
On-Policy Data-Driven Linear Quadratic Regulator via Model
Reference Adaptive Reinforcement Learning

Marco Borghesi1, Alessandro Bosso1, and Giuseppe Notarstefano1

Abstract— In this paper, we address a data-driven linear
quadratic optimal control problem in which the regulator
design is performed on-policy by resorting to approaches from
reinforcement learning and model reference adaptive control.
In particular, a continuous-time identifier of the value function
is used to generate online a reference model for the adaptive
stabilizer. By introducing a suitably selected dithering signal,
the resulting policy is shown to achieve asymptotic convergence
to the optimal gain while the controlled plant reaches asymp-
totically the behavior of the optimal closed-loop system.

I. INTRODUCTION

Optimal control is a key area of control theory aiming at
designing controllers able both to achieve stabilization prop-
erties and minimize (or maximize) a desired performance
index, see, e.g., [1] for a survey. While optimal control
is mainly a model-based approach, it has more recently
inspired the Reinforcement Learning (RL) paradigm to ad-
dress problems in which the system model is uncertain or
completely unknown [2], [3]. Another successful discipline
in control theory is adaptive control, which has begun to
deal with parameter and environmental uncertainties [4].
In this paper, we investigate a data-driven Linear-Quadratic
Regulator (LQR) optimal control framework by combining
tools from adaptive control and reinforcement learning.

A common reinforcement learning technique used in the
control field is Policy Iteration (PI), which allows the re-
finement of a given feedback policy up to the optimal one.
Typical assumptions of this technique are the need for an
initial stabilizing policy, and the persistency of excitation
of the closed-loop signals gathered to perform the learning
procedure. Under both the assumptions of persistency of
excitation and knowledge of an initial stabilizing policy, on-
policy control techniques have been proposed in [5], [6],
and [7] for the LQR problem under uncertainties. In [5] the
authors perform PI on the value function, while in [6] a Q-
learning approach is used. Instead, [7] considers a tracking
problem and introduces a discount factor in the cost function.
We stress that in these PI approaches, the policy update
(improvement) is performed through discrete jumps after
collecting enough data. In [8] and [9], the initial stabilizing
policy is no longer required. In the first work, the authors use
a gradient technique to estimate the Q-function from data. In
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the second, the authors design an adaptive estimator of the
state matrices and provide a semi-global convergence result.

Finally, we recall that Model Reference Adaptive Control
(MRAC) is a very extensively used technique from the
adaptive control field that matches an unknown system dy-
namics to an assigned one (the reference model) with desired
properties [10], [11], [12]. A recent work combining MRAC
and RL is [13], where RL techniques are used to optimize
a reference model based on nominal plant parameters, then
MRAC is applied to assign the reference model to the actual
system. However, asymptotic convergence of the input to the
optimal policy for the uncertain plant is not ensured.

In this work, we address the problem of on-policy optimal
control of a partially unknown linear system. Our main
contribution, which we call Model Reference Adaptive Rein-
forcement Learning, is a modular architecture that intercon-
nects approaches from the system identification, reinforce-
ment learning, and adaptive control paradigms. Unlike other
works, in this paper we design an on-policy controller where
learning and control are continuously updated in a closed-
loop fashion. Moreover, no assumption regarding the initial
policy is required. Namely, our architecture may also be ini-
tialized to a non-stabilizing estimate of the optimal controller.
Besides this, we guarantee by design the persistency of
excitation conditions needed to ensure convergence towards
the true system parameters and the optimal policy. By relying
on different fields, our architecture achieves the following
properties: (i) global boundedness of solutions, along with
robust stability of the error subsystems; (ii) convergence of
the policy to the optimal one; (iii) asymptotic estimation of
the true system parameters.

The paper is organized as follows. In Section II, we
introduce the proposed framework and provide the problem
statement. In Section III, we present the main contribution
of this paper, namely the Model Reference Adaptive Rein-
forcement Learning architecture. Throughout that section, we
give insights from a high-level perspective. In Section IV, we
present the technical results used to prove the main theorem.
Finally, we show a numerical example in Section V, while
Section VI concludes the paper.

II. PROBLEM STATEMENT

Consider a continuous-time linear time-invariant system of
the form

ẋ = Ax+Bu, (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input,
and A ∈ Rn×n and B ∈ Rn×m are the system matrices.
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For system (1), we consider the problem of finding a
suitable control policy π?(·) : Rn → Rm such that u =
π?(x) solves, for all initial conditions x0 ∈ Rn, the following
linear-quadratic optimal control problem:

min
x,u

∫ ∞
0

x(τ)>Qx(τ) + u(τ)>Ru(τ)dτ (2)

subj.to ẋ(t) = Ax(t) +Bu(t), ∀t ∈ [0,∞),

x(0) = x0,

with Q ≥ 0, R > 0 symmetric weight matrices of appropri-
ate dimensions. From linear quadratic regulation theory [14],
it is known that, under typical assumptions of stabilizability
and observability of pairs (A,B) and (

√
Q,A), problem (2)

admits a unique optimal control policy of the form

π?(·) : Rn → Rm, x 7→ K?x := −R−1B>P ?x, (3)

where P ? = P ?> > 0 is the solution of the Algebraic Riccati
Equation (ARE):

A>P ? + P ?A− P ?BR−1B>P ? +Q = 0. (4)

However, implementing (3), (4) requires complete knowl-
edge of the system matrices A and B. Specifically, in this
work, we require that the input matrix B be available for
design, whereas the state matrix A is unknown. Since we
are in a data-driven scenario, we also include a dither signal
w in our policy to guarantee the persistency of excitation.
Therefore, this work aims to solve the following problem.

On-policy data-driven LQR scenario

Find a data-driven time-varying policy

(x, t) 7→ π(x, t) + w

designed according to the following objectives:
• w is a dither signal injected to guarantee the persis-

tency of excitation (PE) property;
• at each t, u = π(x, t) + w is applied to the actual

system (1) to learn from system trajectories;
• all the trajectories x(t) of the closed loop system

are bounded, forward complete, and satisfy

lim sup
t→∞

|x(t)| ≤ α(lim sup
t→∞

|w(t)|), (5)

where α is a class K function;
• the policy asymptotically converges to the optimal

LQR solution, i.e.,

π(x, t)→ K?x. (6)

III. MODEL REFERENCE ADAPTIVE REINFORCEMENT
LEARNING

For the subsequent design, it makes sense to rewrite the
uncertain matrix A in vectorized form. Specifically, define
θA := vec(A) ∈ Rn2

. Then, system (1) can be rewritten as

ẋ = (x⊗ In)>θA +Bu, (7)

where ⊗ denotes the Kronecker product.
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Fig. 1. Scheme of the Model-Reference Adaptive Reinforcement Learning.

The proposed algorithm is conceived as a modular archi-
tecture where we construct an online gradient estimation θ̂A
of θA, from which we compute an estimate P (θ̂A) of the
solution P ? of ARE (4), which yields the gain K(θ̂A) :=
−R−1B>P (θ̂A). Alone, the optimal gain estimate may be
not stabilizing. For this reason, we introduce an additional
adaptive feedback gain K̂e following a Model-Reference
Adaptive Control (MRAC) approach where the closed-loop
system is driven by an external signal w(t) having sufficient
richness properties. Since the resulting MRAC is not based
on a fixed model reference but on a dynamical system that
is continuously tuned through the estimate P (θ̂A), we call
this architecture Model Reference Adaptive Reinforcement
Learning. Under the chosen policy, the closed loop dynamics
of the controlled system becomes:

ẋ = (A+BK(θ̂A))x+BK̂ex+Bw, (8)

from which it is clear that, if K(θ̂A) → K? and K̂e → 0,
we obtain the desired behavior

ẋ = (A+BK?)x+Bw. (9)

In Fig. 1, we give a high level overview on how the controller
works. The next subsections are dedicated to presenting
our design, summarized in Algorithm 1. Subsequently, we
describe the properties of the closed-loop system.

A. Value Function and Optimal Gain Identifier

In this subsection, we build a continuous identifier of θ̂A
in (7) (equivalently, of matrix A in (1)). Then, given the
estimate Â := vec−1(θ̂A), we can compute the solution P =
P> > 0 of the following ARE:

R(P, Â) := Â>P + PÂ− PBR−1B>P +Q = 0, (16)

which will be denoted as P (θ̂A) in the following as it
depends on the estimate θ̂A. To guarantee that the matrix
P (θ̂A) exists, is unique, and is positive definite, we impose
the following assumption.

Assumption 1. A compact, convex set KA ⊂ Rn2

is known
such that θA ∈ Int(KA) and (vec−1(θ̂A), B) is controllable
and (

√
Q, vec−1(θ̂A)) is observable for all θ̂A ∈ KA.

It is known from linear quadratic regulator theory that
stabilizability of pair (Â, B) = (vec−1(θ̂A), B) would be
sufficient in Assumption 1 for the solvability ofR(P, Â) = 0
in (16). However, as shown in the following, controllability
is required to ensure convergence of the identifier under
sufficient richness of the external signal w(t). Moreover,
we need observability instead of simple detectability to
ensure the solution of (16) is positive definite. From an
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Algorithm 1 Model Reference Adaptive RL Policy
Require: KA as in Assumption 1
Require: γ, λ, µ, ν > 0 design gains
Ensure: γ is small enough
Require: w(t) : bounded stationary signal, whose each entry

is sufficiently rich of order n+ 1 and uncorrelated
Swapping Filters:

ξ̇ = −λξ + x, ζ̇ = −λ(x+ ζ)−Bu, (10)

Identifier Dynamics:

˙̂
θA = Proj

θ̂A∈KA

{
−γ (ξ ⊗ In)ε

1 + ν|ξ|2

}
,

with: ε := (ξ ⊗ In)>θ̂A − (x+ ζ),

(11)

Optimizer:

Find P (θ̂A) sol. of R(vec−1(θ̂A), P ) = 0 in (16)

K(θ̂A) = −R−1B>P (θ̂A)

Acl(θ̂A) = Â+BK(θ̂A),

(12)

Reference Model Dynamics:

ẋm = Acl(θ̂A)xm +Bw, (13)

Adaptive Gains Dynamics:

˙̂
θe = −µ(x⊗Im)B>P (θ̂A)(x−xm)+(In⊗B)†

˙̂
θA, (14)

System Input:

u = K(θ̂A)x+ (x⊗ Im)>θ̂e + w. (15)

implementation point of view, solving (16) at each time
instant may cause computation overhead. In this paper we
do not address this problem and we leave its solution to
future work. Given the structure of system (7), we compute
an estimate θ̂A of θA, thus an estimate Â of A, by designing
a swapping filter of the form (10), with λ > 0 a scalar gain
for tuning, and defining the prediction error

ε := (ξ ⊗ In)>θ̂A − (x+ ζ). (17)

In particular, we can write ε = (ξ⊗In)>(θ̂A−θA)+ ε̃, where

ε̃ := (ξ ⊗ In)>θA − (x+ ζ), (18)

is an error signal that is shown in Section IV to converge
exponentially to zero. This way, we can use a normalized
projected gradient algorithm to update the estimate θ̂A, with
dynamics given in (11). Parameters γ > 0 and ν > 0 are
scalar gains, while Projθ̂A∈KA

{·} is a Lipschitz continuous
parameter projection operator whose expression is provided
in [15, Appendix E] for a generic compact convex set KA.
Finally, given the estimate θ̂A, matrices P (θ̂A), K(θ̂A) and
Acl(θ̂A) are computed in (12).

Remark 1. In general, the feedback gain K(θ̂A) does
not make the closed loop matrix A + BK(θ̂A) Hurwitz at

all times. However, from Assumption 1 and the parameter
projection in (11), it is such that Acl(θ̂A) in (12) is Hurwitz.

B. Optimal Model Reference Adaptive Control

Given the estimate P (θ̂A) = P (θ̂A)
>
> 0, we design

an adaptive controller for system (1) with two fundamental
roles: (i) to ensure global boundedness of solutions once
interconnected with identifier (10), (11), (12); (ii) to impose
some form of PE to the system trajectories. To these aims,
consider a continuous input w(t) ∈ Rm, then introduce the
reference model (13), where xm ∈ Rn is the reference model
state, Acl(θ̂A) is given in (12) and is Hurwitz by design
(Remark 1), and B is the same as in (1) and (7).

Remark 2. Different from classic MRAC, the state matrix
Acl(θ̂A) of reference model (13) is not a constant matrix but
a time-varying one as it depends on the estimate Â(t). This
property leads to an adaptive design where the known-plant
stabilizing gains are time-varying.

Given the reference model (13), we define the tracking error
e :=x−xm, whose dynamics are computed from (1), (13) as

ė = Ax+Bu−Acl(θ̂A)(x− e)−Bw
= Acl(θ̂A)e+ (A−Acl(θ̂A))x+B(u− w)
= Acl(θ̂A)e+ (A− Â)x+B(u−K(θ̂A)x− w).

(19)

To ensure that the plant (1) copies the behavior of the
reference model (13), namely, e(t) → 0, we need the
following matching condition, typical of full-state feedback
adaptive control design [12, §3.4.2].

Assumption 2. For all θ̂A ∈ KA, with Â := vec−1(θ̂A), there
exists Ke = Ke(θ̂A) such that

Â−A = BKe. (20)

Equivalently, in vectorized form,

θ̂A − θA = (In ⊗B)θe, θe := vec(Ke). (21)

Since Ke depends on the estimate θ̂A, it will be denoted as
Ke(θ̂A) in the following. Under Assumption 2, (19) becomes

ė = Acl(θ̂A)e+B(u−K(θ̂A)x−Ke(θ̂A)x− w), (22)

suggesting a control law of the form u := K(θ̂A)x +
Ke(θ̂A)x+w = K(θ̂A)x+(x⊗Im)>θe(θ̂A)+w if the plant
dynamics were known. However, Ke(θ̂A) is unavailable for
design as it depends also on A, as highlighted in (20), thus we
consider the certainty-equivalence-based adaptive controller
given in (15), where θe(θ̂A) is replaced by the adaptive gain
θ̂e, driven by the adaptive law (14) where µ > 0 is a scalar
gain and (In ⊗ B)† is the pseudo-inverse of In ⊗ B. The
first term in the adaptive law (14) is a standard update to
ensure the error e goes asymptotically to zero in a framework
where the model mismatch is constant. However, since Â is
continuously updated by identifier (11), the second term in
the update law takes into account the time-varying mismatch.
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C. Main Result

We are now ready to state the main result of this work,
providing formal guarantees for the proposed control archi-
tecture and ensuring that the requirements of the on-policy
data-driven scenario of Section II are achieved.

Theorem 1. Let Assumptions 1 and 2 hold. Consider the
closed-loop system given by the interconnection of plant (1),
swapping filters (10), identifier (11), (12), reference model
(13), and adaptive controller (14), (15), with bounded and
stationary input w(t). For all E ≥ 0, there exists γ? =
γ?(E) > 0 such that, if:
• the identifier gain γ is chosen such that γ ∈ (0, γ?];
• the initial conditions satisfy |ε̃(0)| ≤ E;
• the entries of w(t) are sufficiently rich of order n + 1

and uncorrelated;
then, the closed-loop solutions:

1) are bounded, forward complete and satisfy

lim sup
t→∞

|x(t)| ≤ β lim sup
t→∞

|w(t)|, (23)

where β is a positive scalar;
2) satisfy:

lim
t→∞

(θ̂A(t), e(t), θ̂e(t)) = (θA, 0, 0), (24)

where the convergence in (24) is exponential, with
uniform bounds for any given compact set of initial
conditions such that |ε̃(0)| ≤ E;

With (24), the right-hand side of (8) converges exponentially
to (A+BK?)x+Bw, reducing controlled system (8) to the
desired structure of (9). (24) states also convergence of the
gradient estimation Â to the true state matrix A.

Remark 3. In Theorem 1, we study the closed-loop solutions
in a semi-global sense with respect to the initial conditions
ε̃(0), with ε̃ as in (18). This result is not restrictive because

ξ(0) = 0, ζ(0) = −x(0) =⇒ ε̃(0) = 0, (25)

which implies E = 0, leading to γ ∈ (0, γ?(0)].

IV. CLOSED-LOOP STABILITY ANALYSIS

A. Error Dynamics

We begin the analysis by presenting the closed-loop dy-
namics in error coordinates, which is used to provide the
technical results of the following subsections.

1) Identifier dynamics: Consider the error coordinate ε̃ in
(18), which can be written as

ε̃ := (ξ ⊗ In)>θA − (x+ ζ) = Aξ − (x+ ζ). (26)

Then, from (1), (10), it holds that

˙̃ε = A(−λξ + x)− (Ax+Bu− λ(x+ ζ)−Bu)
= −λ(Aξ − (x+ ζ)) = −λε̃,

(27)

which ensures that the prediction error ε := Âξ − (x+ ζ) =
(Â−A)ξ + ε̃ converges to (Â−A)ξ exponentially.

Notice that the properties of the Kronecker product imply

(ξ⊗ In)(ξ⊗ In)> = (ξ⊗ In)(ξ>⊗ In) = (ξξ>)⊗ In. (28)

Define θ̃A := θ̂A − θA, then from (18), (27), (28) we
can rewrite the identifier dynamics (10), (11), (17) in error
coordinates as the following cascaded system

˙̃ε = −λε̃

˙̃
θA = Proj

θA−θ̃A∈KA

{
−γ ((ξξ

>)⊗ In)θ̃A + (ξ ⊗ In)ε̃
1 + ν|ξ|2

}
,

(29)

driven by ξ(t), solution of the filter

ξ̇ = −λξ + x. (30)

Remark 4. To ensure θ̂A(t) → θA, equivalently, Â(t) →
A, it is known from the adaptive control literature that
vector x(t) must be a persistently exciting (PE) signal [11].
However, notice that x(t) is generated in closed loop by
interconnecting the plant and the controller, so special care
will be dedicated to its analysis.

2) Reference model dynamics: From (12), system (13) can
be written highlighting the dependence on the estimate θ̂A
of the identifier:

ẋm = (vec−1(θ̂A)−BR−1B>P (θ̂A))︸ ︷︷ ︸
Acl(θ̂A)

xm +Bw, (31)

where from (11), (16), the pointwise-in-time value of P (θ̂A)
is provided implicitly as the solution of a parameter-varying
ARE. By [16, Thm. 4.1], P (θ̂A) is an analytic function of
θ̂A, being all matrices of ARE R(P, Â) = 0 in (16) analytic
functions of θ̂A ∈ KA. From this fact, matrix Acl(θ̂A) is
Hurwitz and an analytic function of θ̂A.

3) Adaptive tracking dynamics: We conclude this
overview by studying the interconnection of the error dy-
namics (22) and the adaptive controller (14), (15). We may
rewrite (22) with the same notation as in (13) as

ė =Acl(θ̂A)e+B(u−K(θ̂A)x− (x⊗ Im)>θe(θ̂A)− w).

Thus, we define θ̃e := θ̂e−θe(θ̂A). By choosing (15) as input
for (19), we obtain:

ė = Acl(θ̂A)e+B(x⊗ Im)>θ̂e −B(x⊗ In)>θe(θ̂A)

= Acl(θ̂A)e+B(x⊗ Im)>θ̃e.
(32)

We are interested now in an explicit expression for map
θe(θ̂A). Since we suppose the matching condition (21) has
at least a solution, all of them can be written as

θe(θ̂A) = (In⊗B)†(θ̂A−θA)+v, v ∈ ker(In⊗B), (33)

which then allows us to choose θe(θ̂A) := (In⊗B)†(θ̂A−θA).
From equations (14) and (33), the dynamics of the adaptive
gain error is given by:

˙̃
θe =

˙̂
θe −

∂θe

∂θ̂A
(θ̂A)

˙̂
θA =

˙̂
θe − (In ⊗B)†

˙̂
θA =

=− µ(x⊗ Im)B>P (θ̂A)e+ (In ⊗B)†
˙̂
θA

− (In ⊗B)†
˙̂
θA = −µ(x⊗ Im)B>P (θ̂A)e,

(34)
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so that we obtain the overall adaptive error system:

ė = Acl(θ̂A)e+B(x⊗ Im)>θ̃e

˙̃
θe = −µ(x⊗ Im)B>P (θ̂A)e,

(35)

written in the usual form of adaptive systems. Note that the
system matrices depend on the time-varying parameter θ̂A.

B. Boundedness of Solutions

We show boundedness and forward completeness of the
solutions of the closed-loop system obtained from the inter-
connection of the identifier dynamics (29), (30), the reference
model (13), and the adaptive error system (35). The overall
analysis entails proving uniform bounds on the solutions of
the involved subsystems, then combining the results using
arguments similar to [15, Thm. 6.3]. We begin by showing
uniform boundedness of θ̂A and ˙̂

θA.

Lemma 1. Let the maximal interval of solutions of (29),
(30), (31), (35) be [0, tf ). Then, it holds that ε̃(·), θ̃A(·) ∈
L∞[0, tf ) and θ̂A(t) ∈ KA for all t ∈ [0, tf ). Furthermore,
if tf = ∞, the origin (ε̃, θ̃A) = 0 of system (29), driven by
input ξ(t), is uniformly globally stable (UGS).

Remark 5. Since KA is compact, we know there exists a
bound on the maximum model mismatch, here defined as

ρ := max
θ̂A∈KA

|θ̂A − θA|. (36)

Lemma 2. Let the maximal interval of solutions of (29),
(30), (31), (35) be [0, tf ). Then, it holds that

| ˙̂θA(t)| ≤ γ(ρ+ |ε̃(0)|), ∀t ∈ [0, tf ), (37)

where ρ is given in Remark 5 and γ is the gain in (11).

The above results hold even if the input ξ(t) of the identifier
escapes to infinity as t → tf . Note that ξ(t) is bounded if
x(t) is bounded since system (30) is ISS. Then, we show
that the reference model (13) is bounded as long as | ˙̂θA(t)|
is sufficiently small.

Lemma 3. Let the maximal interval of solutions of (29),
(30), (31), (35) be [0, tf ). There exists δ > 0 such that,
if | ˙̂θA(t)| ≤ δ for all t ∈ [0, tf ), then xm(·) ∈ L∞[0, tf ).
Furthermore, if tf =∞, then system (13) with input w(t) is
ISS, with lim supt→∞ |xm(t)| ≤ β lim supt→∞ |w(t)|, for a
positive scalar β.

Next, we provide a statement for system (35).

Lemma 4. Let the maximal interval of solutions of (29),
(30), (31), (35) be [0, tf ). Pick δ > 0 from Lemma 3 and let
| ˙̂θA(t)| ≤ δ for all t ∈ [0, tf ). Then, it holds that e(·), θ̃e(·) ∈
L∞[0, tf ). Furthermore, if tf = ∞, the origin (e, θ̃A) = 0
of subsystem (32), (34) with input θ̂A(t) is UGS.

Finally, we combine the previous boundedness results.

Proposition 1. Consider the closed-loop system obtained
from the interconnection of the identifier dynamics (29), (30),

the reference model (31), and the adaptive error system (35).
For any E > 0, let γb be defined as

γb := δ/(ρ+ E), (38)

where δ is given by Lemma 3 and ρ is found in Remark 5.
If |ε̃(0)| ≤ E and γ ∈ (0, γb], then the closed-loop solutions
are bounded and forward complete.

C. Exponential Convergence to the Optimal Policy

We now focus on the uniform asymptotic stability proper-
ties of the closed-loop system (29), (30), (31), (35). Firstly,
we show that xm(t) is persistently exciting as long as | ˙̂θA|
is sufficiently small.

Lemma 5. Let the entries of input w be sufficiently rich
of order n + 1 and uncorrelated. For any E > 0 such
that |ε̃(0)| ≤ E, there exists γ? ∈ (0, γb], with γb from
Proposition 1, such that, for all γ ∈ (0, γ?], the solutions
xm(t) of the reference model (31) are persistently exciting.

Next, we provide a direct consequence of Lemma 5 for the
adaptive error dynamics (32), (34).

Lemma 6. Let the hypotheses of Lemma 5 hold. Given
E > 0 such that |ε̃(0)| ≤ E, let γ ∈ (0, γ?], where γ?

is given in Lemma 5. Then, the origin (e, θ̃e) = 0 of system
(32), (34) is uniformly globally asymptotically stable (UGAS)
and uniformly locally exponentially stable (ULES).

Now that we have established that every solution e(t) con-
verges exponentially to zero, uniformly from compact sets of
initial conditions, we can conclude the convergence analysis
by studying the identifier dynamics (29).

Lemma 7. Let the hypotheses of Lemma 5 hold. Given
E > 0 such that |ε̃(0)| ≤ E, let γ ∈ (0, γ?], where γ?

is given in Lemma 5. Then, for any compact set of initial
conditions of the MRAC states (xm, e, θ̃e) and of the filter
state ξ, the origin (ε̃, θ̃A) = 0 of system (29) is uniformly
globally exponentially stable (UGES).

Remark 6. The uniform convergence in Lemma 7 holds only
once the compact set of initial conditions of the MRAC and
filter states is fixed. In fact, larger initial conditions imply
that signal x(t) may cause a slower convergence rate.

D. Sketch of the Proof of Theorem 1

The proof involves studying the closed-loop system in the
error coordinates defined in Section IV-A. Point 1 is ensured
in Section IV-B by choosing γ ∈ (0, γb], with γb defined in
Proposition 1, which is proved by combining Lemmas 1, 2, 3,
and 4. Point 2 is then derived from the statements of Section
IV-C. Choose γ ∈ (0, γ?], with γ? ∈ (0, γb] given in Lemma
5. Then, the UGAS and ULES result for the adaptive error
dynamics in Lemma 6 ensures that (e(t), θ̂e(t)− θe(θ̂A(t)))
converges exponentially to zero, uniformly from any compact
set of initial conditions. Similarly, the result for the identifier
dynamics in Lemma 7 implies exponential convergence of
θ̂A(t) − θA to zero, uniformly in compact sets of initial
conditions. Thus, to obtain (24), it is sufficient to recall from
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Fig. 2. Parameter estimation errors and adaptive gain.

(21) that if θ̂A(t) → θA, then θe(θ̂A(t)) → 0. Finally, (23)
follows from the ISS result of Lemma 3, combined with
e(t)→ 0.

V. NUMERICAL EXAMPLE

We provide a numerical example to illustrate the effec-
tiveness of the Model Reference Adaptive Reinforcement
Learning. In order to satisfy Assumptions 1 and 2, we
consider matrices A, B in controllability canonical form:

A =

 0 1 0
0 0 1
−2 3 1

, B =

00
1

. (39)

We choose as weights for the LQ problem (2) the matrices
Q = 10I3, R = 0.1, while we consider the dither signal
w(t) =

∑2
i=1 sin(2πit). For θ̂A, we restrict our search in

KA =

θ̂A ∈ R9 : vec−1(θ̂A) =

 0 1 0
0 0 1
α2 α1 α0

,
[
α2 + 2 α1 − 3 α0 − 1

]> ∈ rB3
}
,

(40)

where r = 50, and B3 denotes the closed unit ball in R3.
To verify that the proposed algorithm does not require ini-
tialization to a stabilizing gain, we pick an initial parameter
θ̂A(0) whose associated gain K(θ̂A(0)) is not stabilizing for
the true system. In Fig. 2-(a), we show that the parameter
error θ̃A converges to zero, implying that P (θ̂A) converges
to the optimal P ?. In Figure 2-(b), we provide the adaptive
gain K̂e used to stabilize the plant even in presence of a
non-stabilizing gain K(θ̂A). Once the estimation of P ? is
complete, K̂e becomes zero, leaving only the optimal gain
as a feedback controller. Finally, we include in Fig. 3 the
behavior of the reference model and the controlled plant.

VI. CONCLUSIONS

We addressed the problem of optimal control of partially
unknown linear systems by proposing an algorithm combin-
ing MRAC, continuous-time identification, and LQR. Under
matching conditions typical of the MRAC literature, we
ensured the boundedness of solutions and, by injection of
a sufficiently rich dither signal, convergence to the optimal
control policy and the true system parameters. This way,
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Fig. 3. Behavior of the reference model and the controlled system.

the plant converges to an optimal reference model. The
proposed controller does not require a priori hypotheses
on PE properties of the closed-loop system trajectories or
knowledge of an initial stabilizing policy. Future works on
this subject will be dedicated to addressing the scenario with
uncertain input matrix B and generalizing the approach to
other classes of systems.
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