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Abstract— In this paper, we solve the robust output regulation
problem (RORP) for a class of nonlinear systems using a data-
driven approach to reconstruct the internal model unknown
nonlinear continuous map online from some input and output
data. The data-driven model is then used to estimate the ideal
feed-forward steady-state control inputs obtained by solving the
regulator equation instead of implementing it with an extended
observer as in previous studies. Secondly, we implement an
output feedback stabilizer that does not rely on the complete
knowledge of the system but on output measurement of the
regulated output, making the proposed approach suitable for
systems with modelling errors. Finally, we showed through
detailed Lyapunov analysis that under certain conditions the
closed-loop system achieves practical asymptotic stability.

I. INTRODUCTION

Output regulation is the standard theory for solving dis-
turbance rejection and reference signal tracking problems.
internal model principle is the main technique for solving
such problems, it can be intuitively be stated as a controller
must incorporate a suitably reduplicated model of the ex-
osystem dynamic structure with feedback from the regulated
variable. The output regulation problem for linear systems
subject to external disturbance was elegantly solved in the
works of Davison, Francis, Wonham [1], [2].

Extending the internal model principle to nonlinear sys-
tems is a very challenging problem. In fact, unlike linear
systems, the knowledge of the exosystem alone is neither
a sufficient condition nor necessary condition for solving
output regulation problems in nonlinear systems [3], [4], [5].
Several significant contributions have been made to enhance
the nonlinear output regulation theory using the concepts of
immersion and steady state generators (see [3], [4], [6], [7]
and reference therein for more details).

All these works solves the RORP by describing the
regulator equation with some equations whose analytical
solutions are difficult to solve even for simple problems [8].
The alternative is to approximate the internal model using
data-driven approach. Recently, [9], [8] proposed an elegant
adaptive data-driven regulator in which the unknown internal
model steady-state continuous mapping is formulated as a
continuous-time [9] and a discrete-time [8] system identi-
fication problem based on least-squares. Though the least
squares algorithm is shown to be effective, it constrains the
unknown nonlinear map to finite-dimensional sets, which
may be difficult to determine for complex problems. In
[10], a Gaussian Process algorithm, which did not constrain
the unknown nonlinear map to a finite-dimensional set was
used. But like in [8], it was implemented with an extended
observer, which requires the Gaussian Process algorithm
to compute the time derivative of the unknown continuous

steady-state mappings, which may be challenging for com-
plex systems.

In this work, we first reconstruct the ideal internal model
unknown steady-state continuous map using some input and
output data and use the model to directly estimate the ideal
feed-forward steady-state control inputs obtained by solving
the regulator equation [6] instead of implementing it with
an extended observer as in previous studies. Secondly, we
implement an output feedback stabilizer that does not rely
on the complete knowledge of the system but on output
measurement of the regulated output, making our proposed
approach robust and suitable for systems with modeling
errors. We also relax the assumption that the model set of the
steady-state continuous nonlinear map is known a priori by
developing a non-parametric model that does not constrain
the approximate model to a pre-determined model set.

This article is organized as follows. Problem formulation,
linear internal model, and the Gaussian Process-based identi-
fiers are presented in Section II. The proposed regulator and
the main results of this article are presented in Section IV.
Finally, a numerical example to illustrate the effectiveness
of a proposed algorithm in Section V and conclusions in
Section VI.

Notations: If A ⊂ Rn, then |x|A := infaA|x− a| denotes
the distance of x ∈ Rn to A. A function α : R≥0 → R≥0 is
said to be of class K if it is continuous, strictly increasing and
α(0) = 0. A function γ : R≥0 → R≥0 is said to be of class
K∞ if lims→∞ γ(s) = ∞. A function β : R≥0 × R≥0 →
R≥0 is said to be of class KL if β(·, t) ∈ K for each t ∈ R≥0

and, for each s ∈ R≥0, β(s, ·) is continuous and strictly
decreasing to zero as t → ∞

II. PROBLEM FORMULATION

In this paper, we consider the practical output regulation
problem for a class of nonlinear systems of the form:

ż = f(z, y, φ), ẏ = q(z, y, φ) + b(z, y, φ)u (1)

with system states col(z, y) ∈ Rnz ×R, control input u ∈ R,
measured output to be regulated y, and φ = col(w,m,℘),
containing the state of the exosystem w ∈ W ⊂ Rnw

representing the disturbance signal to be rejected and the
reference signal to be tracked. The variable m ⊂M ∈ Rnm

denote the uncertainties belonging to a known compact setM
and ℘ ∈ P ⊂ Rn℘ is some unknown parameter arising from
the exosystem. We assume, the exosystem w is generated by
the autonomous system:

ẇ = s(w,℘), y0 = h0(w,m) (2)
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where y0 ∈ R is the output of the exosystem. We assume
that the functions f(·), q(·) and h0(·) are globally defined
sufficiently smooth functions satisfying f(0, 0, φ) = 0,
q(0, 0, φ) = 0, h0(0,m) = 0. The function b(z, y, φ) is
lower bounded by some positive integer b̄∗. We define the
regulated output e ∈ R composed of systems (1) and (2) as

e = y − y0 = h(z, y, φ) (3)

We formally define the robust approximate output regulation
problem composed of systems (1), (2) and (3) as follows:

Problem 1. Consider systems (1), (2) and (3) and given any
compact set W, M and P ⊂ Rn℘ containing the origin,
design an output feedback control law such that for any
initial conditions w(0) ∈W, m(0) ∈M, and ℘(0) ∈ P and
any initial states col(z(0), y(0)) ∈ Rnz ×R, the closed-loop
system is bounded for all t ≥ 0, and the regulated output
e(t) achieves practical asymptotic stability in the following
sense lim

t→∞
|e(t)| ≤ ε.

Next, we will outline the standard assumptions necessary
to address the output regulation problem.

Assumption 1. The dynamics of the exosystem (2) are such
that w(t) evolves on a compact invariant set W ⊂ Rp as
t → ∞.

Assumption 2. (Solvability of regulator equation). There
exists a sufficiently smooth functions z⋆(w,m,℘) defined on
an open set col(w,m,℘) ∈W ×M× P satisfying

∂z(w,m)

∂w
s(w,℘) = f(z⋆(w,m,℘), 0, φ) (4)

Assumption 3. Given a compact set Υ ⊂ Rnw ×M × P,
there exist a smooth function Vz : Υ → R≥0, satisfying
α1z(∥z∥) ≤ Vz(z) ≤ α2z(∥z∥) for some class functions
α1z, α2z ∈ K∞, some known positive definite function ρ(·)
function such that for any φ the z subsystem in system (11)
satisfies

V̇z ≤ −α(∥z∥) + δρ(e), (5)

where α(·) satisfies lims→0+ sup(α−1
iz (s2)/s)

Under Assumptions 1 and 2, let y(w,m,℘) =
h0(w,m,℘), then the ideal control input required to regulate
e to the origin is given by:

u⋆(w,m,℘) = b−1(z(w,m,℘), h(w,m), φ)(∂h(w,m)

∂w
s(w,℘)− q(z(w,m,℘), 0, φ)

) (6)

y∗(w,m), z⋆(w,m,℘) and u⋆(w,m,℘) constitutes the so-
lution to the so called regulator equation [6]. The function
u⋆(w,m,℘) provides the necessary feed-forward informa-
tion to solve the output regulation problem 1. Although the
expression of u⋆(w,m,℘) can be easily derived, it cannot
be used for feedback control design, as it contains the
exogenous signal w and unknown parameter m. In prac-
tice, an internal model is designed to reproduce u(w,m,℘)
asymptotically. Under Assumption 3, the state z̄ is ISS with
respect to the error e.

III. PRELIMINARIES

A. Regulator Model Analysis

In this paper, we propose a nonlinear regulator that utilizes
a data-driven internal model, generated at discrete-time inter-
vals to generate control signal for a continuous-time system.
In this context, we formulate our regulator as a hybrid system
using the formalism described in [11]. Consider a hybrid
system H with state x ∈ X and input u ∈ U of the form:

H :

{
(x, u) ∈ C ẋ = f(x, u)

(x, u) ∈ D x+ = g(x, u)
(7)

where C and D denotes the flow set and jump set respectively.
The vector fields f(·) and g(·) are assumed to be continuous
on C and D, respectively. The solution of system (7) are
defined on hybrid time domain. We recall some definitions
related to the hybrid formulation from [11]

Definition 1. (Hybrid time domains) A subset E ⊂ R≥0 ×
N is a compact hybrid time domain if for all (T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, · · · , J}) =

⋃J−1
j=0 ([tj , tj+1], j) for some

finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ .

B. Linear Internal Model and Augmented System

Motivated by the works of references [4], [7], we define
a linear internal model of the form:

η̇ = Mη +Nu, η ∈ Rnη (8)

where (M,N) ∈ Rnη×nη×Rnη×1 is a controllable pair, with
M a Hurwitz matrix and nη is a sufficiently large positive
number. We design nη = 2(nw + nz + 1) per result in [4].
As shown in reference [4] system (8) can be generated using
the observation mappings [12], [13].

η⋆(w(t),m, ℘) =

∫ t

−∞
exp(M(t− τ)Nu(w(τ),m, ℘)dτ

u(w(t),m, ℘) = ϖ(η⋆(w(t),m, ℘)), η ∈ Rnη

Since ϖ(w(t),m, ℘) is an integral of past outputs by def-
inition, the current value can be generated asymptotically
following the observer structure of the form [12]:

η̇⋆(w(t),m, ℘) = Mη⋆(w(t),m, ℘) +Nu(w(t),m, ℘)

u(w(t),m, ℘) = ϖ(η⋆(w(t),m, ℘)) (9)

where ϖ(η⋆(w(t),m, ℘)) is a continuous nonlinear map-
ping. Next, we implement a coordinate transformation on
the augmented system composed of systems (1), (3) and (8)
by defining new states:

z = z − z(w,m,℘)

η = η − η − b−1(z + z, e+ h(w,m,℘), φ)Ne
(10)

We can obtain the so-called augmented system by operating
system (10) on system (1), (3) and (8):

ż = f(z, e, φ), η̇ = Mη + r(z, e, φ) (11a)

ė = q(z, η, e, φ) + b(z, e, φ)(u− u⋆(w,m,℘)) (11b)
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where

f(z, e, φ) = f(z + z, e+ h(w, σ), φ)− f(z, 0, φ)

b(z, e, φ) = b(z + z, e+ h(w, σ), φ)

r(z̄, e, φ) = b−1(z, e, φ)(MNe−Nq(z, e, φ))

− db(z, e, φ)
dt

Ne

q(z, η, e, φ) = q(z + z, e+ h(w,m,℘), φ)− q(z, 0, φ)

It is easy to show that for any φ ∈W ×M× P, the origin
of the augmented system (11) is an equilibrium point and
the regulated variable e is equal to zero at the origin with
f(0, 0, φ) = 0, r(0, 0, φ) = 0, q(0, 0, 0, φ) = 0

Although the nonlinear map ϖ(·) in (9) is shown to exist,
its construction is challenging and still an open research
area as highlighted above. In this paper, we propose a data-
driven model ϖ̂(·) to estimate the continuous mapping ϖ(·).
The model ϖ̂(·) would then be used to generate the ideal
feedforward control action (6).

C. Gaussian Process Regression Identifier

Motivated by the works of [8], [9], we develop a model
using a supervised learning technique to approximate the
unknown nonlinear map ϖ(·) shown in (9) online using
some input–output data set. Consider the steady-state map
in system (9), written as

α⋆
out = ϖ(α⋆

in) (12)

with α⋆
out := u⋆(w(t),m, ℘) and α⋆

in := η(w(t),m, ℘).
System (12) can be interpreted as a regression model be-
tween αin and αout [8]. The problem is to find an ap-
proximate model ϖ̂(·) such that the input–output data pair
{(αin(i), αout(i)}i∈N fits. Since the input–output signals are
unknown, we replace these signals with some ”proxies” for
α⋆
in and α⋆

out by using η and u respectively as proposed in
[8], [9]. The proxies are then used to train the data-driven
internal model.

Our goal is to approximate the unknown continuous
nonlinear map ϖ(·) with a Gaussian process µ(η) ∼
GP(m(η),K(η,η′)) model. i.e., µ(η) ≈ ϖ(·). where m(·)
and K(·, ·) are the mean function and kernel covariance
function defined respectively as

m(η) = E[µ(η)]

K(η,η′) = E[(µ(η)−m(η′))(µ(η)−m(η′))].
(13)

A Gaussian process (GP) is a probabilistic non-parametric
method of modelling complex functions from observed data.
It is formally defined as a collection of random variables,
any finite number of which have a joint Gaussian distribution
[14]. Instead of providing a single ”best fit” to the data, the
GP model provides a distribution over functions.

The GP approximation of the unknown nonlinear map
ϖ(·) is a two-step process, comprising of learning and
prediction. In the learning phase, input–output datasets gen-
erated by a continuous-time system are used to train the GP
model. The training data DS := {η,u}i∈N contains input

data set η = [η(t1), η(t2), · · · , η(tN )]T ∈ Rnη with corre-
sponding output data set u = [u(t1), u(t2), · · · , u(tN )]T ∈
R. where u(ti) = µ(η(ti)) + ε(ti), ∀ i = 1, · · · , N .
The output data might be corrupted by a Gaussian noise
ε(ti) ∼ N (0, σ2

n). As typical in the literature, we assume
a zero mean GP , without loss of generality. A squared
exponential kernel given below is used in this work.

K(η,η′) = σ2
f exp

(
−∥η − η′∥2

2λ2

)
(14)

where σ2
f ∈ R≥0 is the signal variance and λi ∈ R≥0, i =

1, · · · , n is the length scales. σ2
f and λ are commonly

referred to as hyperparameters. The hyperparameters are ob-
tained from maximum likelihood according to Bayesian prin-
ciples. In the prediction phase, the model is used to predict
the output over some test data η∗ = [η∗(ti), · · · , η∗(tn)]T .
The predictive mean and variance over some test data η⋆ is
given by:

µ(η∗) = KT
∗ [K + λ2

nI]
−1u (15)

σ2(η∗) = K(η∗, η∗)−KT
∗ [K + σ2

nI]
−1K∗ (16)

where we have used a compact notation setting K∗ =
K∗(η,η∗), K = K(η,η). K(η∗, η∗) is the prior covari-
ance of the test data with itself. The GP model continuously
learns the unknown nonlinear map from the training data
DS and the more the training data the better the model’s
predictive performance. The learning curve of the GP model
relates the Bayesian generalization error ϵD to the number
of training data and it is independent of the test points [15].
The generalization error ϵD for given test point u⋆, is given
as:

ϵD = (µ(η⋆)− u⋆))2 (17)

It can be easily shown that the posterior variance, (16)
gives the expected Bayesian generalization error ϵD given
a training data DS, (17) at test point at ϖ(η⋆). The reader
should see [15] for additional information.

Assumption 4. The unknown function ϖ(·) has a bounded
norm under the RKHS generated by the kernel K(η,η′).

Assumption 5. The covariance kernel K(η,η′) is smooth
and Lipschitz continuous with a constant Lk.

Assumptions 4 and 5 are standard assumptions in the
literature, see [16], [17]. Assumption 4, ensures that the un-
known function is not discontinuous in the compact set. Most
commonly used covariance functions such as the squared ex-
ponential kernel (14) already fulfill the requirement imposed
by Assumption 5. Next, we state some important results from
the literature, which will be used to show our results.

Lemma 1. [18, Lemma 2] For any compact set H and
assuming the probability δ ∈ (0, 1) holds, then:

P{∥µ(η)−ϖ(η)∥ ≤ ∥β∥∥σ(η)∥,∀η ∈ H} ≥ 1− δ (18)

where µ(η) and σ(η) are the mean and standard deviation
of the posterior function, with β = [β1, · · · , βn]

T : β =
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√
2∥f∥2k + 3000ϱ log3

(
N+1
δ

)
, where the information gain

ϱi is given as ϱ = maxη∈H
1
2 log |IN + σ−2

on K(η,η′)| K is
the kernel defined in equation (14)

Remark 1. Although β increases with the number of obser-
vations N , the bounds given in system (18) implies that the
norm of the model error ∥µ(η)−ϖ(η)∥ of a GP estimates
is upper bounded by some constants M := ∥β∥∥σ(η)∥ that
decreases as N → ∞

IV. MAIN RESULT

A. Gaussian Process-Based Nonlinear Regulator

We propose the regulator described by the hybrid dynam-
ical system given by:

τ̇ = 1
η̇ = Mη +Nu
˙̃u = 0

 τ ∈ [0, T ] (19a)

C := [0, T ]×Rnη ×U{
τ+ = 0, η+ = η
ũ+ = µ(η) + ε

}
τ = T (19b)

D := {T} ×Rnη ×U

where the feedback controller is given by:

u = sat (−kρ(e)e+ ũ), ũ = µ(η) (20)

where k ∈ R≥0 is the controller gain to be designed and ũ is
an approximate of the ideal feedforward control input defined
in (6). ũ is estimated from a GP model µ(η) presented in
Section III-C. The regulator is composed of an hybrid clock
whose states is defined by τ , internal model unit η, and a
GP model µ(η).

The states trajectories evolve according to the dynamical
system (19a) during flows (i.e. whenever the timer τ is less
than 1) and when τ = 1, the timer τ resets to zero triggering
the discrete-time system (19b) which updates the GP model
µ(η). Note: it takes T seconds for τ to increase from zero
to one and resets to zero at τ = T .

The closed-loop system composed of the augmented sys-
tem (11), regulator (19) and control law (20) is given below:



τ̇ = 1

ż = f(z, e, φ)

η̇ = Mη + r(z, e, φ)

ė = q(z, η, e, φ) + b(z, e, φ)(sat(−kρ(e)e+ ũ

−ϖ(η∗))
˙̃u = 0

(21a)

C := [0, T ]×Rnz ×Rnη ×R×U
τ+ = 0,

z+ = z, η+ = η, e+ = e

ũ+ = µ(η)

(21b)

D := {T} ×Rnz ×Rnη ×R×U

with η̂ = η + η⋆ + b−1(z + z, e + h(w,m,℘),m)Ne. We
present our first result for the (z, η)–subsystem.

Lemma 2. Consider the Z := col(z, η) subsystem in (21),
there exist a smooth function V2(Z) : Rnz × Rnη → R≥0,
some class K∞ functions α1(·), α1(·), such that

α1(Z) ≤ V2(Z) ≤ α1(Z) (22a)

⟨∇V2(Z), f(Z)⟩ ≤ − Ψ(Z)Z2 + γr(e)e
2 (22b)

where Ψ(Z) > 0 and Ψ(Z) > 0 are some smooth functions.
γr(e) > 0 is some smooth positive definite functions.

This can easily be shown with a Lyapunov candidate
V2(Z) = V1z+ηTPη where V1z is taken from Assumption 2.
The proof has been omitted here due to space constraints. We
now present the main result of this article with the following
theorem.

Theorem 1. Suppose Assumptions 1 – 5 hold, then the
closed-loop system obtained by the interconnection of sys-
tems (1), (2) and (3) with the Gaussian process-based
regulator (19) and control law (20) is such that there exist a
sufficiently large positive constant k, such that any solution
ϕ for the hybrid system Hu in equation (21) originating
from the compact set A := {0, T} × Rnz × Rnη × E × U,
(τ, z, y, η, e) is bounded for all (t, j) ∈ dom ϕ and the
solution ϕ satisfies |ϕ(t, j)|A ≤ εµ as (t, j) → ∞×∞.

Proof: Let χ := (τ, z, η, e, α). We start our stability analysis
by posing the Lyapunov function:

V (χ) = exp(T − τ)(V2(Z) + e2 + (ũ− u⋆)2) (23)

Where u⋆ is the ideal feedforward control input defined in (6)
and ũ is its approximation. We start our analysis by showing
that V (χ) satisfies the condition α5(∥χ∥) ≤ V (∥χ∥) ≤
α6(∥χ∥) with T > 0. Where α5(·) and α6(·) are some class
K∞ functions.

V (χ) ≥ c0(α1z(∥z∥) + λmin(P )∥η∥2 + ∥e∥2)
V (χ) ≤ c0(α2z(∥z|) + λmax(P )∥η∥2 + ∥e∥2)

We see that α5 and α6 can be taken as

α5(s) = c0(α1z(s) + (λmin(P ) + 1)s2) (24a)

α6(s) = c0(α1z(s) + (λmax(P ) + 1)s2) (24b)

Next, we consider the flow equations (21a) on set C.
Recall: ũ = µ(η̂) and u⋆ = ϖ(η⋆). The Lyapunov function
V (χ) evaluated on the flow set is given by:

⟨∇V (χ), f(χ)⟩ ≤ − V (χ) + exp(T − τ)
(
⟨∇V2(Z), f(Z)⟩

+ e2 + ∥q(z, e, φ)∥2 − 2sat(kρ(e)e)eb̄∗

+ 2b̄∗e∥sat(µ(η̂))−ϖ(η⋆)∥
)

Since q(0, 0, φ) = 0, by [19, Lemma 11.1], there exist some
smooth positive functions π2(·) ≥ 1 and γz(·) ≥ 1 such that
for all z ∈ Rnz , η ∈ Rnη , e ∈ R, φ ∈W ×M× P.

∥q̄(Z, e, φ)∥2 ≤ π2(Z)∥Z∥2 + γz(e)e
2 (25)

We re-write η̂ = η⋆ + ζ with ζ = η + b−1(z̄ + z, e +
h(w,m,℘),m)Ne. Under Assumption 5 the GP posterior
mean prediction is Lipschitz continuous. Hence:

∥sat(µ(η̂)−ϖ(η⋆))∥2 ≤ ∥µ(η⋆)−ϖ(η⋆)∥2 + Lµ∥ζ∥2

2913



Applying results from Lemma 1 and setting M =
∥β∥∥σ(η)∥. We can design kρ(e) such that kρ(e) ≥
max{γ(e)} + 2 and let Cµ = Lµ∥ζ∥2 + M2 ∈ R≥0. It
can easily be shown that

⟨∇V (χ),f(χ)⟩ ≤ −V (χ)−
(
Ψ(Z)∥Z∥2 + (2kρ(e)

b̄∗)e2
)
exp(T − τ) + b∗Cµ exp(T − τ)

(26)

It follows that there exists a class K∞ ᾱ1(∥χ∥) such that:

⟨∇V (χ), f(χ)⟩ ≤ − ᾱ1∥χ∥+ b∗Cµ exp(T ) (27)

As a result, the states of the system will enter a ball of radius
εµ = ᾱ−1

1 (b∗Cµ exp(T )) centered at the origin.
During jumps, the GP model is updated with Ns × 1

training datasets. Let µn+1(η) and µn(η) denote the former
and later predictive mean respectively, with a little abuse of
notation. For any (τ, z, η, e, α) ∈ D. We have:

V (g(χ))− V (χ) = ((µn+1(η)− u⋆)2

− (µn(η)− u⋆)2) exp(T )

If we apply equation (17) and substitute ϵD with the posterior
variance σ2(η), we will have:

V (g(χ))− V (χ) = (σ2
n+1(η)− σ2

n(η)) exp(T ) (28)

We show that σ2
n+1(η) < σ2

n(η). We recall the predictive
variance given in (16) and let the Gram matrix K = K+σ2

nI .
We can partition the (n+1)× 1 vector K∗ into a vector kn

and a scalar c. i.e. K∗(η) =
[
kn(η) c(η)

]T
. with kn(η) =

(K(η,η1), · · · ,K(η,ηn)) and c(η) = K(η,ηn+1). Let the
(n+ 1)th element be denoted by η′. The (n+ 1)× (n+ 1)
Gram matrix can be partitioned into four sub-matrices:

Kn+1 =

[
Qn kn(η

′)
kT
n (η

′) c(η′)

]
,K−1

n+1 =

[
Q̃n k̃n(η

′)

k̃T
n (η

′) c̃(η′)

]
The matrix Qn is the n×n covariance matrix of a GP trained
with n dataset. The inverse of the Gram matrix is obtained
applying matrix inversion lemma [14, Section A.3]. where

Q̃n = Q−1
n +Q−1

n kn(η
′)M−1kT

n (η
′)Q−1

n

M = c̃(η′)− kT
n (η

′)Q−1
n kn(η

′)

k̃n(η
′) = −Q−1

n kn(η
′)M−1, c̃n(η

′) = M−1

We now compute the posterior variance σ2
n+1(η) using (16))

σ2
n+1(η) = K(η, η)−

[
kn(η)
c(η)

]T
K−1

n+1

[
kn(η)
c(η)

]
= K(η, η)− kT

n (η)Q
−1kn(η)

− (kT
n (η)Q

−1kn(η
′)− c(η′))2

σ2
n(η

′)

The first two terms is the posterior variance σ2
n(η), hence:

σ2
n+1(η) = σ2

n(η)−
(kT

n (η)Q
−1kn(η

′)− c(η′))2

σ2
n(η

′)
(29)

(kT
n (η)Q−1kn(η

′)−c(η′))2

σ2
n(η

′) ≥ 0. If kT
n (η)Q

−1kn(η
′) > c(η′),

then σ2
n+1(η) < σ2

n(η). Therefore

V (g(χ))− V (χ) < 0 (30)

If kT
n (η)Q

−1kn(η
′) < c(η′), then σ2

n+1(η) < σ2
n(η) which

implies that more training data results in a better GP model
performance and no further improvement in the GP model
is achievable when this condition is satisfied. As a result, the
constant Cµ achieves its minimal value. Thus the solution ϕ
of the hybrid system Hµ, is bounded and converges to εµ as
t → ∞ and j → ∞. We prove that |ϕ(t, j)|A ≤ εµ as (t, j)
→ ∞×∞, which implies that the error signal enters the set
where |e| ≤ εµ. This completes the proof. □

Remark 2. Complete knowledge of the system dynamics
is not required, unlike the pioneering work in [8]. Here,
we require direct measurement of the regulated variable
and the closed-loop system is stabilized using a high-gain
stabilization technique, which we attenuate with a saturation
function. Finally, the algorithm performance depends on the
GP modelling error which is shown to be bounded and
reduces as the number of training data increases.

V. SIMULATION EXAMPLE

We present a numerical example to illustrate the effective-
ness of our proposed regulator. In what follows, we solve the
generalized Lorenz system problem presented in [20].

ż1 = a11z1 + a12y, ż2 = a3z2 + z1y

ẏ = z1(a21 − z2) + a22y + u, e = y − w1

(31)

and the exogenous signal is given by:

ẇ1 = ℘w2, ẇ2 = −℘w1 (32)

where (z1, z2) and y are the state, e is the regulated
output, a = col(a11, a12, a21, a22, a3) are some constant
parameters satisfying a11 < 0, a3 < 0. a. a is allowed to
undergo some perturbation: a = (ā11, ā12, ā21, ā22, ā3) +
(m1,m2, · · · ,m5). where m = (m1,m2, · · · ,m5) is an un-
certain parameter and (ā11, ā12, ā21, ā22, ā3) is the nominal
value of a.

It can be verified the composite system composed of
system (31) and (32) satisfies Assumptions 1 - 3. Under
Assumption 2, it is straightforward to show that the steady-
state states y(w,m,℘), z1(w,m,℘), and z2(w,m,℘) are
given as: y(w,m,℘) = w1, z1(w,m,℘) = r11w1 + r12w2,
z2(w,m,℘) = r21w

2
1 + r22w

2 + r23w1w2. where

r11(m,℘) = − a11a12
℘2 + a11

, r12(m,℘) = − a12℘

℘2 + a211

r21(m,℘) = −a23r11 − a3℘r12 + 2℘2r11
a3(a23 + 4σ2

2)

r22(m,℘) = − ℘

a3
r23, r23(m,℘) = −r12a3 + 2℘r11

4℘2 + a23

Finally, the ideal feedforward control input u(w,℘) pre-
sented in system (6) is given as:

u(w,m,℘) = r31w1 + r32w2 + r33w
3
1 + r34w

3
2

+ r35w
2
1w2 + r36w1w

2
2

(33)

r31(·) = −b−1(a22 + a21r11), r32(·) = b−1(℘− a21r12)

r33(·) = b−1r11r21, r34(·) = b−1r12r22
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r35(·) = b−1(r12r21 + r11r23), r36(·) = b−1(r11r22 + r12r23)

There is no analytical approach to obtaining the ideal con-
trol input (33). We now solve the robust output regulation
problem using our proposed regulator.

1) We performed the simulation with k = 500, 700 and im-
plemented a normal saturation function with saturation
limit set as sat = 100

2) nw = 2, nz = 2. Thus, nη = 2(nw + nz + 1) = 10, let

M =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . .
...

0 0 · · · −1 1
0 0 · · · · · · −1

 , N =


0
0
...
0
1


3) Per Remark 1, the model error decreases with the

number of training points. In theory, we can use all the
past historical data to train or model. Thus, the number
of training data Nn increases as (t, j) increases, thereby
improving the model performance. For convenience,
we have used input-output data sets generated in the
previous P flow events. NOTE: no adaptation with the
GP model at the first flow event. P = 10.

4) The hybrid clock periodic interval is set as T = 0.2

We performed the simulation with ℘ = 0.8, a =
[−10, 10, 28,−1, 2.6667]T . Initial conditions are chosen to
be z(0) = [0.6589,−1.3279]T , y(0) = 0.2439, η(0) = 0
and w(0) = [2.1579,−0.8240]T . ρ(e) = e2 + 1
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Fig. 1. Tracking error trajectories when the ϖ(·) is estimated with the
GP at different kp

Figure 1 shows the trajectory of the tracking error
of the ideal feedforward control input u⋆(w,m,℘) and

its estimation µ(η) obtained from our proposed regulator
at different values of gain k. The regulator performance
µ(η) improves with higher gain k. Secondly, regulator per-
formance improves over time as more training datasets are
added to the GP .

VI. CONCLUSION

The RORP is solved using a data-driven algorithm to
approximate the unknown continuous nonlinear map online,

which is then used to predict or estimate the ideal steady-
state feedforward control action. The proposed method does
not require a complete knowledge of the system, making it
robust and suitable for systems with modelling errors. Future
works will look at systems with unknown optimal points.
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