
τ∈∆(∆([0,1]))

Eτ [−Varλ −b2], s.t.
∫

λτ(dλ) = p.

If we choose λ as a Dirac measure δ(ω), for ω ∈ [0, 1], then
the variance term is zero. Hence, the optimal value is UOP =
−b2. The interpretation is that the sender opts for a truth-
telling strategy, i.e., s = ω, even though the incentive bias
exists b > 0. Consequently, the receiver’s belief collapses
to its true state λ(·|ω) = δ(ω). Mathematically, this truth-
telling equilibrium is due to the fact that û(λ) is convex in λ,
and the reader is referred to [7, Section V] for more details,
where authors consider a lobby game similar to our setting.
The Tight Lower Bound With all the results above, we
now address the lower bound of PoT. Note that for the
simplicity of exposition, we construct non-positive utilities in
QCG, violating the non-negativity assumption in Section II.
If blindly computing UCS

UOP , one would arrive at the opposite
conclusion. Therefore, we prove that PoT converges to zero
by showing that UOP converges to zero (the maximum) at
a higher order than UCS does, as b → 0. This higher-order
convergence indicates that OP significantly outperforms CS.

Theorem 4 (Tightness of the Lower Bound): Consider
the quadratic communication game of the incentive bias
b > 0, PoT converges to 0, as b tends to 0.

Remark 1 (Half-Truth still Hurts.): The opaque informa-
tion disclosure, compared to the transparent, creates “fric-
tion” in information transmission. As one can see from
the partition equilibria in (15), the informativeness of the
signaling is reflected by the width of each sub-interval di =
ki+1−ki. The finer the partition is, the smaller di is, and the
more confident the receiver is about the true state. As b → 0,
and di shrinks, the half-truth gets closer to the truth. Yet, the
half-truth still hurts: the signal bears randomness (unlike the
deterministic signal in OP), even though the two players’
interests coincide. The resulting UCS exhibits a first-order
convergence.

VI. CONCLUSION

This work has introduced the notion of price of trans-
parency (PoT) to quantify the cost or benefit of informa-
tion disclosure in strategic interactions. It allows for the
assessment of the sender’s tradeoffs when adhering to ethical
standards that require transparency in information disclosure.
We have observed that counterintuitively, choosing trans-
parency can yield a payoff no less than that under an opaque
information structure, with PoT values ranging between 0
and 1. We have developed a two-stage-bilinear programming
approach (10) using Bayesian plausibility to solve for the
perfect Bayesian equilibrium. Furthermore, this program-
ming approach has enabled us to show the upper bound is
attainable for strictly Bayesian-posterior competitive games.
Additionally, we have constructed quadratic games where
PoT can be arbitrarily close to 0. The tight lower bound
implies that the sender can be plagued by the lack of
transparency. One future direction is to investigate a class
of incentive mechanism design problems where the designer
creates incentives for agents to adhere to transparency.
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