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Abstract— The determination of robot trajectories that can
achieve reactive collision avoidance with moving objects is of
great interest. In cluttered environments with tight spaces,
it becomes important to consider the shapes of the objects
in computing these trajectories. The literature largely models
the shapes of the objects as circles, and this can make the
avoidance maneuvers very conservative, especially when the
objects are elongated and/or non-convex. In this paper, we
model the shapes of the objects using combinations of quadric
surfaces or polygons, and employ a collision cone approach
to achieve reactive collision avoidance, in the presence of
measurement noise. The collision avoidance design employs
a dual-loop control architecture where the inner loop uses a
dynamic inversion-based method and the outer loop uses Linear
Matrix Inequalities (LMIs). Simulation results demonstrating
the collision avoidance laws for dynamic, heterogeneous quadric
and polygonal surfaces are presented.

I. INTRODUCTION

Achieving reactive collision avoidance is an important
component of the trajectory generation problem for au-
tonomous vehicles. When the robot and obstacles are oper-
ating in close proximity and in cluttered environments, their
individual shapes can play an important role in the determi-
nation of avoidance trajectories. A common practice is to use
circular approximations for the objects, and then compute the
avoidance conditions for these circles. However, the circular
approximations become overly conservative for objects that
are elongated and or non-convex. For example, consider the
object shown in red in Fig 1(a). Approximating this with a
single circle is highly over-conservative because this reduces
the area of the free space in which the robot trajectories can
lie. Approximating this more tightly with multiple smaller
circles (See Fig 1(b),(c)) increases the available free space,
however it leads to increased computational expense to store
a model of the shape. If we consider the engagement between
two such non-convex shapes, and we model the two objects
using m and n circles, respectively, then the computational
complexity of predicting collision between the two objects
is O(mn), which is quite expensive for large m and n.

For elongated objects, ellipses have been used to serve
as better approximators for the shapes [1]-[2]. However for
complex shapes, even elliptical approximations can become
over conservative. In such cases, the shapes can be approx-
imated with polygons as in [3]. For non-convex shapes, one
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can also take recourse to non-convex bounding approxima-
tions involving a combination of quadric surfaces such as an
ellipse and a hyperbola. Such quadric surfaces are also used
to model objects in CAD/CAM and industrial manufacturing
[4], as well as complex object shapes in animations [5].

This paper employs a collision cone based approach to
determine collision avoidance laws for moving objects whose
shapes are modeled by combinations of quadric surfaces or
polygons. The collision cone approach, originally introduced
in [6], has some similarities with the velocity obstacle
approach [7] in that both approaches determine the set of
velocities of the robots that will place them on a collision
course with one or more obstacles. The collision cone
approach of [6] has been used to develop analytical expres-
sions of collision cones for a large class of object shapes
[8]. Such analytical expressions can lead to computational
savings, especially in multi-obstacle environments, and also
serve as a basis for designing collision avoidance laws. The
collision cone approach has been extensively employed in the
literature (See for example, [9],[10],[11],[12],[13],[14],[15]).

When both agents are objects of different shapes, a com-
mon recourse is to perform a Minkowski sum operation to
reduce one of the objects to a point, while enlarging the other
object. This operation may be computationally expensive.
In [16], the authors computed the collision cone between
moving quadrics without taking recourse to computing the
Minkowski sum, and developed acceleration laws for colli-
sion avoidance, while assuming that the robots have perfect
state information. In the current paper, we consider obstacles
of a larger class of shapes and then use polygons or a
combination of quadrics to approximate the shapes. The
collision cone approach, used in the paper for calculating
the obstacle avoidance trajectory, can be viewed as a general
purpose algorithm, that can be applied to any of the above
shape approximations. Given an image or a point cloud of the
obstacle, users have flexibility to approximate the shape of
the obstacle as an ellipse using Khachiyan’s Algorithm [17]
or as a polygon [18] or as a non-convex quadric, based on the
accuracy needed and the computational limitations, and the
collision cone algorithm works with either approximation.

In this paper, we consider scenarios where the robots
have noisy, imperfect state information. We first perform an
analytical quantification of the effect of these noisy states on
the computation of the collision cone. We then employ a two-
loop feedback architecture, with the objective to attenuate
the effects of noise and thereby achieve robust collision
avoidance. The inner loop provides a baseline acceleration
component (developed using a dynamic inversion approach
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Fig. 1: Approximating a non-convex shape using circles
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Fig. 2: Engagement between arbitrarily shaped objects

which does not account for the effects of noise), while the
outer loop provides correctional components to this baseline
acceleration. These correctional terms are developed using
Linear Matrix Inequalities (LMIs) which account for the
effects of measurement noise. This two-loop architecture
achieves robust collision avoidance of moving obstacles with
heterogeneous shapes.

II. COMPUTATION OF THE COLLISION CONE

A. Background on the Collision Cone

Refer Fig 2, which shows two arbitrarily shaped objects
A and B moving with velocities VA and VB, respectively. The
lines Q1Q2 and R1R2 form a sector with the property that
this represents the smallest sector that completely contains A
and B such that A and B lie on opposite sides of the point of
intersection O. Let V̂r and V̂θ represent the relative velocity
components of the angular bisector of this sector, as shown.
As demonstrated in [6], A and B are on a collision course if
their relative velocities belong to a specific set. This set is
encapsulated in a quantity y defined as follows:

y =
V̂ 2

θ(
V̂ 2

θ
+V̂ 2

r
) − sin2

(
ψ

2

)
(1)

The collision cone is defined as the region in the (V̂θ ,V̂r)
space for which y < 0, V̂r < 0 is satisfied. Any relative
velocity vector satisfying this condition lies inside the col-
lision cone. A challenge in computing the collision cone
for arbitrarily shaped objects is in the computation of the
sector enclosing the objects A and B (shown in Fig 2), and
determination of the angle ψ . Note that as A and B move,
the angle ψ changes with time. In [16], the authors presented
a method to compute ψ for objects that can be modeled by
quadric surfaces. This method is computationally inexpensive
thereby making it suitable for real-time implementation, and
is briefly discussed in the subsection below.

Algorithm 1 Determination of angle ψ

// Given two ellipses represented by matrices M1 and M2
1: Compute C1 = M−1

1 , C2 = M−1
2

// Determine the degenerate conics
2: [U, t] = eig(C−1

2 C1) ▷ U = [u1 u2 u3], t = [t1, t2, t3]T

// Do Projective transform of degenerate conic by U
3: Li =UT (C1 − tiC2)U for i = 1,2

// Find one of the intersection point of these projected
degenerate conics

4: u =
√
(−L2(3,3))/L2(1,1), v =

√
(−L1(3,3))/L1(2,2)

// Find all tangent lines in projected coordinates

5: s =


u v 1
−u −v 1
−u v 1
u −v 1


// Project solution back to homogeneous coordinates

6: s = sUT

// Define the centers of M1 and M2
7: p1 =C1[0 0 1]T , p2 =C2[0 0 1]T

// Determine the inner tangents by using the property
that two centers of the ellipses lie on opposite sides of
the inner tangents. Defining a boolean vector

8: bool = (sp1)⊙ (sp2)< 0 ▷ ⊙ is Hadamard product
// Eliminating the indices of s marked as false in bool

9: s = s(bool)
Check if p1 is located below tangent 1 and above tangent
2. If not, change sign of the normal vector of tangent 2
if (s(1, :).p1)(s(2, :).p1)> 0, s(2, :) =−s(2, :) end if
// Determine the angle ψ

10: ψ = arccos
(

s(1,1 : 2).s(2,1 : 2)
∥s(1,1 : 2)∥∥s(2,1 : 2)∥

)

B. Collision cone between two ellipses

A general ellipse can be represented as follows:

aX2 +bXY + cY 2 +dX + eY + f = 0 (2)

⇒
[
X Y 1

]︸ ︷︷ ︸
xT

 a b/2 d/2
b/2 c e/2
d/2 e/2 f


︸ ︷︷ ︸

M

X
Y
1


︸︷︷︸

x

= 0 (3)

Eqn (3) can be compactly written as xT Mx = 0. Note that
x represents the homogeneous coordinates of a point (x,y).
Now, for any given point p on the ellipse, l = Mp represents
the homogeneous coordinates of the tangent to the ellipse
at that point, and the equation of this tangent line is given
by lT x = 0. The dual of this ellipse is defined as the set of
lines tangent to M, and can be expressed by the equation
lT M−1l = 0 [19]. Thus, any line satisfying this equation
belongs to the tangent set of M. To find the equations of the
common tangents to two ellipses, the intersections between
their corresponding duals are required. We use Algorithm
1 to determine the inner common tangents and the angle
ψ between them, and then use this in (1) to compute the
collision cone.
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C. Collision cone between two polygons

Given a set of points obtained from the point cloud of
a LiDAR, the Graham scan [18] can be used to obtain the
smallest convex hull that approximates the point cloud by a
polygon with the smallest number of sides in O(n logn).

Assume there are m and n vertices corresponding to the
convex hulls of the two objects. Thus mn lines can be drawn
between the vertices of the two polygons. The common inner
tangents to the two polygons are identified as the tangent
lines that also serve as separating hyperplanes between the
two objects, and these are used to compute ψ which is used
in (1) to compute the collision cone. Note that we use the
phrase “tangent” with a slight abuse of notation in the sense
that these lines may not actually be tangents when the object
has a non-smooth surface as in the case of a polygon.

D. Collision cone between shapes formed by the combina-
tion of two general quadrics

1) Equation for quadrics made by multiple overlapping
quadrics: Consider an intersecting ellipse and hyperbola, as
shown in Fig 3(a). Then, we define an Ellipse Delimited by
a Hyperbola (EDH) as follows:

{x : xT Mex ≤ 0
⋂

xT Mhx ≤ 0} (4)

where, Mh and Me represent matrices that correspond to a
hyperbola and an ellipse, respectively. Note that the structure
of Mh and Me is similar to that in (3). An example of an EDH
is shown in Fig 3(b). In the special case when the focal
points of the ellipse and hyperbola coincide, the ensuing
shape is a confocal quadric which was described in our
previous paper [16]. Similarly, we can construct a quadric
which is a combination of an ellipse and a parabola shown
in Fig 3(c). Doing so, we obtain an ellipse delimited by a
parabola (EDP) shown in Fig 3(d). These quadrics can be
used to approximate the objects more tightly.

2) Computation of angle ψ for these surfaces: Ref Fig 4,
which shows two general quadrics A and B. To find the
common tangents between them, we follow the steps given
below. 1) First, draw tangents from the elliptical portion of A
to the elliptical portion of B. These are t1t ′1 and t2t ′2 in Fig 4.
2) Check if these lines satisfy the equations of the surfaces
representing A and B. If yes, then they can be considered as
valid common tangents; if not, we proceed to the next step. In
Fig 4, t2t ′2 is valid while t1t ′1 is not. 3) Find the intersection

ψ

t1

t'1

t2

t'2

t3

t'3

t4

t'4

A
B

Fig. 4: Computing ψ for a pair of general quadrics
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Fig. 5: Engagement Geometry between general quadrics
of the ellipse and hyperbola using Algorithm 1 where C1
and C2 are the ellipse and hyperbola matrices, respectively.
These intersection points are the corner points of that general
quadric. 4) From each corner point of a quadric, draw two
tangents to the elliptical portion of the other quadric, shown
as line t4t ′4 in Fig 4. Check if these lines satisfy the equation
of that quadric and form separating hyperplanes. If so, they
can be considered as valid common tangents. Here t4t ′4 does
not satisfy the criteria. If we have not obtained two valid
tangents yet, we proceed to the next step. 5) We take the
corner points of each quadric and draw two tangents between
them as described in the case of the polygons. Here, t3t ′3 is a
valid tangent joining the corner points of the two shapes. 6)
If we have three valid tangent lines, then we select the two
which gives the maximum ψ .

E. Computational Complexity for calculating ψ for different
shape approximations

Ellipse-Ellipse: As we can see from Algorithm 1, all the
operations are constant time operations, therefore the worst
time complexity is O(1). Polygon-Polygon: Let m and n be
the number of vertices of the two polygons, where m> n. The
time complexity is O(m2n), since there are mn tangent lines
and each of them have to be checked to find those which are
also separating hyperplanes. General Quadric-Polygon: Here
the tangents are drawn using the combination of Algorithm 1
and polygon-polygon case. Since the time complexity of
Algorithm 1 is O(1) and the number of corner points is
upper bounded by 4, therefore the total complexity becomes
O(1 ·n2 ·4), n the number of polygon vertices, simplified to
O(n2). General Quadric-General Quadric: The algorithm is
similar to the one used in the above case. Since each general
quadric has maximum four corner points, therefore the time
complexity becomes O(1 ·42 ·4) simplified to O(1).
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Shape Engagement Complexity
Ellipse-Ellipse O(1)

General Quadric-General Quadric O(1)

General Quadric-Polygon O(n2)

Polygon-Polygon O(m2n),m > n

I. Complexity Analysis

III. COLLISION AVOIDANCE ACCELERATION
COMPUTATION BY DYNAMIC INVERSION

In this section, we derive analytical expressions for the
acceleration laws required for collision avoidance. Consider
the engagement geometry in Fig 5, where A and B are two
general quadrics, moving with speeds VA and VB, respec-
tively, and heading angles α and β , respectively. The distance
between the centers of A and B is represented by r, and the
angle made by the line joining these centers is represented
by θ . The control input of A is its lateral acceleration alat,A,
which acts normal to the velocity vector of A. The kinematics
governing the engagement geometry are characterized by the
following equations:

ṙ
θ̇

V̇θ

V̇r
α̇

 =


Vr

Vθ/r
−VθVr/r

V 2
θ
/r

0

+


0
0

−cos(α −θ)
sin(α −θ)

1/VA

alat,A (5)

The inner common tangents are shown in green in Fig
5 and ψ is the angle between these tangents. The quantity
θb represents the angle which the angular bisector of the
sector (formed by the inner common tangents), makes with
the x-axis. In general, the angular bisector of the sector will
be distinct from the line joining the centers of A and B,
and thereby have different relative velocity components. The
quantities Vr, Vθ are related to V̂r, V̂θ (bisector quantities) by
a rotation matrix by an angle (θ −θb). In the special case
when θ = θb we have Vr = V̂r and Vθ = V̂θ .

Thus we can transform the function y (defined in (1)), so
as to write it in terms of the kinematic states:

y =

[V 2
θ

cos2(θ −θb)+V 2
r sin2(θ −θb)

+2VrVθ cos(θ −θb)sin(θ −θb)

]
V 2

r +V 2
θ

− sin2
(

ψ

2

)
(6)

When y < 0,V̂r < 0, this means that A is on a collision
course with B. It needs to apply a suitable lateral acceleration
alat,A to drive y to a reference value w ≥ 0, and this will
be equivalent to steering its velocity vector out of the
collision cone. We employ dynamic inversion to determine
the baseline lateral acceleration to drive y to the reference w.
Differentiating (6), we obtain the dynamic evolution of y:

ẏ =
∂y
∂θb

θ̇b +
∂y
∂θ

θ̇ +
∂y

∂Vθ

V̇θ +
∂y
∂Vr

V̇r +
∂y
∂ψ

ψ̇ (7)

Define an error quantity z(t) = y(t)−w. Taking w as a
constant ∀t, we seek to determine alat,A which will ensure
the error z(t) follows the dynamics ż =−Kz where K > 0 is

a constant. This in turn causes the quantity y to follow the
dynamics ẏ =−K(y−w).

Note that all the partial derivatives of y can be computed
analytically from (6). While the state kinematic equations are
given in (5), we however do not have analytical expressions
of θ̇b and ψ̇ and these have to be synthesized numerically.
Substituting partial derivatives of y and state derivatives from
(5) in (7), we eventually get the expression for alat,A as:

alat,A =−(V 2
r +V 2

θ )
N1 +N2

D1D2
(8)

where, N1,N2,D1 are as follows:

N1 = (V 2
r +V 2

θ )(2K(w− y)+ ψ̇ sin(ψ))

D1 = 2VrVθ cos(2(θ −θb))+(V 2
r −V 2

θ )sin(2(θ −θb))

N2 = 2θ̇bD1, D2 = 2(Vr cos(α −θ)+Vθ sin(α −θ))

IV. ROBUST CONTROLLER DESIGN USING LMIS

The acceleration law (8) derived by the dynamic inversion
method requires accurate knowledge of the true values of
the states. However, as is well known, measurement sensors
possess noise which corrupts the state measurements thereby
causing the controller to behave improperly. In this section,
we quantify the effect of noise on the dynamics of the
collision cone parameter y. We then design an LMI-based
controller to attenuate the effects of noise, and thereby
achieve robust collision avoidance performance.

A. Effects of Noise on Collision Cone Parameter Dynamics

In the absence of noise, the dynamic inversion law ensures
that y follows the dynamics ẏ =−K(y−w), or equivalently,
ż = −Kz. Now, assume the presence of noise so that the
measurements of the relative engagement states r, θ , Vr,
Vθ , θb and ψ are each corrupted by additive noise terms
∆r, ∆θ , ∆Vr, ∆Vθ , ∆θb and ∆ψ , respectively. We accent the
erroneous states by the symbol ∼. Therefore, r̃ = r + ∆r,
θ̃ = θ +∆θ , and similarly for the other states. This noise, as
a consequence, leads to an error in the value of the collision
cone parameter y. Let this error be represented by ∆y, so
that the noisy value is ỹ = y+∆y. Additionally, the dynamic
inversion law includes the derivative terms θ̇b and ψ̇ , which
are also corrupted to ˙̃

θb and ˙̃ψ , respectively. Substituting
these terms in (8), we see that the applied acceleration is

ãlat,A = −(Ṽ 2
r +Ṽ 2

θ )
Ñ1 + Ñ2

D̃1D̃2
(9)

Ñ1 = (Ṽ 2
r +Ṽ 2

θ )(2K(w− ỹ)+ ˙̃ψ sin(ψ̃))

D̃1 = 2ṼrṼθ cos(2(θ̃ − θ̃b))+(Ṽ 2
r −Ṽ 2

θ )sin(2(θ̃ − θ̃b))

Ñ2 = 2 ˙̃
θbD̃1, D̃2 = 2

(
Ṽr cos(α − θ̃)+Ṽθ sin(α − θ̃)

)
Substituting (9) in (7), after performing algebraic manipula-
tions, we see that the error z now follows the dynamics:

ż =−Kaz+ v (10)

where, a and v are

a =
D1D2

(
Ṽ 2

r +Ṽ 2
θ

)2

D̃1D̃2
(
V 2

r +V 2
θ

)2 (11)
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v = a

(
Ñ2

2
(
Ṽ 2

r +Ṽ 2
θ

) + ˙̃ψ
sinψ

2
−∆y

)
︸ ︷︷ ︸

T

−

(
θ̇bD1(

V 2
r +V 2

θ

) + ψ̇
sinψ

2

)
︸ ︷︷ ︸

U

(12)
As evident from (10), a and v represent multiplicative and
additive noise terms respectively. They impact the dynamics
of the collision cone error function z and are functions of
the states and their erroneous measurements. Note that in the
absence of noise (when Ṽr = Vr, Ṽθ = Vθ and so on), these
terms reduce to a = 1, v = 0 and (10) reduces to ż =−Kz.

B. Bounds on the Multiplicative and Additive Noise Terms

In this subsection, we determine bounds on the multiplica-
tive and additive noise terms a and v, respectively, by deter-
mining the mean and variance of these quantities, in terms of
the mean and variance of the noisy state measurements. We
use a linearized approximation for this purpose, with a stan-
dard assumption that the noise is Gaussian with zero mean
and known variance. We first consider the multiplicative term
a in (10), and get E [a] = 1. To determine the variance of a,
we define a quantity G=

(
V 2

r +V 2
θ

)2
/(D1D2), and note from

(11), that a = G̃/G. Then the variance of a can be written in
terms of the partial derivatives of G as:

Var [a] =
1

G2

((
∂G
∂Vr

)2

Var [∆Vr]+

(
∂G
∂Vθ

)2

Var [∆Vθ ]

+

(
∂G
∂θ

)2

Var [∆θ ]+

(
∂G
∂θb

)2

Var [∆θb]

)
(13)

We next consider the additive term v in (12). Using a
linearized approach, we get E[v] = 0, and variance as:

Var[v] = Var[aT −U ] = Var[aT ] (14)

where, T and U are as defined in (12). The second equation
above follows from the fact that U does not contain any noise
terms and therefore does not contribute to the calculation of
variance. Using a Taylor series approximation on a and T ,
ignoring the higher order terms, and assuming the variance of
the individual terms to be independent, we get the following:

Var[v] =

(
∂T
∂Vr

+T0
∂a
∂Vr

)2

Var [△Vr]+

(
∂T
∂ψ

)2

Var [△ψ]

+

(
∂T
∂Vθ

+T0
∂a

∂Vθ

)2

Var [△Vθ ]+

(
∂T
∂ θ̇b

)2

Var
[
△θ̇b

]
+

(
∂T
∂θ

+T0
∂a
∂θ

)2

Var [△θ ]+

(
∂T
∂ψ̇

)2

Var [△ψ̇]

+

(
∂T
∂θb

+T0
∂a
∂θb

)2

Var [△θb] (15)

where a0 and T0 denote the true values as given below

a0 = 1, T0 =

(
N2

2
(
V 2

r +V 2
θ

) + ψ̇
sinψ

2

)
(16)

Fig 6 shows the time plots of the additive and multi-
plicative noise terms, as well as the calculated 3σ bounds
for each of these terms, as determined from (13) and (14),
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Fig. 6: (a) Additive (b) Multiplicative Noise, along with their
3σ bounds
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Fig. 7: Two-Loop Control Architecture

respectively, for a scenario (described later in the simulations
section). These 3σ bounds help us to specify the bounds on
the parameters of the robust controller discussed next.

C. Implementation of LMI-based Controller

To attenuate the adverse effects of the a,v terms in (10),
an additional input ∆alat,A is added to controller (9) as:

alat,A = ãlat,A +∆alat,A (17)

We now demonstrate use of an LMI-based approach for
designing the ∆alat,A term. Substitute (17) in (10) to get:

ż =−Kaz+b∆alat,A + v (18)

where, the quantity b is:

b =−D1D2/
(

2
(
V 2

r +V 2
θ

)2
)

(19)

We note that the values of both a and b are unknown. We
can however use the analysis of the previous subsection to
guide us in inferring bounds on a and b. Let a lie within the
bounds [−ν ,ν ], and let the bound on the absolute value of
b be λ . We assume that the sign of b is known. Rewriting
(18) in discrete form, we get

z(k+1) = Az(k)+B∆alat,A(k)+Dv(k) (20)

In the above equation, the quantities A, B and D lie within
bounds [A1,A2], [B1,B2], and [D1,D2], respectively, where
these bounds are defined in terms of ν , λ and the discretiza-
tion time step △t. The values of A, B and D thus lie within
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a polytope Ω, which is defined as follows:

Ω = {[A1,B1,D1] , [A2,B2,D2]}

=
{[

eKν△t ,1/(Kν)(eKν△t −1)λ ,1/(Kν)(eKν△t −1)
]
,[

e−Kν△t ,1/(−Kν)(e−Kν△t −1)λ ,1/(−Kν)(e−Kν△t −1)
]}

A robust input-constrained MPC controller is implemented
using LMIs [20] to generate a feedback control law of the
form ∆alat,A(k) = K(k)z(k), that satisfies several objectives.
It should minimize the tracking error z, while also ensuring
that the influence of the disturbance v on z is kept below
a pre-defined threshold. Also, the magnitude of ∆alat,A
should be such that the total acceleration (which includes
the components generated from dynamic inversion and the
LMIs) remains within the actuator saturation limits. These
objectives are mathematically formulated as follows:
1) Let J∞ represent a cost function defined as:

J∞(k) =
∞

∑
i=0

(
Q̂z2(k+ i)+ R̂∆a2

lat(k+ i)
)

(21)

where, Q̂ and R̂ are weights on z and ∆alat,A respectively.
Determine ∆alat,A, to minimize the upper bound Γ on J∞(k).
2) Let T v

z represent the transfer function from v to z.
Determine ∆alat,A so as to ensure that the effect of v on
z is upper bounded in the sense of the H∞ norm of T v

z , that
is, ∥T v

z ∥∞ < µ . Satisfying this objective will attenuate the
influence of the term v in (20).
3) The input ∆alat,A(k) is constrained between the bounds
umin(k) and umax(k). These limits are re-calculated such that
for every simulation time step, the total acceleration alat,A
lies within the actuator saturation limits |alat,A| ≤ alat,Amax

The above objectives are to be satisfied for the entire
polytope Ω. To meet the above objectives, the MPC control
gain K has the following structure:

K(k) = Y (k)Q−1(k) (22)

where, Y and Q are obtained by solving the following LMIs
at each time step k :

min
Γ,Q,Y

Γ (23)

such that
[

1 z(k)
z(k) Q

]
≥ 0 (24)

Q QAT
i +Y T BT

i QQ̂1/2 Y T R̂1/2

AiQ+BiY Q 0 0
Q̂1/2Q 0 ΓI 0
R̂1/2Y 0 0 ΓI

≥ 0, i = 1,2

(25)
Q 0 QAT

i +Y T BT
i Q

0 Γµ ΓDT
i 0

AiQ+BiY ΓDi Q 0
Q 0 0 ΓI

≥ 0, i = 1,2 (26)

[
umax(k)Q− z(k)Y 0

0 z(k)Y −umin(k)Q

]
≥ 0 (27)

Note that the above equations (24)-(27) actually constitute
a system of 6 LMIs, since (25)-(26) need to be satisfied
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Fig. 8: Trajectory of the Agent and the obstacles

at every corner point of the polytope Ω. A formal proof
which demonstrates that obtaining a feasible solution to the
above LMIs is equivalent to satisfying the three objectives
mentioned above, can be found in [20].

From (24), it is seen that the MPC requires the true
value of the error z(k) in order to calculate ∆alat,A. Since
only a noisy value of z(k) is available, a Kalman Filter
is used to estimate z(k), and this is used in the LMIs.
Also, measurement noise has compounding effects on the
numerical derivative terms ψ̇ and θ̇b, which appear in the
dynamic inversion acceleration law (8). This can make it
difficult to find a feasible solution for the LMIs. There-
fore the numerical derivatives ψ̇ and θ̇b are also obtained
through Kalman Filters. The overall control architecture
used for collision avoidance thus combines computations
from dynamic inversion-based control, LMI-based control
and Kalman Filters. A block diagram of the overall two-loop
architecture is provided in Fig. 7.

V. SIMULATION RESULTS

Simulation Scenario I: An elliptical object A, initially at
the origin, navigates through an environment with a series of
fast-moving obstacles of varying quadric-shapes: an elliptical
obstacle B, a non-convex confocal quadric obstacle C and
finally a shape-changing confocal quadric obstacle D. The
state measurements have additive Gaussian noise as follows:

∆r(t) = 20%r(t)m(t),∆θ(t) = 3◦m(t),∆Vr(t) = 40%Vr(t)m(t),

∆Vθ (t) = 40%Vθ (t)m(t),∆ψ(t) = 1◦m(t),∆θb(t) = 1◦m(t)

where m(t) is a Gaussian random variable of zero mean
and standard deviation 1/3. In the first phase, obstacle B
starts from (45,0) with a heading angle of 120◦ as seen
in Fig. 8. A starts at the same time with an initial heading
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angle of 45◦. Fig. 8 provides a visualisation of the collision
cone (marked by red arrows). The initial heading of A lies
inside the collision cone, meaning A is on a collision course
with B. Fig. 11 shows the collision cone parameters - true,
noisy and estimated values of the collision cone function y,
as well as the true and noisy relative velocity components
Vr, Ṽr, Vθ and Ṽθ . It is seen that initially the true y and Vr are
both negative, indicating a collision course and furthermore,
the noise in the states is quite substantial which impacts the
acceleration obtained from the dynamic inversion algorithm.
However, the LMI-generated ∆aLat,A provides a continuous
additional acceleration that steers A away from collision.
After 2.33s, A comes out of the collision cone to B (See
Fig. 8), both true Vr and y are positive (See Fig. 11) and the
angle ψ starts to decrease (See Fig. 10). In the second phase,
A faces a confocal quadric C which starts from (−7,75) with
a heading angle of 0. From Fig 11, it is evident that A is on
a collision course with C, as y < 0, Vr < 0. Fig. 8 shows
that the heading angle of A lies inside the collision cone
to C. Again, accelerations from the dynamic inversion-based
controller and the LMI-based controller act in tandem to steer
the velocity vector of A out of the collision cone to C. Finally
in the third phase, A encounters a shape-changing confocal
quadric D, for which the angle ψ changes not only because
of A coming closer to D but also due to the changing shape
of D. However, the total commanded acceleration is able to
steer A out of the collision cone, by 4.35s. The simulation
ends when A reaches it’s goal at (80,100). The complete time
history of alat,A and the contribution of the heading angle
changes generated by the dynamic inversion-based and the
LMI-based commands are seen in Fig. 9. We note that the
time profiles of the noise shown in Fig 6 is for the above
simulation scenario.

The performance of the LMI-based controller is shown in
Fig 12, which depicts the time history of the upper bound
Γ on the LMI cost function in (21). It is seen that the LMI
plays an active role in ensuring collision avoidance, except
during the time intervals [2,2.3]s and [3.5,4]s during which
Γ is undefined. This is because the velocity vector of A has
been steered out of the collision cone to B by 2 sec, and
during [2,2.3]s, A is not on a collision course, due to which
the contribution from both the dynamic inversion and the
LMI based controllers are zero. During [3.5,4]s, the dynamic
inversion controller is fully saturated and thus the LMI-based
controller does not contribute a correction. The LMI-based
controller is also able to effectively reject the behaviour of
the additive noise v as can be seen from Fig 12(b). This
figure shows that the H∞ norm of the transfer function T v

s is
less than the bound µ except at the first two time instants.

To further verify the effectiveness of the two loop Robust
Controller, a Monte Carlo test is performed with 1000 cases
with the noise as given above and collision avoidance is
tested using the four controllers - Dynamic Inversion (DI),
DI with the Kalman Filter, the two loop Robust Dynamic
Inversion (RDI) Controller and Robust Dynamic Inversion
(RDI) with Kalman filter. The results are shown in Fig 13.
It can be seen that the RDI with Filter outperforms the other
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controllers with 952 successes.
Simulation Scenario II: In this scenario, A is a polygon

and B is a EDH. A has speed 25m/s with initial heading
angle 45◦ and B has speed 20m/s with a constant heading
angle of 145◦. The inner tangents and ψ for the following
engagement are computed using the steps described in the
General Quadric-Polygon part of subsection II-E. The noise
in the state measurements are kept the same as that described
in Scenario I. Fig 14 shows the trajectory of the agent and the
obstacle with and without the robust LMI controller. It can
be seen that without the LMI controller, the agent doesn’t
deviate much from it’s initial heading, as it is unable to
calculate the required latax to avoid the obstacle and hence
collision occurs. In the second plot it can be seen that with
the LMI controller, a compensatory latax is generated that
ensures collision avoidance.

VI. CONCLUSIONS

We present a two-loop feedback architecture that can
achieve collision avoidance between moving, heterogeneous
quadric surfaces (which are not necessarily the same shape),
in the presence of measurement noise. The inner loop is
designed using a dynamic inversion approach, while the outer
loop is designed using an LMI-based approach, where the
LMIs account for imperfections in the measurements. The
design of both these loops rely on the analytical foundations
provided by the collision cone approach. Simulations are
presented to demonstrate the efficacy of the avoidance laws.
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