
On Integrated Optimal Task and Motion Planning for a Tractor-Trailer
Rearrangement Problem

Anja Hellander, Kristoffer Bergman and Daniel Axehill

Abstract— In this work, a combined task and motion planner
for a tractor and a set of trailers is proposed and it is shown that
it is resolution complete and resolution optimal. The proposed
planner consists of a task planner and a motion planner that
are both based on heuristically guided graph-search. As a step
towards tighter integration of task and motion planning, we use
the same heuristic that is used by the motion planner in the task
planner as well. We further propose to use the motion planner
heuristic to give an initial underestimate of the motion costs that
are used as costs during the task planning search, and increase
this estimate gradually by using the motion planner to verify
the cost and feasibility of actions along paths of interest. To
limit the time spent in the motion planner, the use of time and
cost limits to pause or prematurely abort the motion planner
is proposed, which does not affect the resolution completeness
or resolution optimality. The planner is evaluated on numerical
examples and the results show that the proposed planner can
significantly reduce the execution time compared to a baseline
resolution optimal task and motion planner.

I. INTRODUCTION

There are many planning problems which require both
high-level planning (task planning) in the form of deciding
which sequence of actions to take in order to reach some
goal, as well as low-level planning in the form of motion
planning in order to determine how to execute the actions.
For some problems it is possible to take a hierarchical
approach, first performing task planning and then performing
motion planning for each action in the plan. However, since
the task planning does not consider geometrical, kinematical
or dynamical constraints there is no guarantee that a feasible
motion plan exists for the found task plan or that optimizing a
motion plan for a given task plan leads to an optimal solution
to the joint task and motion planning problem [19]. For this
reason it is often desirable to perform joint task and motion
planning.

A. Task and motion planning

Recent years have seen a lot of interest in integrated task
and motion planning (TAMP). A survey of existing literature
can be found in [6]. Most of the early work focused on
finding a feasible but not necessarily optimal solution, which
is a difficult problem in itself. One example is the so-called
semantic attachments [4], where the task planner makes calls
to external procedures such as a motion planner in order
to evaluate the feasibility of an action. Another common

This work was partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems and Software Program (WASP), funded by
Knut and Alice Wallenberg Foundation.

A. Hellander and D. Axehill are with the Division of Auto-
matic Control, Linköping University, Sweden {anja.hellander,
daniel.axehill}.@liu.se

K. Bergman is with RISE Research Institutes of Sweden,
kristoffer.bergman@ri.se

approach is to first find a task plan using symbolic references
to continuous variables corresponding to the continuous
states of the platform in the world, and later attempt to find
values for those symbolic references that result in a feasible
task and motion plan [18].

A type of problem that has been commonly studied is
problems in which a manipulator manipulates or rearranges
moveable objects [21], [7], [11]. In this work we consider
an example of one such problem, where the manipulator is a
car-like tractor (truck) and the moveable objects are trailers
that can be connected to the tractor.

Recently, there has been an increased interest in finding
solutions to TAMP problems that are not only feasible but
also optimal. One such early work was [22] where the prob-
lem is formulated as a multi-level optimization problem. An
asymptotically optimal sampling-based approach is proposed
in [19]. In [8] optimization over the values for symbolic
references are performed, but there is no joint optimization
of task and motion. [20] considers a more general form
of TAMP where the objective is not expressed in terms of
reaching a set of goal states but in terms of maximizing the
value of a function, e.g., maximizing the height of a tower
being built.

B. Contributions
We propose a method for integrated task and motion

planning for a vehicle application involving a tractor and a
set of trailers, which is shown to be resolution complete and
resolution optimal. The combined task and motion planner
consists of a task planner and a motion planner that are
both graph-search based and guided by admissible, consistent
heuristics. In this work we take steps towards integrating
the task and motion planners more tightly, e.g., by basing
the heuristic used by the task planner on the heuristic used
by the motion planner. To improve efficiency and limit the
time spent in the motion planner we propose to initially use
underestimates of the true costs, computed by the motion
planner heuristic, as the costs used in the task planning search
and gradually use the motion planner to compute better
estimates for paths of particular interest. We also introduce
upper bounds on the cost-to-come during the search in order
to be able to safely prematurely abort the motion planner,
similar to what is known from mixed-integer programming
and branch-and-bound [5].

II. GRAPH-SEARCH METHODS PRELIMINARIES

In practice, most methods for task planning as well
as motion planning are based on graph-search. The most
commonly used method for finding optimal cost paths on a
graph is A* [10]. The A* algorithm incrementally builds and

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6110

maintains a tree of nodes starting from the initial node until
it reaches a goal node. In each iteration, a new node n in
the tree is chosen for expansion from the so-called open list
of nodes, and its successors, i.e., nodes v such that an edge
(n, v) exists, are generated and added to the tree. Nodes in
the open list are sorted based on the function

f(n) = g(n) + h(n)

where g(n) is the cost-to-come of node n, i.e., the lowest cost
of a path from the initial node to n, and h(n) is a heuristic
function that estimates the cost-to-go, i.e., the lowest cost of
a path from n to the goal node. A heuristic is said to be
admissible if for all nodes n

h(n) ≤ h∗(n)

where h∗(n) is the true cost-to-go. It is said to be consistent
if for all nodes n and all successors m of n the inequality

h(n) ≤ h(m) + c(n,m)

holds, where c(n,m) denotes the cost of the edge (n,m).
It is well-known that if the heuristic is admissible, the
solution returned by A* is optimal, and if it is consistent
then the f-values of the nodes chosen for expansion by A*
are monotonically non-decreasing [10].

One extension of A* is Lifelong Planning A* (LPA*)
[13] which is designed to efficiently repeatedly solve graph-
search problems with the same initial and goal nodes but
with varying edge costs. In addition to g(n), each node
maintains an additional estimate rhs(n) of the cost-to-come.
By comparing g(n) and rhs(n), nodes where the cost-to-
come may have changed can be identified. In LPA*, the open
list consists of those nodes where g(n) ̸= rhs(n), and the
nodes in the open list are sorted by a two-dimensional key
k(n) = [min (g(n), rhs(n)) + h(n);min (g(n), rhs(n))].
Sorting is done lexicographically, i.e., [k1, k2] < [k′1, k

′
2]

if k1 < k′1 or if k1 = k′1 and k2 < k′2. Like A*, if a
consistent and admissible heuristic is used, LPA* finds the
optimal path given the current edge costs, and the key values
of the nodes chosen for expansion are monotonically non-
decreasing during each re-planning loop [14].

One application for A* is motion planning, where it can be
used in lattice-based motion planners [17]. In a lattice-based
motion planner, the continuous search space is discretized
and the resulting discretized states are connected using pre-
computed so-called motion primitives. The motion primitives
can be computed by, e.g., using numerical optimization as
in [17]. A* search is then performed on the resulting graph
where the nodes correspond to the discretized states and the
edges correspond to the motion primitives.

Another application of graph search is task planning. In
classical task planning [9], the state space is discrete and
a state is typically represented as a set of propositions that
hold. The state can be changed by executing actions. Actions
are defined by the parameters they take, their preconditions
(propositions that must hold in order to execute the action)
and their effect (how the state changes when the action is
executed). This can be modelled as a graph where the nodes
correspond to the discrete states and the edges correspond to
actions. A* can then be applied to this graph in order to find

a sequence of actions that transforms a given initial state to
a given goal state, or more commonly to a state belonging
to a set of goal states.

III. PROBLEM FORMULATION

We consider a problem in which a car-like tractor (truck)
moves in a world containing static obstacles as well as
movable obstacles in the form of trailers which can be
connected to the tractor one at a time, thus forming a 2-
trailer system [1]. Models for the car-like tractor as well
as the tractor-trailer can be found in [3]. The task of the
tractor is to move some or all of the trailers to some user-
specified locations. While the application used in this work
is that of a tractor moving trailers, the approach can be
applied to other problems in which a manipulator rearranges
moveable objects, provided that a motion planner with the
same properties as in Section IV-B is used.

An important aspect, that we would like to stress in this
work, is that as little explicit information as possible about
the geometric state of the world should be encoded into the
task planning problem. Instead, the motion planner should
be used to obtain such information. This is motivated by
that in advanced problems this would potentially require a
significant effort of manually modelling as well as computing
the information. In this spirit, the task planner has no explicit
information about geometry in the form of, e.g., predicates
indicating whether a trailer is blocked by another trailer.
The task state only includes symbolic information about
the location of the truck and all trailers, information about
which trailer (if any) the trailer is connected to, and for each
location if there is currently a trailer there or not. All other
information must be discovered during the planning. For
each symbolic location the corresponding continuous state
(coordinates) for both the trailer and the tractor are stored
by the task planner. We will refer to this continuous state as
the motion planning state.

The objective is to find a joint task and motion plan,
consisting of a sequence of actions that will take the system
from a given initial task state to a given goal state (or set of
goal states) together with associated motion plans detailing
the motions corresponding to the move actions such that the
total cost of the actions in the plan is minimized. Denoting
the space of possible task states as S, the space of possible
actions as A, the space of plans Π = {< a0, a1, · · · >}, the
initial state as sinit and the set of goal states as Sgoal this
can be formulated as

min
π∈Π

|π|∑
i=0

c(si, ai)

s.t. s0 = sinit

si+1 = γ(si, ai) i = 0, . . . , |π|
s|π| ∈ Sgoal

π =< a0, a1, . . . , a|π| >

(1)

where c(si, ai) denotes the cost of applying action ai in state
si, γ(s, a) is the resulting state when a is applied in state s
and π denotes an action sequence.

We have currently only considered three different actions
in the task planner: connect a trailer to a tractor, disconnect

6111

a trailer from a tractor and move the tractor (possibly with
a trailer connected) from one location to another, but our
approach can easily be applied where other actions exist as
well. For connect and disconnect actions a, the cost at state
s is

c(s, a) =

{
C if a is applicable in s

∞ if a is not applicable in s
(2)

for some constant C > 0.
For a move action a and task state s we have

c(s, a) = min
x(·),u(·),Σf ,q(·)

J =

∫ Σf

0

l(x(σ), u(σ), q(σ))dσ

s.t. x(0) = xinit = x(s)

x(Σf) = xterm = x(γ(s, a))

x′(σ) = fq(σ)(x(σ), u(σ))

x(σ) ∈ Xfree(s)

q(σ) ∈ Q, u(σ) ∈ U
(3)

where σ > 0 is defined as the distance travelled by the
system, Σf is the total path length, x ∈ X is the state vector,
u ∈ U is the control input and q ∈ Q is a discrete input signal
which selects the current mode of the system such as, e.g.,
driving forward or in reverse, and if a trailer is connected or
not. The obstacle-free part of the state space is denoted Xfree

and depends on s. The continuous state, or motion planning
state, of the vehicle when in task state s is denoted x(s) and
will be the initial state of (3). The running cost used to define
the performance measure J is l(x, u, q), where l(x, u, q) > 0
to ensure c(s, a) > 0.

Solving (3) to global optimality is difficult due to the
aspect of choosing the system mode q, and the non-convex
constraints introduced by the obstacles and the nonlinear
system model [3]. Solving (1) to global optimality is even
more difficult as it involves solving (3) to global optimality as
well as finding an action sequence and choosing continuous
coordinates that correspond to the symbolic positions used
by the task planner.

IV. COMBINED TASK AND MOTION PLANNER

As solving the combined task and motion planning prob-
lem to global optimality is a difficult problem we make
simplifications to the problem that allows us to solve the
resulting simpler optimization problem. This section first
describes the simplifications applied to the problem before
describing the proposed task and motion planner.

A. Discretization of the problem

We assume that the geometric coordinates for the initial
and (when applicable) goal positions of the tractor and
trailers are known and given. In order to solve the problem
it is likely that additional positions to, e.g., temporarily
place a trailer at, will be needed. We will assume that
such positions are already given as part of the problem. If
not, we propose to use an additional function that adds a
number of additional positions to the task-planning problem
and samples their corresponding geometric coordinates. In
that case, the algorithm can be extended by resampling and

increasing the number of positions of the planning fails. This
has however not currently been implemented as the main
focus of this work is to achieve resolution optimality.

The continuous state space corresponding to the physical
states of the platform is discretized as well, which is a com-
mon approach in motion planning [15]. All state variables are
discretized to finite sets of possible values in order to create
a state lattice that can be used by a lattice-based motion
planner.

B. The motion planner

A motion planning algorithm is used to solve (3) to
resolution optimality. Two separate instances of a lattice-
based motion planner are used; one with motion primitives
for the combined tractor-trailer vehicle and one with motion
primitives for only the tractor. The motion primitives are
kinematically feasible and are computed by numerically solv-
ing the optimal control problem (3) for a pre-defined set of
initial and start states. Each motion planner uses as heuristic
a heuristic lookup table (HLUT) [12]. The HLUT stores the
optimal cost for a number of pre-computed problems, where
the optimal solution from the original to all other states
on the state lattice within a certain radius is computed, in
an obstacle-free and unlimited environment. The heuristics
are consistent and admissible, hence, A* is guaranteed to
find a resolution optimal solution to (3) (if such a solution
exists). With resolution optimal it is meant that the solution
is optimal given the discretization of the search space and
the choice of motion primitives.

C. Task planner

The task planner attempts to find a plan in the form
of a sequence of actions that solve (1). To do so, it uses
the motion planner to solve (3) in order to compute the
costs of move-related actions while the costs of actions for
(dis)connecting a trailer are already known.

If c(s, a) are known for all states s and all actions a, it is
possible to treat the problem as a pure task-planning problem
and apply standard task-planning methods. However, the cost
for moving between two motion-planning states depends
on the task-planning state, as the placement of trailers not
involved in the motion will affect the optimal motion since
they will be considered obstacles. Computing these costs in
advance would therefore often be intractable due to the high
number of combinations of possible states and actions.

It is generally computationally expensive to make calls to
the motion planner, and in particular many calls. For this
reason, it will still be too expensive even if the motion
planner is invoked only for those states that are explored
during the actual search. To decrease the number of calls
to the motion planner, we initially use a computationally
inexpensive underestimate of the cost for each move action
which is computed by the heuristic function of the motion
planner, and improve on this estimate by calling the motion
planner only when necessary. This means that the estimated
cost of moving between two states may increase monotoni-
cally during planning, and even become infinite if it is later
discovered that there is no feasible motion plan between two
states.

6112

1) LPA* and the ComputeShortestPlan procedure: Due
to the fact that costs are initially estimated and may change
during planning as improved estimates of the true costs are
computed, the task planner is based on LPA* with some
minor changes. Pseudocode for the task and motion planner
is shown in Algorithm 1 and Algorithm 2. The algorithm
relies on the existence of a priority queue V which sorts
nodes n, representing task states, based on their priority k(n)
as defined in Section II. V .Top() returns the node with the
smallest priority, V .TopKey() returns the smallest priority of
any node in the queue, V .Insert(n, k) inserts node n with
priority k into the queue, V .Remove(n) removes node n from
the queue and V .Update(n, k) changes the priority of node n
to k in the queue. Further, pred(n) indicates the predecessors
of node n and succ(n) the successors of n.

The pseudocode in Algorithm 1 contains the procedures
that are unchanged, or almost unchanged, from the optimized
version of LPA* [14]. The only addition is the variables
ub(n) and pub(n) (lines 7-8) that will be explained later
in Section IV-C.2. For simplicity, all nodes n in the set of
possible nodes N are initialized here in the formal algorithm
and pred(n) and succ(n) are used in the same way as
in LPA*. In the implementation, nodes are only initialized
when they are needed since any node that has not been
initialized will have the key [∞,∞]. The first time succ(n)
is called for a node n, the successors are computed by
iterating over all a that are applicable in s(n) and finding the
nodes that correspond to γ(s(n), a). A simple collision check
on the motion-planning state corresponding to γ(s(n), a) is
performed, and if it fails the successor is ignored.

Computing pred(n) would be difficult, so it is stored
as a list by each node n. Whenever succ(n) is computed,
each node v ∈ succ(n) adds n to its list of predecessors
pred(v). The list pred(v) may therefore not include all
possible predecessors, but it will include all predecessors that
have a finite key value. The cost of moving from node n to
node v is denoted c(n, v) and is identical to c(sn, sv) where
sn and sv are the task-planning states corresponding to n
and v respectively. The variable exactCost(n, v) denotes
if c(n, v) is exact or an estimate. Another implementation
difference is that ngoal does not refer to a single goal node
(as in LPA*) as there may be more than one possible goal
state for the task-planning problem. Instead ngoal is a special
node that represents the whole set of goal states.

2) The main loop: Algorithm 2 shows how the LPA*
procedures are used in the task and motion planner. In
the main loop, lines 1-10, ComputeShortestPlan is called to
compute the best plan given the current action-cost estimates.
This plan is not necessarily a feasible plan since all actions
might not correspond to feasible motion plans, and the cost
of the plan, g(ngoal), is an underestimate that may not be the
true cost. Thus, the feasibility of the plan and the values of
the cost estimates need to be verified. The introduced variable
ub(n) represents an upper bound on the true cost-to-come of
the state n, and pub(n) represents the predecessor of the node
for which the upper bound is attained. Note that as the node
ngoal represents the set of all goal states, ub(ngoal) gives an
upper bound on the cost of any solution to the problem.

If g(ngoal) = ub(ngoal) the search can terminate (line
6 in Algorithm 2). If ub(ngoal) < ∞, the found plan is

feasible (since it has a finite upper bound) and no other plan
can have a lower cost since ComputeShortestPlan returns
the plan with the lowest cost. The resulting path can then be
extracted by starting at ngoal and for each node n move
to pub(n). Note that exactCost(pub(n), n) is guaranteed
to hold, as otherwise pub will not have been set, but that
exactCost(p(n), n) is not and therefore pub(n) should be
chosen rather than p(n). If instead g(ngoal) < ub(ngoal),
the VerifyPlan procedure is called to verify that the plan is
feasible and compute the exact cost of the plan.

The VerifyPlan procedure first extracts the plan by calling
a function ExtractPlan, which finds all nodes in the plan
by starting at ngoal and moving from the current node n
to p(n) until the start node is reached. The resulting path
is then reversed to obtain the actual plan. Starting from the
beginning of the plan, for all nodes n where g(n) < ub(n)
and the exact cost is not known the motion planner is called
to compute the cost of moving from p(n) to n (line 19).
The motion planner will return both the cost as well as a
value that represents if the cost is exact or only an estimate,
where the latter is stored as exactCost(p(n), n). If there is
no feasible path, the cost is infinite. If the resulting cost is
higher than the previously known cost the same update as
in LPA* is performed (lines 20-25). If there is a feasible
path, the upper bound of the node is updated by calling the
procedure UpdateUpperBound (line 28). Whenever a node
achieves a lower upper bound than before, any successors
for which the exact cost is known also update their upper
bounds.

After the VerifyPlan procedure has terminated, the main
loop repeats. If no costs were changed, ComputeShortestPlan
will return the same plan again.

3) Pausing and aborting the motion planner: Determining
infeasibility is often a time consuming process for the motion
planner. To avoid spending too much time on a single
motion-planning problem, we propose two different improve-
ments: pausing the motion planner if a certain time limit has
been reached, and prematurely aborting the motion planner if
the cost exceeds a maximum cost which is computed based
on the upper bounds.

We introduce the variable timeLimit(n, v) which denotes
the maximum time the motion planner may spend to attempt
to find a motion plan from the state corresponding to n to
the state corresponding to v. If that limit is reached, the
motion planner will return the f-value of the last node it
expanded and the search is paused. Since the motion planner
uses a consistent and admissible heuristic, the f-values of
the nodes it expands are monotonically non-decreasing and
an underestimate of the optimal cost. If the motion planner
fails to either find a solution or determine that the problem is
infeasible, the time limit for that problem is increased for the
next time the motion planner attempts that particular problem
(line 31). If the internal state of the motion planner is stored,
the search can resume, i.e., warm-start, from where it was
paused.

Additionally, the second time the motion planner attempts
the same problem, we propose to search backward instead
of forward. The rationale behind this is that if a problem is
infeasible due to obstacles near the goal it can take a lot of
time to discover this when searching from the initial state, but

6113

it may be discovered quickly when searching from the goal
state. To keep the pseudocode simple the backward search
has been omitted from Algorithm 2.

The upper bounds on the cost-to-come are also used to
limit the time spent in the motion planner. The motion plan-
ner when called from Algorithm 2 approaches the optimal
objective function value from below, similar to a dual numer-
ical optimization method. Furthermore, the upper bound is a
true upper bound on the optimal objective function value.
Hence, performance-increasing ideas known from mixed-
integer optimization can be employed, where the solver for
the subproblems (here motion planner) can be prematurely
aborted as soon as it reaches a known upper bound without
losing optimality guarantees [5].

The function MaxCost(n, v), presented in Algorithm 3,
returns a maximum value for the cost c(n, v) in order for the
edge (n, v) to be part of an optimal plan. If c(n, v) is higher
than m1 computed on line 2 then any plan that contains
the edge (n, v) will result in a cost higher than the global
upper bound. If c(n, v) is higher than m2 computed on line 3
then there is another path to v that has a lower cost-to-come.
Hence, if the motion planner attempts to compute c(n, v) and
extracts a node from its queue with an f-value higher than
MaxCost(n, v) the search can be aborted and this f-value
returned as the new cost.

4) Heuristic: The heuristic for the task planner utilizes the
same heuristic that is used within the tractor-trailer motion
planner. It only considers the cost of the move actions
required to move the trailers. For any trailer that is not
currently at its goal location, the heuristic for the tractor-
trailer motion planner is used to compute an underestimate
of the cost of moving it to its goal, i.e., its cost-to-go. The
heuristic function used by the task planner is the sum of all
such cost-to-go estimates. Let hmp(x, y) denote the heuristic
cost of moving the tractor-trailer from the motion-planning
state x to the motion-planning state y, and let xi(n) denote
the motion-planning state of trailer i in the task-planning
state corresponding to node n, assuming that the truck is
connected to it. Let T be the set of trailers for which there
is a specified location in the task-planning goal. The heuristic
is then

h(n) =
∑
t∈T

hmp(xt(n), xt(ngoal)). (4)

As will be shown later in Section V, the heuristic in (4) is
admissible and consistent.

V. PLANNER PROPERTIES

This section establishes some theoretical properties of the
planner in Algorithm 2.

Lemma 1: The heuristic h(n) as defined in (4) is consis-
tent and admissible for any cost estimate c(n, v) used by the
planner in Algorithm 2.

Proof: Consider any task state s and corresponding
node n, and any successor v of n with corresponding task
state s′. As s′ = γ(s, a) for some action a and each action
can at most move one trailer, at most one trailer T can have
been moved between s and s′. If no trailer in T is moved
between s and s′ it is clear that h(n) = h(v), and since
c(n, v) ≥ 0 it follows that h(n) ≤ h(v) + c(n, v). Suppose

Algorithm 1 Procedures from LPA* used by the task and
motion planner

1: procedure CALCULATEKEY(n)
2: return [min(g(n), rhs(n)) +h(n); min(g(n),

rhs(n))]
3: end procedure
4: procedure INITIALIZE
5: V = ∅
6: for all n ∈ N do
7: rhs(n) = g(n) = ub(n) = ∞
8: p(n) = pub(n) = NULL
9: end for

10: rhs(nstart) = 0
11: V .Insert(nstart, [h(nstart); 0])
12: end procedure
13: procedure UPDATEVERTEX(n)
14: if g(n) ̸= rhs(n) AND n ∈ V then
15: V .Update(n, CalculateKey(n))
16: else if g(n) ̸= rhs(n) AND n /∈ V then
17: V .Insert(n, CalculateKey(n))
18: else if g(n) = rhs(n) AND n ∈ V then
19: V .Remove(n)
20: end if
21: end procedure
22: procedure COMPUTESHORTESTPLAN
23: while V .TopKey() < CalculateKey(ngoal) OR

rhs(ngoal) > g(ngoal) do
24: n = V .Top()
25: if g(n) > rhs(n) then
26: g(n) = rhs(n)
27: V .Remove(u)
28: for all n′ ∈ succ(n) do
29: if rhs(n′) > g(n) + c(n, n′) then
30: p(n′) = n
31: rhs(n′) = g(n) + c(n, n′)
32: UpdateVertex(n′)
33: end if
34: end for
35: else
36: g(n) = ∞
37: for all n′ ∈ succ(n) ∪ {n} do
38: if n′ ̸= nstart AND p(n′) = n then
39: p(n′) = argminv∈pred(n′) (g(v) +

c(v, n′))
40: rhs(n′) = g(p(n′)) + c(p(n′), n′)
41: end if
42: UpdateVertex(n)
43: end for
44: end if
45: end while
46: end procedure

6114

Algorithm 2 The main loop of the task and motion planner

1: procedure MAIN
2: Initialize()
3: while TRUE do
4: ComputeShortestPlan()
5: if g(ngoal) = ub(ngoal) then
6: break
7: end if
8: VerifyPlan(ngoal)
9: end while

10: end procedure
11: procedure VERIFYPLAN(n)
12: plan = ExtractPlan(n)
13: for i := 0 to length(plan)-1 step 1 do
14: v = plan[i]
15: v′ = plan[i+ 1]
16: if g(v′) = ub(v′) OR exactCost(v, v′) then
17: continue
18: end if
19: cost, isExact = MotionPlanner(v, v′,

timeLimit(v, v′), MaxCost(v, v′))
20: if cost > c(v, v′) then
21: c(v, v′) = cost
22: p(v′) = argminn′∈pred(v′) (g(n′)+c(n′, v′))
23: rhs(v′) = g(p(v′)) + c(p(n), v′)
24: UpdateVertex(v′)
25: end if
26: if isExact and cost < ∞ then
27: exactCost(v, v′) = TRUE
28: UpdateUpperBound(v′, v)
29: else
30: if NOT isExact then
31: increase timeLimit(v, v′)
32: end if
33: break
34: end if
35: end for
36: end procedure
37: procedure UPDATEUPPERBOUND(v, n)
38: if ub(n) + c(n, v) < ub(v) then
39: ub(v) = ub(n) + c(n, v)
40: pub(v) = n
41: for v′ ∈ succ(v) do
42: if exactCost(v, v′) then
43: UpdateUpperBound(v′, v)
44: end if
45: end for
46: end if
47: end procedure

Algorithm 3 The MaxCost procedure

1: procedure MAXCOST(n, v)
2: m1 = ub(ngoal)− h(v)− g(n)
3: m2 = ub(v)− g(n)
4: return min(m1,m2)
5: end procedure

that trailer t ∈ T is moved. For all other trailers τ ∈ T
that are not moved xτ (n) = xτ (v). By (4), h(n) − h(v) =
hmp(xt(n), xt(ngoal))− hmp(xt(v), xt(ngoal)).

As hmp(x, y) is the cost of moving from x to
y when the feasible area is unlimited, it is clear
that hmp(xt(n), xt(ngoal)) ≤ hmp(xt(n), xt(v)) +
hmp(xt(v), xt(ngoal)) which gives h(n) − h(v) ≤
hmp(xt(n), xt(v)) ≤ c(n, v). The last inequality holds as
the cost estimates are initialized using hmp and can only
increase. This proves the consistency of h(n), which implies
admissibility.

Lemma 2 (Properties of LPA*): Assume that a consistent
and non-negative heuristic is used. Then, the ComputeShort-
estPlan procedure in Algorithm 1 is complete and optimal.

Proof: See [14].
Theorem 3: The task and motion planner in Algorithm 2

is resolution complete, i.e., it will terminate in finite time and,
given the discretization of the original problem (placement
of possible trailer locations, resolution of the state lattice,
choice of motion primitives), it will return a solution if one
exists.

Proof: The motion planner is resolution complete
and resolution optimal [16]. By Lemma 2 the function
ComputeShortestPlan is complete. For each candidate plan
produced by ComputeShortestPlan, it will either be found
to be a valid solution with the correct cost, or at least
one edge cost will be increased. Due to the possibility of
pausing the motion planner, it is possible that the motion
planner sometimes fails to increase the edge costs, but in
that case the same candidate plan is returned immediately
again and the motion planner is given more time (line 31
in Algorithm 2). Since the motion planner is complete it
will eventually either find a feasible solution or determine
that there is none. Hence, for each candidate plan that is not
feasible at least one edge cost will be raised. Also, in the
worst case scenario, all edge costs will eventually increase
to the exact motion costs in which case g(ngoal) = ub(ngoal)
when ComputeShortestPlan completes and then Algorithm 2
completes on line 6.

Theorem 4: The task and motion planner in Algorithm
2 is resolution optimal, i.e., given the discretization of the
original problem (placement of possible trailer locations,
resolution of the state lattice, choice of motion primitives)
the solution returned by Algorithm 2 is optimal.

Proof: A solution is returned if it has been returned
by ComputeShortestPlan and if g(ngoal) = ub(ngoal). Since
g(ngoal) = ub(ngoal) the cost is exact. By Lemma 2,
ComputeShortestPlan is optimal so no other plan has a lower
cost given the current cost estimates. Since the exact costs
cannot be lower than the current estimates, all other plans
must have an exact cost that is no lower than that of the
plan. Hence, it is optimal.

VI. NUMERICAL EXPERIMENTS
For the numerical experiments we consider the task plan-

ning problem described by (1)-(3), with C = 0.1. The models
used for the tractor-trailer vehicle and the car-like tractor
with no trailer connected are the same as in [3]. The cost
function used is l(x, u, q) = 1+α2+10ω2+u2

ω where α is
the steering angle, ω(σ) = α′(σ), and uω is the input signal

6115

used to control ω. The first term penalizes the path length
and the following terms penalize non-smooth movement.
The resolution of the state-lattice grid is r = 1.0 m and
16 different discretized values of the heading θ are used.
The motion primitives were computed using the CasADi [2]
framework. A HLUT for all states such that the absolute
difference in x and y is less than 100 m was constructed
for each motion planner. The feasible area was constrained
to −50 ≤ x, y ≤ 50. The initial time limit for the motion
planner was set to 1 s, and doubled every time the motion
planner failed to complete within the time limit.

The performance of the proposed task and motion planner
is compared to the performance of a baseline resolution
optimal task and motion planner where the task planner
calls the motion planner to evaluate the exact cost and
feasibility during node expansion (similar to the idea of
semantic attachments), as well as to the performance of our
task and motion planner when no time limit or maximum
cost is used for the motion planner. As described in Section
IV-C.3, we stress that these limits are enforced in a way
that does not affect optimality. The task and motion planners
are compared on two different examples where the truck
has to move trailers to specified places. The setups of the
examples are shown in Figure 1. Both examples have been
selected to represent challenging problems with non-trivial
solutions where trailers cannot immediately be moved to
their designated locations due to other trailers blocking the
path. Instead, trailers may need to be placed at one or several
temporary locations before they can be moved to the correct
location. In each example, execution is interrupted after 2400
s if no solution has been found within that time limit.

The resulting plan for the first example is the same for all
three methods as they are all resolution optimal. The plan is
15 actions long with a cost of 536.72. The execution times
are shown in Table I where it can be seen that our method
significantly outperforms the baseline and the version with no
time or cost limit for the motion planner. The execution time
of our method is about 3 % of the execution time when no
limits are used for the motion planner, and less than 1 % of
the execution time for the baseline. For all three methods the
majority of the execution time is spent in the motion planner.
It can also be seen in Table I that allowing the motion planner
to pause or abort prematurely leads to 4 additional calls to
the ComputeShortestPlan and 4 additional calls to the motion
planner. This is reasonable, as pausing the motion planner
may result in that the same problem is attempted again. If
the green trailer is placed as in Figure 1b it is not possible
for a tractor-trailer to move between a position outside of
the area surrounded by obstacles to a position within. This
takes a lot of effort to discover when searching forward,
but is quickly discovered when searching backward which
explains the large difference in execution time.

The resulting plan for the second example is 29 actions
long with a cost of 1100.58. The baseline had not finished
within 2400 s and was aborted without reaching a solution,
but both of our methods found the same resolution optimal
plan. The execution times are shown in Table II. Both of
our versions show similar performance in terms of nodes
explored and number of calls to the motion planner. The
method with time and cost limits is in this example about

5 %, or about than 3 s, faster. The reason for the similar
performance is that no or few motion planning problems
were sufficiently difficult for the time limit to make a
difference. The number of nodes is much higher than in the
first example, as well as the time spent in the task planner.
Both our versions first found the solution after about 6 s, and
the remaining time was spent verifying that no better solution
exists. Hence, this is promising for the ability to compute
suboptimal solutions, for which a guaranteed suboptimality
level can be computed using g(ngoal) as a lower bound on
the optimal cost.

-50 0 50

x [m]

-50

-40

-30

-20

-10

0

10

20

30

40

50

y
[m

]

Initial state and solution Experiment 1

Move tractor
Move tractor + blue trailer
Move tractor
Move tractor + green trailer
Move tractor
Move tractor + blue trailer
Move tractor
Move tractor + green trailer

(a) Initial state and resulting tra-
jectory, first example

-50 0 50

x [m]

-50

-40

-30

-20

-10

0

10

20

30

40

50

y
[m

]

Goal state Experiment 1

(b) Goal state, first example

-50 0 50

x [m]

-50

-40

-30

-20

-10

0

10

20

30

40

50

y
[m

]

Initial state and solution Experiment 2

T
b
T
B
T
G

T
g
T
B
B
T

G
T
b
T

(c) Initial state and resulting tra-
jectory, second example

-50 0 50

x [m]

-50

-40

-30

-20

-10

0

10

20

30

40

50

y
[m

]

Goal state Experiment 2

(d) Goal state, second example

Fig. 1: Experimental setups. Yellow indicates empty posi-
tions where a trailer could be placed, red indicates the tractor,
and each trailer is shown in a different blue or green shade.
Obstacles are shown in black. The absence of a vehicle in
the goal indicates that no position is specified for it. The
trajectories shown are for the center of the rear axle of the
tractor. Note that trajectories may sometimes be partially or
completely obscured by overlapping trajectories. In (c), T
indicates the tractor whereas B, b, G, g indicate the tractor
with the dark blue, the light blue, the dark green and the
light green trailer respectively.

VII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

A combined task and motion planner for a tractor and
a set of trailers is proposed and shown to be resolution
complete and resolution optimal. Several methods to increase
the efficiency are proposed including using cost estimates
based on the heuristic used in the motion planner, pausing
the motion planner if a given time limit has been reached
and aborting the motion planner prematurely when maximum
cost has been exceeded. These limits are enforced in a way
that preserves optimality.

We have numerically evaluated the proposed planner on
two different scenarios of practical relevance and shown that
the proposed planner can significantly reduce the execution

6116

TABLE I: Results from the first experimental setup

Baseline
Our (no
time/cost
limits)

Our

Execution time [s]
Total 968.53 210.29 6.46
Motion planner 968.51 210.26 6.42
Task planner 0.02 0.03 0.03
Explored nodes
Including re-exploration 92 645 583
Unique nodes 92 108 108
Calls to motion planner 336 41 45
Calls to ComputeShortest-
Plan 1 13 17

Plan cost 536.72 536.72 536.72

TABLE II: Results from the second experimental setup

Baseline
Our (no
time/cost
limits)

Our

Execution time [s]
Total > 2400 62.05 59.14
Motion planner > 2396.5 43.51 45.71
Task planner > 3.73 16.17 15.63
Explored nodes
Including re-exploration > 5637 67246 67306
Unique nodes > 5637 12200 12200
Calls to motion planner > 37688 339 337
Calls to ComputeShortest-
Plan 1 37 39

Plan cost - 1100.58 1100.58

time compared to a baseline planner that uses the motion
planner to compute the exact cost during node expansion.
We have also shown on the evaluated examples that the
proposed method of pausing and aborting the motion planner
prematurely based on time and cost limits can improve the
execution time without sacrificing optimality.

B. Future Work

Future work includes extending the planning framework to
compute locally optimal task and motion plans by applying
an additional numerical optimization step on the obtained
task and motion plan in a similar manner as in [3].

Another direction for future work is to improve the scal-
ability of the planner by improving the heuristic as well as
to investigate how to efficiently determine when a motion
planning problem is infeasible. One possible extension is
to make the planner more domain independent and extend
a planning language such as Planning Domain Definition
Language (PDDL) to include information about the motion
planning problem, which could then be used as input to the
planner.

REFERENCES

[1] Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson.
Hybrid control of a truck and trailer vehicle. In Hybrid Systems:
Computation and Control: 5th International Workshop, HSCC 2002
Stanford, CA, USA, March 25–27, 2002 Proceedings, pages 21–34.
Springer, 2002.

[2] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. CasADi: a software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation,
11:1–36, 2019.

[3] Kristoffer Bergman, Oskar Ljungqvist, and Daniel Axehill. Improved
path planning by tightly combining lattice-based path planning and
optimal control. IEEE Transactions on Intelligent Vehicles, 6(1):57–
66, 2020.

[4] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg,
Michael Brenner, and Bernhard Nebel. Semantic attachments for
domain-independent planning systems. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, volume 19,
pages 114–121, 2009.

[5] Roger Fletcher and Sven Leyffer. Numerical experience with lower
bounds for MIQP branch-and-bound. SIAM Journal on Optimization,
8(2):604–616, 1998.

[6] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon
Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Integrated task and motion planning. Annual review of control,
robotics, and autonomous systems, 4:265–293, 2021.

[7] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
FFrob: Leveraging symbolic planning for efficient task and motion
planning. The International Journal of Robotics Research, 37(1):104–
136, 2018.

[8] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
PDDLstream: Integrating symbolic planners and blackbox samplers
via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages
440–448, 2020.

[9] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[11] Jennifer E King, Marco Cognetti, and Siddhartha S Srinivasa. Re-
arrangement planning using object-centric and robot-centric action
spaces. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 3940–3947. IEEE, 2016.

[12] Ross A Knepper and Alonzo Kelly. High Performance State Lattice
Planning Using Heuristic Look-Up Tables. In IROS, pages 3375–3380.
Citeseer, 2006.

[13] Sven Koenig and Maxim Likhachev. Incremental A*. Advances in
neural information processing systems, 14, 2001.

[14] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning
A*. Artificial Intelligence, 155(1-2):93–146, 2004.

[15] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[16] Oskar Ljungqvist, Niclas Evestedt, Marcello Cirillo, Daniel Axehill,
and Olov Holmer. Lattice-based motion planning for a general 2-
trailer system. In 2017 IEEE Intelligent Vehicles Symposium (IV),
pages 819–824. IEEE, 2017.

[17] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially
constrained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3):308–333, 2009.

[18] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis,
Stuart Russell, and Pieter Abbeel. Combined task and motion planning
through an extensible planner-independent interface layer. In 2014
IEEE International Conference on Robotics and Automation (ICRA),
pages 639–646. IEEE, 2014.

[19] Wil Thomason, Marlin P Strub, and Jonathan D Gammell. Task and
motion informed trees (TMIT*): Almost-surely asymptotically optimal
integrated task and motion planning. IEEE Robotics and Automation
Letters, 7(4):11370–11377, 2022.

[20] Marc Toussaint. Logic-Geometric Programming: An optimization-
based approach to combined task and motion planning. In IJCAI,
pages 1930–1936, 2015.

[21] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task
and motion planning for mobile manipulation. In Proceedings of
the International Conference on Automated Planning and Scheduling,
volume 20, pages 254–257, 2010.

[22] Chongjie Zhang and Julie A Shah. Co-optimizing task and motion
planning. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4750–4756. IEEE, 2016.

6117

