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Abstract— Negative feedback regulation is a well-known
motif for suppressing deleterious fluctuations in gene product
levels. We systematically compare two scenarios where negative
feedback is either implemented in the protein production
rate (regulated synthesis) or in the protein degradation rate
(regulated degradation). Our results show that while in low-
noise regimes both schemes are identical, they begin to show
remarkable differences in high-noise regimes. Analytically solv-
ing for the probability distributions of the protein levels reveals
that regulated synthesis is a better strategy to suppress random
fluctuations while also minimizing protein levels dipping below
a threshold. In contrast, regulated degradation is preferred if
the goal is to minimize protein levels going beyond a threshold.
Finally, we compare and contrast these distributions not only in
a single cell over time but also in an expanding cell population
where these effects can be buffered or exacerbated due to the
coupling between expression and cell growth.

I. INTRODUCTION

Gene expression is the process by which cells synthesize
proteins based on information stored in DNA. Due to the
small number of molecules involved in this process and their
short lifetimes, random fluctuations or noise in protein levels
are an inherent feature of gene expression. Single-cell studies
have shown that noise in protein levels is physiologically
relevant and affects biological function often negatively
and, in other cases, positively [1]–[4]. For example, while
random fluctuations can enhance population adaptation to
uncertain environments [5], they can be disadvantageous
when homeostasis is required around a set protein level
[6]. Consequently, cells may evolve different mechanisms
to suppress gene expression noise when it is detrimental
[7]. In this article, we are interested in negative feedback
mechanisms in which gene expression is controlled based
on the intracellular protein concentration [8]–[11].

To understand how cells implement feedback, we should
consider that, as a dynamical process, the gene expression
process can be simplified as a result of two mechanisms:
protein synthesis and protein degradation (or dilution). When
these processes reach equilibrium, the protein concentration
fluctuates randomly around a set point. Negative feedback
can be implemented mainly in two different ways: The first
occurs when an increase in protein levels results in a decrease
in the synthesis rate. Another, when increasing protein levels
yields a speeding up of degradation rate (Fig. 1A). These
different strategies can exhibit distinct properties in terms of
response time, efficiency, and stochastic behavior.
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Among the applications of negative feedback implemented
through the self-regulation of protein synthesis, we can
include a fast kinetic response [12], suppressing random
fluctuations in protein concentrations [13], stabilizing gene
expression against mutations [14], and protein synthesis on
demand [15]. On the other hand, negative feedback through
self-regulation of the degradation rate has found applica-
tions in sharp triggering and adaptation of the response to
stress [16], and in improving molecular sensing [10].

Both negative feedback mechanisms have been mainly
compared at the level of small noise approximation [17]. At
this level, both mechanisms show equivalence in terms of
protein statistics. However, in a regime of higher random
fluctuations in protein concentration, we expect apprecia-
ble differences in the noise suppression dynamics [18]. To
understand this divergence, we explore regimes beyond the
small noise approximation using a combination of analytical
approaches and stochastic simulations of gene expression in
both single cells and in proliferating cell populations.

We start by introducing a simple one-dimensional linear
system to capture the dynamics of protein levels and trans-
form it into a nonlinear system by having either the synthesis
rate, or the degradation rate be protein-regulated. Next, we
consider a stochastic formulation of this system, where
protein synthesis occurs in random bursts of activity, and
feedback is implemented in either the frequency with which
bursts occur or the rate of protein degradation in between two
consecutive bursts. The simplicity of this system results in
an exact analytical solution for the steady-state distributions,
which we contrast between the two feedback strategies in
both small and high-noise regimes. Finally, we explore,
through simulations, the effects of the implementation of
these feedback strategies in proliferating populations where
the dilution rate is equivalent to the cell proliferation rate.

II. DETERMINISTIC FORMULATION OF
SELF-REGULATION MECHANISMS

To get a basic understanding of the gene expression
process, let us simplify it as a deterministic system following
the first-order differential equation:

dx
dt

= k− γx, (1)

where the positively-valued scalar x(t) is the protein concen-
tration at time t with steady-state

x̄ := lim
t→∞

x(t) =
k
γ
. (2)

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3744



A

B C

Time normalized to protein lifespan

P
ro

te
in

 c
on

ce
nt

ra
ti

on

Fig. 1. Negative feedback mechanisms in gene expression and
their differential responses to deviations from equilibrium. (A)
In the unregulated system, production and degradation rates are
constant. For regulated synthesis, the production rate decreases with
the protein level and, for the regulated degradation, the degradation
increases with the protein level. The mean protein level is set to 1.
The solution of the nonlinear ordinary differential equations (3)-(4)
are plotted over time by assuming k = γ = 1 and g(x) = x for a
starting initial condition of x(0) = 0 (B) and x(0) = 3 (C).

Here k is the synthesis rate that combines both transcrip-
tion/translation processes and γ is the rate at which pro-
teins are degraded. A key assumption underlying this one-
dimensional model is that the corresponding mRNAs are
short-lived and are degraded rapidly compared to γ [19].

Let g(x) be a positively-valued continuously-differentiable
function that monotonically increases with x. Then, negative
feedback control can be implemented independently in two
alternative and orthogonal ways - increasing protein concen-
tration either decreases the synthesis rate

Feedback in Synthesis :
dx
dt

= k/g(x)− γx, (3)

or enhances the degradation rate

Feedback in Degradation :
dx
dt

= k− γg(x)x. (4)

We further assume that g(x̄) = 1, which ensures the exact
same equilibrium point x̄ = k/γ for both feedback scenarios.

To obtain analytical expressions, it is common to linearize
the system considering small perturbations e = x− x̄ around
the equilibrium point. Hence, feedback models (3) and (4)
yields the same linear system:

de
dt

=−γ(1+ s)e, s :=
x̄

g(x̄)
dg(x)

dx
|x=x̄ ≥ 0. (5)

s is the dimensionless log-sensitivity of g(x) with respect to
x evaluated at the equilibrium point.

Although the dynamics of feedback-regulated synthesis
and degradation are identical for small perturbations, when

we consider non-linearities, that is, solving (3) and (4), we
observe different responses for large perturbations: While
negative feedback in synthesis provides a faster response
when starting from a low concentration (Fig. 1B), degra-
dation feedback is faster in reverting the system back to
equilibrium when starting from a high initial concentration
(Fig. 1C). These response kinetics to large perturbations are
critical in determining the extent and shape of concentration
fluctuations in the stochastic model, where noise constantly
“kicks" the system out of equilibrium.

III. STOCHASTIC FORMULATION OF SELF-REGULATION
MECHANISMS AT LOW-NOISE REGIME

In this section, we explore how protein noise is affected by
different feedbacks using the Linear Noise Approximation
(LNA), where g(x) is linearized around the equilibrium.
From this section onward, the concentration x(t) will be a
random process, and the angular bracket notation ⟨ ⟩ will
denote the expected value. Therefore, noise in protein levels
is measured using the squared coefficient of variation CV 2

x
and we redefine x̄ as the mean concentration in steady state.
These metrics satisfy:

x̄ := lim
t→∞

⟨x(t)⟩; CV 2
x := lim

t→∞

⟨x2⟩−⟨x⟩2

⟨x⟩2 . (6)

A. Unregulated gene expression

Given its analytical tractability, we model protein synthesis
as random bursts. The burst size Bx is related to an abrupt
increase in protein concentration during translation. Bx is
assumed to be an independent, identically distributed random
variable with a positive-valued probability distribution and
mean ⟨Bx⟩. Without regulation, bursts follow a Poisson
process at a rate kx (burst frequency), each increasing protein
concentration by Bx. Assuming a relatively high protein
count, we approximate protein dynamics as a continuous
decay between bursts, following first-order kinetics [20].

These processes can be gathered in a Stochastic Hybrid
System (SHS) that is conveniently represented by

x kx−→ x+Bx,
dx
dt

=−γx. (7)

To quantify the extent of fluctuation in x(t) we use the
tools of moment dynamics – for the SHS (7) the time
evolution of uncentered moments is given by [21],

d⟨xm⟩
dt

=

〈
kx ((x+Bx)

m − xm)+
dxm

dx
(−γx)

〉
(8)

Simplifying (8) for m = 1 and m = 2 yields

d⟨x⟩
dt

= kx⟨Bx⟩− γ⟨x⟩, (9a)

d⟨x2⟩
dt

= kx⟨B2
x⟩+2kx⟨Bx⟩⟨x⟩−2γ⟨x2⟩, (9b)

where for the equivalence of (9a) to the deterministic model
(1) we need the net synthesis rate k = kx⟨Bx⟩.
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Solving this system of differential equations at steady-
state, we obtain

x̄ =
kx⟨Bx⟩

γ
=

k
γ
, CV 2

x =
⟨B2

x⟩
2⟨Bx⟩x̄

. (10)

We can highlight that, if the bursts follow an exponential
distribution, ⟨B2

x⟩= 2⟨Bx⟩2, therefore CV 2
x is proportional to

⟨Bx⟩ as can be seen in Fig. 2.

B. Self-regulated synthesis

Within this framework of bursty expression, negative feed-
back control of protein synthesis can occur both in the burst
frequency or burst size [22]. Here, we consider feedback
on the arrival of bursts, and alter the burst frequency to
kx/g(x). Recall that as g(x) is a monotonically-increasing
function, the arrival of bursts slows down with increasing
protein concentrations. The moment dynamics for this case
is similar to (8) with kx now replaced by kx/g(x),

d⟨xm⟩
dt

=

〈
kx

g(x)
((x+Bx)

m − xm)+
dxm

dx
(−γx)

〉
(11)

and these moment equations cannot be solved for arbitrary
nonlinear functions g(x) due to issues with moment closure
[23]–[25]. Towards that end, we consider small fluctuations
of x(t) around the mean x̄ [26], [27], one can linearize

kx

g(x)
≈ kx

(
1− s

(
x− x̄

x̄

))
, s :=

x̄
g(x̄)

dg(x)
dx

|x=x̄ ≥ 0 (12)

using the fact that g(x̄) = 1. Now using this linear approxi-
mation in place of kx/g(x) in (11), and again performing the
steady-state moment computations results in

x̄ =
kx⟨Bx⟩

γ
, CV 2

x =
⟨B2

x⟩
2⟨Bx⟩x̄(1+ s)

. (13)

Note that the noise levels with feedback are lower by a factor
of 1+ s compared to the case with no regulation (10).

C. Self-regulated degradation

Negative feedback in degradation can be implemented by
having a constant burst frequency and modifying the decay
kinetics to

dx
dt

=−γg(x)x. (14)

It is important to point out that if one considers a protein that
is not actively degraded but its concentration is diluted from
an increase in cell size (as is the case of most proteins in E.
coli), this feedback implies a coupling between expression
and cell growth. More specifically, lower expression of this
protein will result in a lower exponential growth rate for cell
size, resulting in longer cell-cycle times. We discuss some
implications of this coupling in more detail in Section 5. With
the altered nonlinear degradation, the moment dynamics is
given by

d⟨xm⟩
dt

=

〈
kx ((x+Bx)

m − xm)+
dxm

dx
(−γg(x)x)

〉
. (15)

It turns out that linearizing g(x)x in (15) for small concentra-
tion fluctuations around the mean results in the exact same

mean and noise levels as computed in (13) for feedback in
synthesis. Thus consistent with previous observations [8],
[28], both feedback are identical in terms of noise attenuation
for small fluctuations.

Mean protein burst size
0.1

0.1

Regulated degradation 

N
oi

se
 le

ve
l 

Fig. 2. Self-regulated synthesis outperforms self-regulated degra-
dation in attenuating noise at high protein burst sizes. The
noise levels (19) and (22) obtained for self-regulated synthesis and
degradation, respectively, are plotted with increasing mean protein
burst size ⟨Bx⟩. For comparison, noise level (10) when there is no
feedback, and LNA-predicted noise level (13) are also plotted. For
this plot, Bx is drawn from an exponential distribution with mean
⟨Bx⟩, kx = 1/⟨Bx⟩, γ = 1 and g(x) = x.

IV. FEEDBACK COMPARISON IN HIGH-NOISE REGIME

We now explore the stochastic feedback systems in the
high-noise regime that correspond to large protein burst
sizes. Throughout this section and later, we consider the
physiological case of Bx drawn from an exponential distri-
bution with mean ⟨Bx⟩ [29]. Our approach relies on ana-
lytically solving the steady-state distribution for the protein
concentration and contrasting their shapes between feedback
strategies as a function of ⟨Bx⟩. As we increase ⟨Bx⟩, we
also correspondingly decrease kx to maintain the same x̄
in the small noise regime (13). As we shall later see,
given the nonlinearities of the system, the mean protein
concentration in the stochastic model deviates considerably
from its deterministic counterpart in the high-noise regime.

A. Self-regulated synthesis

Recall that in this case, bursts arrive with a rate kx/g(x).
Let p(x, t) denote the probability density function (pdf) of
the protein concentration at time t. Then based on the SHS
formalism introduced earlier, the time evolution of p(x, t) is
described by the Chapman-Kolmogorov equation [30]

∂ p(x, t)
∂ t

+
∂J
∂x

= 0,

J =−γxp(x, t)+ kx

∫ x

0
e−(x−x′)/⟨Bx⟩ p(x′)

g(x′)
dx′.

(16)

Assuming kx = 1/⟨Bx⟩, γ = 1 and g(x) = x that ensures
a steady-state mean protein concentration of 1 units in
the small-noise regime for both regulated and unregulated
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Fig. 3. Self-regulated degradation leads to thinner-tailed steady-state protein concentration distributions compared to self-regulated
synthesis. (A) Sample trajectories for protein concentrations for unregulated and regulated gene expression with g(x) = x. Bx is drawn from
an exponential distribution with mean ⟨Bx⟩. (B) The solutions of the steady-state protein distributions given by (17) and (21) demonstrate
a close similarity in the low noise regime (top), where ⟨Bx⟩ = 0.1, kx = 10, and γ = 1. A noticeable deviation in the distribution of the
two systems is observed in the high noise regime (bottom), where ⟨Bx⟩= kx = γ = 1.

systems, (16) has an exact analytical solution for the steady-
state pdf [28]

p(x) := lim
t→∞

p(x, t) =
e−kx(1+x2)/x

2xY0(2kx)
. (17)

Here Y0(2kx) is the modified Bessel function of the second
kind that can be computed in Wolfram Mathematica using

Yi(2kx) := BesselK[i,2kx]. (18)

The steady-state pdf (17) leads to the following mean and
the noise levels

x̄ =
Y1(2kx)

Y0(2kx)
, CV 2

x =
Y2(2kx)Y0(2kx)

Y1(2kx)2 −1. (19)

B. Self-regulated degradation

The complementary case of feedback in degradation has
exponentially-distributed bursts arrive with constant rate
kx = 1/⟨Bx⟩, and protein concentrations decay nonlinearly
between consecutive bursts as

dx
dt

=−g(x)x =−x2. (20)

Formulating an analogous Chapman-Kolmogorov equation to
(16) yields the following steady-state pdf

p(x) =
e−kx(1+x2)/x

2x2Y1(2kx)
(21)

with the mean and the noise levels

x̄ =
Y0(2kx)

Y1(2kx)
, CV 2

x =

(
Y1(2kx)

Y0(2kx)

)2

−1. (22)

V. DIFFERENT PERSPECTIVES FOR POPULATION
STATISTICS: SINGLE-CELL VS. POPULATION SNAPSHOTS

Fig. 2 presents a comparison of noise levels (19) and (22)
with increasing mean burst size, together with unregulated
noise levels (10), and the LNA-predicted noise levels (13).
For an exponentially-distributed burst size Bx, kx = 1/⟨Bx⟩,
γ = 1 and g(x) = x, the unregulated and LNA-predicted noise
levels are simply ⟨Bx⟩ and ⟨Bx⟩/2, respectively. It is quite
evident in Fig. 2 that feedback regulation strategies have a

considerable impact on noise suppression. As predicted ear-
lier, noise levels for both feedbacks converge together with
the LNA-predicted level in the low-noise regime. Conversely,
in the high-noise regime, we see a divergence among them,
with feedback in synthesis providing the lowest noise.

Fig. 3 shows sample trajectories of protein concentration
evolving over time as well as the steady-state pdfs for
different regulation strategies. For ⟨Bx⟩ = 0.1, in the low
noise regime, the protein pdfs of both systems exhibit no-
table similarities. Meanwhile, Fig. 3B (bottom) presents the
distributions of the two systems for ⟨Bx⟩= 1, the high-noise
regime showing important differences. The distribution for
the regulated degradation system demonstrates a faster tail
decay (also evident in the 1/x2 scaling in (21) as compared
to 1/x in (17)). The faster decay of the tail can be intuitively
understood from the perturbation responses in Fig. 1 with
quicker mean reversion from a high concentration seen in
degradation feedback as compared to synthesis feedback.
Therefore, to minimize concentration fluctuations above a
high critical threshold, the regulated degradation approach
is preferred. Using similar logic, it can be seen that in
scenarios where minimization of protein fluctuations below
a low threshold is desired, the regulated synthesis strategy
proves to be more effective.

This article has focused on gene expression statistics

Fig. 4.Comparing the statistics of protein concentration between
single-cell and population perspectives. The schematic shows
the expansion of the colony starting from an individual cell that
proliferates to give birth to descendant cells.
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Fig. 5. Negative feedback coupling between protein concentration and dilution drive differences in single-cell and population-level
concentration pdfs. The single-cell pdf for the self-regulated dilution system (21) is compared to its population counterpart in the low
noise regime (A), characterized by ⟨Bx⟩= 0.1, and a high noise (B), where ⟨Bx⟩= 1. For comparison purposes, the concentration pdf for
self-regulated synthesis is also shown here. (C) The mean steady-state protein concentration calculated from the perspective of the single
cell (19) and (22), and at the population level is shown as a function of the mean burst size ⟨Bx⟩. Parameters: γ = 1, kx⟨Bx⟩ = 1. The
burst size follows an exponential distribution with mean ⟨Bx⟩ depicted on each figure.

within single-cell trajectories. However, experimentally not
always a single cell is tracked, but the statistics is done over a
population of lineage-related cells [31]. As depicted in Fig. 4,
in a population-based approach, we consider all progeny of
a cell, computing the pdf across all cells at a specific time
snapshot [32], [33].

To model the protein level distribution at a population
perspective, we employ an agent-based model for a growing
cell colony1. When a cell dilutes its protein at a rate
γg(x), division becomes a stochastic process with probability
P(division during(t, t + dt)|x) = γg(x)dt. After division, a
new cell inherits the mother’s protein concentration. For self-
regulated synthesis, our result shows that all cells share the
same division rate (γ), resulting in no difference between
analytically-obtained protein concentration pdf (17) and the
population-level histogram in both low- and high-noise con-
ditions (see our preprint version for more details [34]).

With self-regulated dilution, cells with higher protein con-
centrations replicate faster. Therefore, from the population
perspective, the pdf of the protein level is shifted to higher
values compared to the single-cell counterpart (Fig. 5B).
To quantify this effect, Fig. 5C shows the mean protein
concentration against the burst size, with both feedback
mechanisms converging to the same mean concentration
in the absence of intrinsic noise. We observe how, in the
high-noise regime, the mean protein level for the regulated
dilution in the population approach exceeds its single-cell
perspective. This shift approaches the mean protein level
from the population perspective to the single-cell mean
protein level with feedback in protein synthesis.

VI. DISCUSSION

In this contribution, we investigated stochastic dynamical
systems motivated by the central question of noise attenu-
ation in gene expression. By comparing two different feed-
back strategies for self-regulating protein synthesis versus

1The algorithm and associated code have been provided on
https://doi.org/10.5281/zenodo.8343055.

degradation, we show that their perturbative linear dynamics
around the set point are identical. This leads to the same
noise level for both feedbacks when stochasticity is added
through bursty synthesis.

As perturbations around the equilibrium begin to increase,
these self-regulation mechanisms begin to diverge. At large
protein burst sizes, regulated synthesis produces a lower
CVx as compared to feedback in degradation (Fig. 2). These
differences are exemplified in the steady-state pdfs (Fig.
3) - regulation in degradation results in a faster decay of
the distribution tail. Thus, regulated degradation would be
a better strategy if protein levels that cross a high critical
threshold are detrimental to cell fitness. In contrast, for an
essential protein whose levels need to be maintained above a
critical low threshold, negatively regulating protein synthesis
is a better option. Similar observations have been made
via stochastic simulation of genetic circuits [17], and here
we quantify them analytically with exact solutions of the
underlying Chapman–Kolmogorov equations.

Another key contribution of this work explores the steady-
state protein level distribution across a cell population at
a given time snapshot. In this population perspective, the
protein distribution can differ from the distribution obtained
by observing an individual cell over time. This is particularly
relevant for stable proteins with no active degradation, where
the protein dilution rate is essentially the cellular growth
rate. Our results show that both single-cell and population-
level distributions are identical for self-regulated synthesis,
where cellular growth rates are constant [34]. However, when
high protein levels increase the dilution and cell growth rate,
cells with higher protein concentrations proliferate faster and
become a larger part of the population. This results in a
right shift of the population-level distribution compared to
its single-cell counterpart (Fig. 5). Based on these results,
we expect a left-shifted population-level distribution for the
case of positive feedback between expression level and cell
growth rate. Positive feedback is implemented when a high
intracellular protein concentration slows the cellular growth
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rate, leading to a lower dilution rate, which further increases
the concentration [35], [36].

It is interesting to note that the population-level distribu-
tions of both feedback strategies seem closer to each other,
as compared to their single-cell distributions (Fig. 5). This
leads to an interesting conclusion that negative feedback
may suppress distribution differences at the population level,
which in turn could be exacerbated by positive feedback
where cellular growth is inversely related to expression
levels. In summary, we have dissected the role of feedback in
shaping the protein level distribution in single cells and in a
proliferating population. Future work will consider mixtures
of feedback in burst size, frequency, and degradation in
combination with sequestration-based feedbacks [37]–[39] in
determining the magnitude, time-scale, and exact shape of
fluctuations in gene product levels.
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