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Abstract— In this note, we present a new solution to the
filtering problem for stochastic discrete-time nonlinear systems,
which we refer to as the Enhanced Quadratic Extended Kalman
Filter (eQEKF). Starting from the concept underlying the
existing formulation of the Quadratic Extended Kalman Filter
(QEKF), based on the definition of an augmented output
through Kronecker powers, we propose a different method that
enables us to overcome certain inevitable standard approxi-
mation issues, reducing the computational workload. Also, we
show the effectiveness of the proposed approach with respect to
the QEKF and with respect to the classical Extended Kalman
Filter, as highlighted by two numerical examples, in the case
of Gaussian and non-Gaussian noises.

I. INTRODUCTION
The relevance of optimal estimation in engineering appli-

cations is notorious nowadays [1]. The problem is usually
modeled as a nonlinear programming problem with the
goal of finding the minimum of a performance criterion
with dynamical constraints, i.e. an underlying dynamical
system. A typical case is when the system’s state to be
estimated/controlled is linear and some performance crite-
rion, or cost function, is a quadratic form with respect to
the state and control variables. In the stochastic case, i.e.
when the state and/or the output measurements are affected
by stochastic noise, the celebrated Linear Quadratic Gaussian
(LQG) Regulator solves the optimal control problem when
the noise sequences are jointly Gaussian [2]. A well-known
property of the LQG Regulator problem with partial state
information is that the optimal regulator, synthesized by the
LQ optimal technique, is generated from the optimal linear
estimate of the state, namely the Kalman Filter (KF). In
fact, for linear Gaussian systems, the KF is the optimal
recursive estimator in the minimum mean-square error sense.
On the other hand, for linear non-Gaussian systems, the
KF is the best affine estimator but it is yet possible to
develop estimators that are more accurate. Furthermore, in
the last decades increasing attention has been paid to non-
Gaussian systems in control engineering [3]–[8]. On the
other hand, when the system linearity hypothesis id dropped,
the estimation task becomes even more challenging. Indeed,
in the domain of nonlinear systems, numerous estimation
methods have been embraced to tackle the challenges posed
by the nonlinearity of dynamics and the inevitable presence
of non-Gaussian noises. The well-known Extended Kalman
Filter (EKF) is a direct extension of the KF, essentially
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involving the application of a KF to the corresponding
linearized nonlinear systems. Despite its widespread use
across various applications and successful outcomes, there
are no guarantees regarding the numerical stability of the
algorithm or bounds on the estimation error. Consequently,
the field remains highly active. In this regards, a significant
contribution has been given in [9] where the polynomial
version of the well-known EKF is presented making use
of the Carleman approximation for nonlinear systems. An
effective method to cope with both non-Gaussian systems
and nonlinearities of the system dynamics is through the use
of polynomial methods involving the Kronecker powers of
the systems. In [10], a quadratic filter, namely an estimator
of the state which use the second power of the measurement,
is applied to discrete-time linear system with additive non-
Gaussian noise. In [11], this method has been extended to
a generic polynomial estimate of order µ. Other interesting
extensions are the works [12], where the polynomial filtering
technique has been extended to system with multiplicative
state noise, whilst applications to the case with unknown
forth-order moments of the noises and to descriptor systems
have been studied in [13] and [14], respectively. Also, sys-
tems with switching measurements and quantization effects
have been studied in [15] and [16], respectively, whilst
applications to target tracking problem and economic models
have been given in [17], [18] and [19], respectively.

More recently, an important issue has been resolved in
the papers [20], [21] where the authors proposed a quadratic
filter for linear systems with non-Gaussian noise that im-
proves the performance over the Kalman filter also in the
case of non-asymptotically stable systems. Furthermore, the
prediction provided by quadratic or polynomial predictors
has been exploited in the optimal control problem in [22]
and [23]. Extensions to the time-varying case have been
provided in [24], systems with nonlinear measurements have
been studied in [23], whilst packet dropping networks have
been considered in [25] and [26].

In this paper, we concentrate on the framework of non-
linear discrete-time stochastic systems. Drawing inspiration
from the concept of the Quadratic Extended Kalman Filter
as introduced in [9], we present a novel filtering algorithm
that merges the QEKF and the EKF in a unique manner.
This integration yields an algorithm that shows to be more
efficient both in terms of computation, performance and
stability of both the QEKF and the EKF. The paper is
organized as follows: Section II introduces the problem,
while Section III covers some preliminaries on the Quadratic
Extended Kalman Filter proposed by [9]. Section IV presents
the rationale behind the new formulation and introduces
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the new filter named Enhanced Quadratic Extended Kalman
Filter (eQEKF). Two illustrative examples are provided to
highlight the performance of the proposed filter.

Notation If A ∈ Rn×n then A⊤ denotes its transpose
and |A| denotes its determinant. If v1, . . . , vn are column
vectors in Rn, then v = col(v1, . . . , vn) denotes the vector
v = [v⊤1 , . . . , v

⊤
n ]

⊤. Moreover, if v ∈ Rn, then we denote
with diag(v) ∈ Rn×n the diagonal matrix with entries the
components of v. The symbol † denotes the pseudo-inverse
of a matrix. If A is a squared matrix, then st(A) is the stack
(or vectorization) operation and st−1(·) its inverse operation.
If A and B are two matrices in Rn×n, then the Kronecker
product is A ⊗ B and A[i] is the i-th Kronecker power of
A. M is the commutation matrix for vectors in Rq , namely
if v, w ∈ Rq then v ⊗ w = M(w ⊗ v). We indicate with I
and 0 the identity matrix and the zero matrix, respectively,
of appropriate dimension. The euclidean norm in Rn×n is
denoted with ∥ · ∥. If f : Rn → Rn then ∇f(x)|x=x̄ is the
Jacobian of f evaluated in x̄, namely (∇f)ij(x) =

∂fi
∂xj

(x).
Finally, given a random variable (r.v.) X in the probability
space (Ω,F ,P), implicit in the rest of the paper, we denote
with E[X] its expectation. We denote with X ∼ N (µ, σ2)
a Gaussian r.v. X with mean µ and variance σ2. Given the
stochastic noise sequence {wk}, the second, third and fourth
moment of {wk} are denoted as ϕ

(j)
w = E[w(k)[j]], with

j = 2, 3, 4, while ϕ̃
(3)
w = E[wkw

[2]
k ].

II. PROBLEM STATEMENT

This paper investigates the filtering problem for nonlinear
affine discrete time systems in the following form:

x(k + 1) = f(x(k)) + v(k) (1)
y(k) = h(x(k)) + w(k), (2)

with initial condition x(0) = x0 ∈ Rn, where x(k) ∈ Rn is
the state vector and y(k) ∈ Rq is the measurement vector,
k ≥ 0 is the discrete time variable, f and h are vector fields,
f : Rn → Rn and h : Rn → Rq , differentiable up to some
order µ. The terms v(k) ∈ Rn and w(k) ∈ Rq represent the
zero-mean independent random noise sequences affecting the
state and output equations, respectively. We note that assum-
ing Gaussian distributions for the stochastic sequences v(k)
and w(k) is not necessary. However, statistical information
(and boundedness) up to the fourth order is required. For
instance, in the case of a Gaussian distribution, knowledge
of the first two moments (mean and covariance) is necessary.
Additionally, we remark that the complexity of the proposed
solution remains unaffected by the addition of a control input
to the system and/or time dependencies of the vector fields
f and h.

The primary motivation behind this paper draws inspira-
tion from the research presented in [9], where the authors in-
troduce the Polynomial Extended Kalman Filter (PEKF) for
nonlinear stochastic systems, namely a filter that estimates
the state of the system through a polynomial transformation
of the state and measurement equations of the system.
This result is achieved by using Kronecker algebra which

allows one to perform operations on matrix and vectors in a
easier and more fashionable way. In particular the Carleman
approximation is used to approximate the nonlinear system
as a truncated Taylor series. Then a KF is used to solve the
filtering problem for the polynomial-linearized system.

Our filter adopts concepts of both the EKF and PEKF.
We named this filter Enanched Quadratic Kalman Filter
(eQEKF), since we consider the polynomial version of order
two. We will show that eQEKF offers enhanced efficiency
with respect to its predecessor, benefiting both computational
efficiency and error performances.

III. PRELIMINARIES

This section is mostly devoted to the description of the
Polynomial Extended Kalman Filter (PEKF) introduced by
[9].

Before delving into the approach, let us first provide a
brief summary of the Extended Kalman Filter (EKF). This
will help elucidate the motivations behind our work. It is
worth noting that the EKF utilizes (1)–(2) as the prediction
equations for the state and output, respectively:

x̂(k + 1|k) = f(x̂(k)) (3)
ŷ(k + 1|k) = h(x̂(k + 1|k)). (4)

The estimation in the EKF follows similarly as in the
classical Kalman filter, where the gain is computed using
the linearized equations of the state and output, specifically,
Ak = ∇f(x)|x=x̂(k) and Ck = ∇h(x)|x=x̂(k|k−1).

The EKF provides an approximation of the best linear
estimation of the state x(k) given the output sequence y(k)
up to time k.

A. Polynomial Extended Kalman Filter (PEKF)

The fundamental concept behind the PEKF is to formulate
an estimate x̂ of the state x as a polynomial function of
the output measurements y. This differs from the linear
estimation employed by the Extended Kalman Filter (EKF).
In essence, the PEKF leverages a polynomial model to
capture the relationship between the state and the output.

To have a better grasp of theoretical foundation of the
approach, let (Ω,F , P ) be a probability space, and let G ⊂ F
and L2(G, n) be the Hilbert space of the n-dimensional
G−measurable random variables with finite second moment.
We write L2(X,n) for the Hilbert space of the n-dimensional
random variables with finite second moment, measurable
with respect to the sigma-algebra generated by X . Moreover
let Π(·|M) be the orthogonal projection onto a given Hilbert
space M . Given system (1)–(2) and the vector of the output
sequence as Yk = col(y(0), ..., y(k)), defining an auxiliary
vector Y ′

k = col(1, Yk), the minimum variance estimate of
x(k) is the orthogonal projection of x(k) onto the space
L2(Y ′

k, n):

x̂(k) = E[x(k) |Yk] = Π(x(k) | L2(Y ′
k, n)) (5)

It is well known that, in the jointly Gaussian linear case,
this projection is equivalent to the projection on Lk

y , the
subspace of the linear transformations of Y ′

k . Clearly Lk
y ⊂
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L2(Y ′
k, n). The Kalman filter is an algorithm that recursively

projects onto Lk
y , which proves to be optimal in the mini-

mum variance sense under the linear Gaussian assumption.
However, when one or both assumptions are not met, the
algorithm is limited to providing the best linear estimation
of x(k). Indeed better sub-optimal estimations can be sought
projecting on larger sub-spaces than Lk

y . For example, one
may consider the space of quadratic transformations of Yk,
denoted by Qk

y . Indeed, since Lk
y ⊂ Qk

y ⊂ L2(Y ′
k, n),

projecting the state onto Qk
y will return an error variance

of the estimation, smaller or equal than that of the one made
projecting on Lk

y . The generalization to a power of generic
polynomial degree being straightforward. The essence of
the Polynomial Kalman Filter lies in crafting an augmented
system to represent (1) and (2) and applying a Kalman filter
to it. To achieve this, let µ be a positive integer, and consider
the Kronecker powers of the state and the output

x[m](k + 1) = (f(x(k)) + v(k))
[m]

, (6)

y[m](k) = (h(x(k)) + w(k))
[m]

, (7)

with m = 1, . . . , µ. We can thus introduce the extended state
X(k), the collection of the Kronecker powers of the state up
to order µ, and the extended output Y (k), the collection of
the Kronecker powers of the output up to order µ:

X(k + 1) =


f(x(k)) + v(k)

(f(x(k)) + v(k))[2]

...
(f(x(k)) + v(k))[µ]

 , (8)

Y (k) =


h(x(k)) + w(k)

(h(x(k)) + w(k))[2]

...
(h(x(k)) + w(k))[µ]

 . (9)

Using the Carleman approximation, a Taylor series expansion
employing the Kronecker algebra, the extended vector can be
represented as an infinite series of Kronecker polynomials
[27], [28]. By the truncation of those polynomial series at
degree µ, we can obtain the desired linear augmented system:

Xµ(k + 1) = Ax⋆

Xµ(k) + Ux⋆

+ V x⋆

(k), (10)

Y µ(k) = Cx⋆

Xµ(k) + Γx⋆

+W x⋆

(k), (11)

where Xµ(k) = col(X1(k), . . . , Xµ(k)) and Y µ(k) =
col(Y1(k), . . . , Yµ(k)), whose components Xm(k) and
Ym(k) are the Carleman approximation of x[m](k) and
y[m](k), respectively, m = 1, ..., µ, up to the µ−th degree,
which are computed as

Xm(k + 1) =

µ∑
i=1

Ax⋆

m,iXi(k) + ux⋆

i + vx
⋆

i (k), (12)

Ym(k) =

µ∑
i=1

Cx⋆

m,iXi(k) + γx⋆

i + wx⋆

i (k), (13)

with Xm(0) = x[m](0) ∈ Rnm

, while the matrices Ax⋆

,
Ax⋆

m,i, Cx⋆

, Cx⋆

m,i and the vectors Ux⋆

, ux⋆

i , V x⋆

(k), vx
⋆

i (k),

Γx⋆

, γx⋆

i , W x⋆

(k), wx⋆

i (k) are defined in [9] (see Section II
and the Appendix). Notice that, all the matrices are evaluated
at x⋆, which is the evaluation point of the Carleman approx-
imation. We point out that the sequences Ux⋆

and Γx⋆

are
deterministic sequences, while V x⋆

(k) and W x⋆

(k) (bilinear
functions of the extended state Xµ(k)) are stochastic zero-
mean white sequences, uncorrelated with Xµ(k) (a direct
consequence of the fact that the original noise sequences
{v(k)} and {w(k)} are independent, white and uncorrelated
with the initial condition x(0)).

It is worth mentioning that (10)–(11) are approximations
of the original extended system (8)–(9). Employing a stan-
dard Kalman filter algorithm for time-varying linear systems
(10)-(11) yields a linear estimate of the state Xµ(k) from
Y (k), namely X̂(k). Since Y (k) contains the Kronecker
powers of the original output y(k) up to the order µ, by
definition, this linear estimation from Y (k) approximates
the best µ-th polynomial estimation from y(k). Or, in other
words, since the first n components of Xµ(k) approximate
x(k), the polynomial estimate of the original state x(k) is
simply obtained by taking the first n components of the
augmented state estimate X̂(k).

The application of the Kalman filter to (10)–(11) achieving
the µ-th polynomial estimation for (1)–(2), has the following
equations

X̂(k + 1|k) = A(k)X̂(k) + U(k) (14)

Pp(k + 1) = A(k)P (k)A⊤(k) + ΨV (k) (15)

K(k + 1) = Pp(k + 1)C⊤(k + 1)·
(C(k + 1)Pp(k + 1)C⊤(k + 1) + ΨW (k + 1))†,

(16)

Ŷ (k + 1|k) = C(k + 1)X̂(k + 1|k) + Γ(k + 1), (17)

X̂(k + 1) = X̂(k + 1|k)
+K(k + 1)(Y (k + 1)− Ŷ (k + 1|k)), (18)

P (k + 1) = (I −K(k + 1)C(k + 1))Pp(k + 1), (19)

x̂(k + 1) = [In, 0]X̂(k + 1), (20)

with X̂(0| − 1) = E[X(0)] and Pp(0) = Cov(X(0)),
where A(k) = Ax̂(k), C(k) = Cx̂(k|k−1), U(k) = U x̂(k),
Γ(k) = Γx̂(k|k−1), and ΨV (k) and ΨW (k) are the covariance
matrices of the extended noise V (k) = V x̂(k)(k) and
W (k) = W x̂(k|k−1)(k). Clearly, the Quadratic Extended
Kalman Filter (QEKF) is obtained when the degree is µ = 2.
From now on, for the purpose of comparison with the
current paper where we develop a quadratic version of the
polynomial filter, we will refer to the Polynomial Extended
Kalman Filter of [9] as the Quadratic Extended Kalman Filter
(QEKF), namely the polynomial version of order 2.

IV. ENHANCED QUADRATIC EXTENDED KALMAN
FILTER (EQEKF)

Our work originated from the insight that the estimation
step of the QEKF, represented by (14), could be approached
differently, aligning more closely with the EKF methodol-
ogy, while preserving the essence of the polynomial-like

2014



projection introduced by the QEKF. To better understand this
concept, let us further explore the approximations employed
by the QEKF approach in order to better underscore the
distinctions between the two approaches and provide a more
comprehensive explanation of our work.

In the nonlinear and/or non-Gaussian case, it is generally
not possible to evaluate the conditional expectation of the
state at time k+1 with respect to the output sequence up to
time k, namely E[x(k+1) |Yk]. To overcome this difficulty,
in the PEKF, the Carleman approximation is employed: the
above expectation can be approximated by

x̂(k + 1|k) = E[x(k + 1) |Yk]

= E[f(x(k)) |Yk] + E[v(k) |Yk]

≈ E

[
µ∑

i=0

∇[i] ⊗ f(x̄)

i!
(x(k)− x̄)[i] |Yk

]

= E

[
µ∑

i=0

Ai(x̄)x
[i](k) +B(x̄) |Yk

]
. (21)

where the independence hypothesis between state noise v(k)
and the output sequence Yk have been utilized. Equation (21)
is true for any x̄ ∈ Rn. Therefore, we can find Āx̄ and Ū x̄

and write

x̂(k + 1|k) ≈
µ∑

i=0

Ai(x̄)E
[
x[i](k) |Yk

]
+B(x̄)

≈ Āx̄X̂(k) + Ū x̄, (22)

where the last approximation sign in (22) is used because
X̂(k) resulting from the QEKF does not correspond to
E
[
col(x[i](k)) |Yk

]
, as the original system is also approxi-

mated in the output equation (meaning that while the filter
uses the measurement data Y (k) that comes from (9),
the prediction of the approximated output Y µ(k) use the
linearized dynamics (11), as show in (17)). We note that (22)
represents the first n components of equation (14). At this
point it appears clear why the estimations of the extended
state are needed, since the conditional expectation of all
the powers of x[i](k) are considered in the summation. By
considering not only x(k) but the extended state X(k), the
procedure can be repeated to obtain the filtering algorithm
in closed form presented in the previous section.

Up to this point, two approximations are evident: the
Carleman approximation up to order µ of the nonlinear
function f (and of h as well), and the approximation of
the conditional expected value in the second line of (22).
However, there is a further approximation. When the filter is
applied, the state equation matrices are evaluated in the state
estimation at the preceding time (while the output equation
matrices are evaluated in the state prediction at the actual
time), as in (14). Let us retrieve it from (21) with this new
substitution

x̂(k + 1|k) ≈ E

[
µ∑

i=0

Ai(x̂(k))x
[i](k) +B(x̂(k)) |Yk

]
.

(23)

The point we want to highlight here is that, unfor-
tunately, x̂(k) and x(k) are not independent. Indeed
E
[
Ai(x̂(k))x

[i](k) |Yk

]
̸= Ai(x̂(k))E

[
x[i](k) |Yk

]
and thus

a third approximation arises: E
[
Ai(x̂(k))x

[i](k) |Yk

]
≈

Ai(x̂(k))E
[
x[i](k) |Yk

]
. Once this additional step is com-

pleted, the derivation becomes quite fluid and straightfor-
ward, enabling the prediction and estimation of x and all its
powers up to order µ.

The eQEKF revolves around the idea that the filter pre-
diction step can be performed in line with the style of the
EKF, while retaining the idea of considering the powers of
the output for the estimation step, proper of the QEKF. The
prediction step of the eQEKF is thus achieved in the same
way as the EKF as follows

x̂(k + 1|k) = E[x(k + 1) |Yk] (24)
= E[f(x(k)) |Yk] + E[v(k) |Yk] (25)
≈ f(E[x(k) |Yk]) (26)
≈ f(x̂(k)) (27)

In (26), we employ an EKF-like approximation, specifically
E[f(x(k)) |Yk] ≈ f(E[x(k) |Yk]). Moving to (27), the ap-
proximation mirrors the one introduced in (22). This method-
ology can be readily extended to encompass any power
of a nonlinear function. More precisely, in the sequel, for
h(x(k))[i], we adopt E[h(x(k))[i] |Yk] ≈ h(E[x(k) |Yk])

[i]

for any i. It is essential to highlight that the prediction
equation in (24) deviates from the EKF formulation, indeed
it is performed on the polynomial extended output sequence,
instead of the simple output sequence. The comprehensive
exposition of the filter, coupled with the strategic choices
made to tailor a fully functional algorithm, will be elucidated
in the subsequent sections.

A. eQEKF algorithm

In this section, we delve into the details of the eQEKF
algorithm. The idea of the eQEKF is to use the original n
dimensional state equation jointly with a quadratic extended
output equation, to define the equivalent model on which
applying an EKF. This will allow us to achieve a polynomial-
like estimation of the state, reducing the memory requirement
with respect to the QEKF and allowing us to achieving better
performances.

Since the state estimation part of the algorithm is quite
similar to the one of the EKF, we will first address the output
equation definition and characterization. It is worth noticing
that we do not use the Carleman approximation to define the
extended output equation.

Indeed, expanding the output equation given in (9), using
(7), we obtain

Y (k) =

[
h(x(k)) + w(k)

h(x(k))[2] + ϕ
(2)
w + w(2)(k)

]
= H(x(k)) + Θ(k) +W (k), (28)
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where,

H(x(k)) =

[
h(x(k))
h(x(k))[2]

]
, Θ(k) =

[
0

ϕ
(2)
w

]
, (29)

W (k) =

[
w(k)

w(2)(k)

]
,

with w(2)(k) = (I +M)(h(x(k))⊗ w(k)) + w(k)[2] − ϕ
(2)
w

zero-mean, white noise. We note that the term Θ(k) is a
known deterministic vector, while the term W (k) is the noise
term of the extended output vector, white and uncorrelated
with the initial condition x(0).

The equivalent system on which apply the EKF has the
following form:

x(k + 1) = f(x(k)) + v(k), (30)
Y (k) = H(x(k)) + Θ(k) +W (k). (31)

and the filtering algorithm we propose takes the following
form

x̂(k + 1|k) = f(x̂(k)) (32)

Pp(k + 1) = A(k)P (k)A⊤(k) + Ψv (33)

K(k + 1) = Pp(k + 1)C⊤(k + 1)·
(C(k + 1)Pp(k + 1)C⊤(k + 1) + ΨW (k + 1))†,

(34)

Ŷ (k + 1|k) = H(x̂(k + 1|k)) + Θ(k + 1), (35)
x̂(k + 1) = x̂(k + 1|k)

+K(k + 1)(Y (k + 1)− Ŷ (k + 1|k)), (36)
P (k + 1) = (I −K(k + 1)C(k + 1))Pp(k + 1), (37)

where A(k) = ∇f(x)|x=x̂(k) ∈ Rn×n and C(k) =

∇H(x)|x=x̂(k|k−1) ∈ R(q+q2)×n.
Even though, at first glance, the equations may seem quite

similar to those of the QEKF, they are not. First, in this part
of the algorithm, there is no Carleman approximation. In
fact, A(k) and C(k) are evaluated in the standard manner
of the EKF. This leads to the consequence that (32) and
(36) are n dimensional equations, and eqs. (33) and (37)
are n×n dimensional. This is a significant implication with
respect to the QEKF, since in the QEKF the same quantities
have dimention n+n2 and (n+n2)×(n+n2), respectively.
On the other hand, the eQEKF still mimics the projection
of the state onto the space of polynomial transformation of
the output, showing promising performances as shown in
the next section.

The last point to deal with is the characterization of
the noise covariance matrices of the new extended system:
(30)– (31). Even if Ψv is simply the covariance matrix of
v(k), the definition of Ψw(k) is more trickier. Indeed, to
compute covariance matrix of the extended output noise term
W (k), one have to deal with the approximation of the terms
E[H(x(k))] and E[H(x(k))H(x(k))⊤]. We choose to use
the Carleman expansion for the term H(x(k)). In particular,

given ν ∈ N an x̄ ∈ Rn, one can find G ∈ Rn×ν̄ and
Γ ∈ Rn, with ν̄ = n+ · · ·+ nν , such that1

H(x(k)) =

ν∑
i=0

∇[i] ⊗H(x̄)[i]

i!
(x(k)− x̄)[i],

= GXν(k) + Γ, (40)

where Xν(k) = col(x(k), x(k)[2], . . . , x(k)[ν]). Detailed
expressions of G and Γ can be found in [9]. We notice that
the order of the approximation ν can be taken arbitrarily
large.

Proposition 1: The random sequence W (k) defined in
(28) is zero-mean with covariance matrix ΨW (k) given by

ΨW (k) =

[
Ψ11

W Ψ12
W (k)

Ψ12
W

⊤
(k) Ψ22

W (k)

]
, (41)

with

Ψ11
W = st−1(ϕ(2)

w ), (42)

Ψ12
W (k) =

(
(GZk + Γ)⊗ st−1(ϕ(2)

w )
)
(I +M)⊤ + ϕ̃(3)

w ,

(43)

Ψ22
W (k) = (I +M)

(
(GΨXν

k G⊤ +GZkΓ
⊤ + ΓZ⊤

k G⊤

(44)

+ ΓΓ⊤)⊗ st−1(ϕ(2)
w )

)
(I +M)⊤+ (45)

+ (I +M)
(
(GZk + Γ)⊗ ϕ̃(3)

w

)
(46)

+
(
(GZk + Γ)⊗ ϕ̃(3)

w

)⊤
(I +M)⊤ (47)

+ st−1(ϕ(4)
w )− ϕ(2)

w ϕ(2)
w

⊤
, (48)

where Zk = E[Xν(k)] and ΨXν

k = E[Xν(k)Xν(k)
⊤
].

The proof is achieved by using standard manipulation and
properties of Kronecker algebra.

We note that Zk and ΨXν

k can be easily computed through
the recursive equations given in eqs. (42) and (43) of [9].
Here lies a delicate aspect of our approach. We still use the
Carleman approximation, but only to evaluate the expected
value of h(x(k)) and h(x(k))h(x(k))⊤ which arise in the
computation of ΨW .

V. ILLUSTRATIVE EXAMPLES

In this section, the performance of the proposed eQEKF
are compared with the EKF and QEKF of [9] in two
illustrative examples where we perform N = 104 Monte
Carlo runs with a time horizon for each simulation T = 500.
Every filter is implemented using the pseudoinverse in the
calculation of the Kalman gain, to better achieve a fair
comparison between the methods. The first example involves
the Chialvo oscillator subjected to Gaussian noise, while the
second example considers the Kazufumi model driven by

1The operator ∇[i]⊗ applied to a function ψ : Rn → Rn is defined as

∇[0] ⊗ ψ = ψ (38)

∇[i+1] ⊗ ψ = ∇⊗∇[i] ⊗ ψ, i ≥ 1 (39)

with ∇ = [∂/∂x1, . . . , ∂/∂xn].
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Example MSEEKF MSEQEKF MSEeQEKF
Chialvo 55.81 ∞ 40.65

92% 1% 97%
Kazufumi 5.36× 10−2 5.13× 10−2 4.72× 10−2

100% 100% 100%

TABLE I
MSE OVER THE MONTE CARLO RUNS OF THE EKF, QEKF AND THE

PROPOSED EQEKF TOGETHER WITH THE PERCENTAGES OF STABLE

TRAJECTORIES OF ESTIMATION ERROR.

discrete non-Gaussian sequences. The Mean Squared Error
(MSE) computed over the N Monte Carlo runs is given by

MSE =
1

N

1

T

N∑
s=1

T∑
k=1

∥∥x(s)(k)− x̂(s)(k)
∥∥2, (49)

where x(s)(k) and x̂(s)(k) are the state and its estimate at
time k of the s-th realization respectively2.

Chialvo oscillator: the model proposed by Chialvo [29]
describes excitable biological systems, including neuronal
dynamics,

x1(k + 1) = x2
1(k)e

(x2(k)−x1(k)) + d+ v1(k),

x2(k + 1) = ax2(k)− bx1(k)x2(k) + c+ v2(k),

y1(k) = x1x
2
2(k) + w1(k)

y2(k) = atan(x(k)) + w2(k)

With the choice a = 0.8, b = 0.2, c = 0.28, d = 0.105
one can ensure periodic solutions. We chose this example
because it is a challenging system to estimate, since it
has a rich dynamics, which may vary from oscillatory to
chaotic behavior, also showing non-trivial responses to small
stochastic fluctuations. Even if in the non-Gaussian case
the performance were even more promising, we decided
to enhance the nonlinearity of the problem with a strongly
nonlinear output and consider the Gaussian noise case. For
this example, we assume the noise sequences v1, v2, w1 and
w2 to be Gaussian, each with zero mean and variances set
to 10−1. The initial condition x(0) is specified as Gaussian
with mean col(0.3, 1.3) and a variance of 1. It is noteworthy
that in this example, the QEKF exhibits divergent behavior,
rendering it incapable of estimating the system state. In
contrast, both the EKF and the proposed eQEKF demonstrate
stability under the same conditions. The obtained MSEs
together with the percentage of stable trajectories of the
estimation error are given in table I. We can see that the
improvement in performance of the proposed eQEKF with
respect to the EKF is about 27%, while the previous QEKF
is not applicable. This substantial improvement underscores
the efficacy of the proposed eQEKF algorithm in achieving
more accurate state estimation, emphasizing its potential
as a superior alternative in practical estimation tasks. For
illustration purposes, Fig. 1 shows a sample of a trajectory
of the state and of the state estimate of the EKF, eQEKF

2The realizations leading to the divergence of estimation errors were not
taken into account in computing the MSE. We have detailed the percentage
of stable trajectories of the estimation error in Table I.

in a typical simulation of a realization of noise and initial
condition.

The Kazufumi model: the second example is the one
considered in [9] described by the equations

x1(k + 1) = 0.8x1(k) + x1(k)x2(k) + 0.1 + v1(k),

x2(k + 1) = 1.5x2(k)− x1(k)x2(k) + 0.1 + v2(k),

y(k) = x2(k) + w(k).

As a comparison, here we have a nonlinear model with the
partial knowledge of the system (y(k) = x2(k) +w(k)) and
with non-Gaussian noises.

We assume the noise sequences v1, v2 and w to be zero-
mean discrete non-Gaussian sequences such that P(vi =
10−2) = 0.8 and P(vi = −4 · 10−2) = 0.2 for i = 1, 2,
and P(w = 10−1) = 0.8 and P(w = −4 · 10−1) = 0.2. The
initial condition x(0) is specified as Gaussian with mean
col(0.8, 0.4) and a variance of 10−2. In this case, all the
filters, EKF, QEKF and the proposed eQEKF, demonstrate
stability in all the realizations. The obtained MSEs are given
in table I. It is evident that the proposed eQEKF enhances
performance compared to both EKF and QEKF (12% and
8%, respectively). For illustration purposes, Fig. 2 shows a
sample of a trajectory of the state and of the state estimate
of the EKF, QEKF and eQEKF in a typical simulation of a
realization of noise and initial condition.

To conclude, the simulations show that the QEKF estimate
is often improved by the eQEKF which is also computation-
ally cheaper, while EKF is still a good compromise since
it provides relatively good estimates in spite of its minimal
complexity compared to the quadratic filters.

Fig. 1. Chialvo model: comparison between the filtered state of EKF (blue
line), eQEKF (yellow line), and the true state of the plant system (purple
line with circles), in a randomly sampled trajectory: state variable 1 (top
panel) and state variable 2 (bottom panel).

VI. CONCLUSIONS

In this note, we have introduced the Enhanced Quadratic
Extended Kalman Filter (eQEKF) as an alternative solution
to the filtering problem for stochastic discrete-time nonlinear
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Fig. 2. Kazufumi model: comparison between the filtered state of EKF
(blue line), QEKF (red line), eQEKF (yellow line), and the true state of the
plant system (purple line with circles), in a randomly sampled trajectory:
state variable 1 (top panel) and state variable 2 (bottom panel).

systems. Building upon the framework of [9], we proposed a
new filter that deal with some inevitable approximation issues
in a new way, reducing the computational workload while
improving performance. Through two numerical examples,
we have demonstrated the efficacy of the eQEKF in both
cases of Gaussian and non-Gaussian noise, even with respect
to the renowned EKF. The approach needs further investi-
gations, from the extension of the algorithm to a generic
polynomial order degree, to the study of the approximation
of the expected value and the covariance of the state with
alternatives methods.
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